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PARTIAL CAUSAL DETECTABILITY OF LINEAR DESCRIPTOR
SYSTEMS AND EXISTENCE OF FUNCTIONAL ODE ESTIMATORS*

JUHI JAISWAL', THOMAS BERGER}, AND NUTAN K. TOMARS

Abstract. This paper studies the problem of state estimation for linear time-invariant descriptor
systems in their most general form. The estimator is a system of ordinary differential equations
(ODEs). We introduce the notion of partial causal detectability and characterize this concept by
means of a simple rank criterion involving the system coefficient matrices. Also, several equivalent
characterizations for partial causal detectability are established. In addition, we prove that partial
causal detectability is equivalent to the existence of functional ODE estimators. A numerical example
is given to validate the theoretical results.

Key words. Linear descriptor systems, State estimation, Partial causality, Partial causal
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1. Introduction. We consider linear time-invariant (LTT) descriptor systems of
the form

(1.1a) Ei(t) = Ax(t) + Bu(t),
(1.1b) y(t) = Cx(t) + Du(t),
(1.1c) z(t) = Kz(t),

where z : R - R”, v : R - R, y : R — RP, and z : R — R” are known as
the semistate vector, the input vector, the output vector, and the functional vector,
respectively. E, A € R™*" B € R™*! C € RP**, D € RP*! and K € R™*"
with » < n are known matrices. The first order matrix polynomial (AE — A), in
the indeterminate A, is known as matrix pencil. If m = n and det(AE — A) is a
nonzero polynomial in A, then system (1.1) is said to be a regular descriptor system.
In this article, we consider systems (1.1) in their most general (rectangular) form
and assume that the system designer has defined all the coefficient matrices and
variables in such a way that the solution set of system (1.1) is non-empty. The tuple
(z,u,y,z) : R = R"+P+" is said to be a solution of (1.1), if it belongs to the set

B = {(x,u,y, 2) € LL(R; RHPITY | BEx € AC)oe(R;R™) and (z, u, y, 2) satisfies
(1.1) for almost all t € R}.

Here, L _(R; R"#P+7) denotes the set of measurable and locally Lebesgue integrable
functions from R to R* 4P+ and ACj..(R; R™) represents the set of locally absolutely
continuous functions from R to R™. It is well-known that, corresponding to any given
initial condition Ez(0), the system (1.1) may have more than one solution.

In many control applications such as feedback control, fault diagnosis or process
monitoring, the information about the full (K = I,,) semistate vector or some part of
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37 it is required [30]. However, this information is not available due to physical and/or
38 economical constraints. Hence, in general, the functional vector z(¢) € R" contains
39 those variables which cannot be measured and, therefore, we need to estimate them.
40 The existing theory of state estimation for systems of the form (1.1) can be broadly
41  classified in two categories:

42 (i) The estimation generated by a DAE system (described by differential and
13 algebraic equations) of the form
44 (1.2a) Ez(t) = A#(t) + Bu(t) + Lyv(t),
45 (1.2b) y(t) = Cz(t) + Du(t) + Lov(t),
46 (1.2¢) 2(t) = Kz(t) + Lsv(t),
A7 where Ly, Ly, L3 are matrices of appropriate sizes, and v(t) is an error
18 correction term.
49 (ii) The estimation generated by an ODE system (described by ordinary differentiall]
50 equations) of the form
. u(t)

51 1.3a w(t) = Nw(t)+ H ,

(130 (0 =N+ 1 40|

. u(t)

52 1.3b 2(t) = Rw(t) + M ,

(1) (6= Ru(t) + M |40
53 where N € R®*%, H ¢ R**(4P) R c R™ M € R™*(4P) and s € NU {0}.
54  From an applications point of view, estimation by (1.3) is always preferred because
55 this system can be initialized arbitrarily and is easily implemented.
56 In the last few decades, the problem of state estimation for system (1.1) has gained
57 significant attention, due to its wide area of applications in various domains. To the
58  best of our knowledge, the problem of full-state estimation was first considered in 1964

59 for state space (E = I,,) and in 1983 for descriptor systems with the seminal works
60 by Luenberger [26] and El-Tohami et al. [13], respectively. After this, the theory of
61 full-state estimation for descriptor systems was well developed. Nowadays, there are
62 several equivalent characterizations for the full-state estimation of systems (1.1), and
63 algorithms for the construction of the estimators exist. A relatively complete literature
64 for the theory of full-state estimation of LTI descriptor systems (1.1) can be found
65 in [4,5,17,21] and the references therein. On the other hand, the problem of functional
66 (or partial-state) estimation has been first addressed in the pioneering work of Dai [9]
67 and Minamide et al. [27] on regular descriptor systems. In both of these works, the
68 authors estimated z(t) by systems of the form (1.2) under sufficient conditions by
69 fixing Lo = I and Lz = 0 in system (1.2). Since then, functional estimators have
70 been used in estimating state space systems with unknown inputs [15], designing
71 observer-based controllers for descriptor systems [14], and fault-tolerant controllers
72 for regular descriptor systems [25]. In [1], Berger studied LTI descriptor systems
73 (1.1) in the context of disturbance decoupled estimation and established a geometric
74 characterization for estimation of the functional vector z(t) via system (1.2).

75 Jaiswal et al. [19] introduced the notion of partial detectability for system (1.1)
76 with algebraic as well as geometric characterizations. Further, the authors showed
77 that partial detectability of system (1.1) is necessary for the estimation of the functionall}
78 vector z(t) via system (1.2), if Ly = I and L3z = 0. In this article, we will see that
79 partial detectability is also necessary for the estimation of z(t) via system (1.3).

80 In 2012, Darouach introduced the concept of partial impulse observability as
81 a sufficient condition for the estimation of z(t) [10,11]. Notably, the estimation
2
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procedures are correct in [10,11], but there was a flaw in the algebraic characterization
of partial impulse observability. A modified and correct algebraic as well as geometric
characterization of partial impulse observability of system (1.1) has been established
in [18]. In this article, the authors show that partial impulse observability plays a
prominent role in the estimation of the functional vector z(¢) by (1.3), similar to
impulse observability in full-state (K = I,,) estimation.

In 2021, Jaiswal et al. [22,23] provided a new set of sufficient conditions for the
estimation of z(¢) via system (1.3), which are weaker than the conditions provided
in [10,11,25]. In [20], Jaiswal et al. further studied the problem and provided much
milder sufficient conditions for the existence of a functional estimator (1.3). Although
the proposed estimation condition in [20] is weaker than all the existing conditions in
the literature, it is still not close to being necessary as we will show in Example 5.1.
In this article, we provide necessary and sufficient conditions for the estimation of z(t)
via systems of the form (1.3).

The paper is organized as follows. Section 2 collects some preliminary results
used in the sequel of the article. In Section 3, the concept of partial causality with
respect to K for system (1.1a) is introduced. We provide a rank criterion to test
the partial causality of system (1.1a) with respect to K. In addition, this section
extends the concept of partial causality to partial causal detectability and establishes
several equivalent algebraic and geometric characterizations for the same. In section 4,
necessary and sufficient conditions for the estimation of the functional vector z(t) (via
system (1.3)) are established. A numerical example is given in Section 5 to illustrate
the step-by-step estimator design procedure. Finally, Section 6 concludes the article
with some future research directions.

We use the following notations throughout the article: 0 and I stand for zero
and identity matrices of appropriate dimensions, respectively. Sometimes, for more
clarity, the identity matrix of size n x n is denoted by I,,. In a block partitioned
matrix, all missing blocks are zero matrices of appropriate dimensions. The set of
complex numbers is denoted by C, C*+ := {\ € C | Re(\) > 0} and C~ := {\ €
C | Re(\) < 0}. The symbols ker A, row A, AT, and AT denote the null space, the
row space, the Moore-Penrose inverse (MP-inverse), and the transpose of a matrix
A € R™*™ respectively. A matrix pencil (AE — A) is said to have normal rank g if
rank(AE — A) = ¢ for all but finitely many A € C and denoted by nor-rank(AE —A) =
g. In addition, the pencil (AE — A) is said to be column (row) regular, if it has
full column (row) normal rank. A block diagonal matrix having diagonal elements
Ay, ..., Ay is represented by blk-diag{A4;,..., Ax}. The set AM = {Az | x € M}
(A7IM := {z € R" | Az € M}) is the image (pre-image) of a subspace M C R"
(M CR™) under A € R™*™. Throughout the article we use the matrices

E A
E. A E A
Frt1,[B,A] = XQ'[['_.__'A and Fpi1,(p,4,K] ‘= XJ)\‘Q"-,"A .
Yo" Yo' p
K

For f € AL (R;R™) we write f(t) — 0 as t — oo, if tlim ess supy Oo)Hf(t)H =0.
—00 )

2. Preliminaries. In this section, we recall some basic concepts from descriptor
systems theory and linear algebra. These results will play an important role in the
further development of the article.

This manuscript is for review purposes only.



127

128
129
130
131
132
133
134
135
136
137

138

139

153

LEMMA 2.1. [7, Quasi-Kronecker Form (QKF)] For E, A € R™*™ there exist
nonsingular matrices P € R™*™ and Q) € R™"*"™ such that

(21)  P(AE — A)Q = blk-diag{AE, — A, AL, — J5, Ay — I, AE, — A},

where
1. E., Ac € R™<*" m, < n., and rank(AE, — A.) = m,, for all A\ € CU {oco}.
2. Jp e RMXm,
3. J, € R X" 4s nilpotent.
4. E,, Ay € R™* ™ m, > n,, and rank(AE, — A,) = n,, for all A € CU{co}.
Here, rank(coE, — A.) := rank E, and rank(coE,, — A,) :=rank F,).

Remark 2.2. The blocks in (2.1) appear only in pairs. For example, if F, vanishes,
then A, also vanishes. Moreover, e—blocks with m. = 0 and/or n—blocks with n,, = 0
are possible, which results in zero columns (for m. = 0) and/or zero rows (for n,, = 0)
in the QKF (2.1).

The following result can be found in any standard textbook of matrix theory.

PROPOSITION 2.3. For matrices X € R™*™ and Y € RP*" rank [Y

if, and only if, ker X C kerY'.

The following result is a direct consequence of Proposition 2.3.
PROPOSITION 2.4. Let X € R™", W € R™* Y € RP*" and Z € RPX! pe

X W X w
such that rank v Z} = rank [X W] , then rank {Y] = rank X and rank [Z} =
rank W.

PROPOSITION 2.5. [28, Thm. 3.7] For matrices X € R™*" and Y € R"*?,

X} =rank X

rank(XY) = rank Y — dim (ker X N ImY’) = rank X — dim (ker YT n ImXT) .
PROPOSITION 2.6. [29] For matrices X € R™*", W € RP*" and Y € RP*!,

rank [V)[(/ )0/] =rank X 4+ rankY + rank ((I — YY"')W(I — X+X)) .

The following result is a simple consequence of Proposition 2.6
PROPOSITION 2.7. Let X € R™"™ W € R™! and Y € RP*! be such that

rank X =m and/or rankY = [, then rank {)O( V;//] =rank X +rankY.

We now recall the following lemma from [21].

LEMMA 2.8. Let E, A € R™*", and B € R™*!, then there exist two orthogonal
matrices Up € R™*™ and Vo € R™*™ such that

Eo Ex, ® .. K A0 ® ... .. K
0 Ex_o Ap_1 . .
UoEVp = . = , UpAVp = ]
0 B 4, R
0 Aq

(2.2a)

.
(2.2b) UOB:[Bg L OT] ,
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where X represents the matrix elements of no interest and for eachi =1,2, ..., k—1,
where k < n,
(a) A; has full column rank.

(b) rank El Bz = r;, where r; represents the number of rows in the matrix
Eo Ex, ... K -
[Ei Bl}yEi: T andBi:[oo],
0 FE;

(¢c) [Eo Bo] has full row rank.

The proof of Lemma 2.8 is given in [21], and an algorithm to compute Up and
Vo can be found by adapting the similar one in [20].

Now, we recall the concept of generalized Wong sequences corresponding to a tuple
{E, A, B,C} from [1], various properties of descriptor system (1.1), and their algebraic
and geometric characterizations. It is notable that the original Wong sequences (with
B =0 and C = 0) first appeared in a work by Wong [31], hence their name.

DEFINITION 2.9. For a given system (1.1), or simply for the tuple {E, A, B,C},
(oo} oo

the generalized Wong sequences {VFE A,B,C) and {W[’E A,B,C) are sequences
A,B, ABCLS o

i=0
of subspaces, defined by

V[OE,A,B,C] := ker Cu VE;,{A,B,C] = A_l(EV[iE’A,B’C} + Im B) N ker C,

W[OE,A,B,C] = {0}7 W[igiA,B,C] = E_l(AW[iE’A’B,C] + Im B) Nker C.

The limits of the generalized Wong sequences are
Vis.aso) = [ Vipaso 0d Wiape=UWpapar
ieN i€N

DEFINITION 2.10. [8] The descriptor system (1.1a), or simply the tuple {E, A, B} ]
is completely controllable, if

Vag, oy € R" I(z,u,y,2) € B andt >0: x(0) =x¢ and z(t) =xy.
PROPOSITION 2.11.  [3] The tuple {E, A, B} is completely controllable if, and

only if, V[*E,A,B,o] N W[*E,A,B,O] =R"

PROPOSITION 2.12. [8] For any E, A € R™*" B € R™*! and C € RP*", there
exist two non-singular matrices S € R™*™ and T € R™*™ such that

+
AE11 —Ann AE12 — A1z AE13 — Ais B cf

S(}\E—A)T: )\EQQ_AQQ )\Egg—Azg ,SB: 0 ,CT: O;r 3
AE33 — Ass 0 Cs

where
(i) By, A1 € R™>*™ | the triple {E11, A11, B1} is completely controllable, and
my = rank [EH Bl] <ni+l1,
(ii) Eag, Ass € R™2*"2 gnd Fayy is square (mgo = ng) and invertible,
(iii) Es3, Asz € R™3*" with mg > ny satisfies rank(AFE33 — Azz) = ng for all
AeC.

We end this section by recalling the concepts of partial impulse observability
and partial detectability for system (1.1). To this end, note that corresponding to

5
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191 inconsistent initial conditions, system (1.1) may possess distributional (impulsive)
192 solutions. Motivated by [6], we denote

193 Bog = {(2,9,2) € (Dhg)" TP | (z,y,2) satisfies (1.1) with u =0 on [0,00)},

194 where 9/ .. denotes the class of piece-wise smooth distributions and %4 is called
195 ITP-behavior in [6]. For f € @;/)w%oev the impulsive part at time ¢ is denoted by f[t].
196 For more details, see also [18].

197 DEFINITION 2.13. [18] The descriptor system (1.1), or simply the tuple {E, A, C} J}
198 is said to be partially impulse observable with respect to K, if

199 V(z,y,2) € By: (Vt>0: y[t] =0) = (Vt=>0: z[t] =0).

200 In the following lemma, we utilize the fact that

201 (2.3) Wig, 10,0 Nker € =W/g 40,¢) and AY(ImE) = A Y(Im E) Nker C,

202 where the first one follows from Step 4 in the proof of [1, Lem. 2.1] and the second
203 one is clear, and obtain a characterization of partial impulse observability in terms of
204 the generalized Wong sequences.

205 PROPOSITION 2.14. [18] System (1.1) is partially impulse observable with respect
206 to K if, and only if, Wi 4001 N AY(ImE) C ker K.

DEFINITION 2.15. [19] The descriptor system (1.1), or simply the matriz tuple
{E,A,C}, is said to be partially detectable with respect to K, if for all (x1,u,y,z1),
(z2,u,y,20) € B we have

z1(t) — z2(t) = 0 as t — oc.

207 PROPOSITION 2.16. [19] The system (1.1) is partially detectable with respect to K
208 if, and only if, V) € Ct,
oA \E - A
...f‘z‘?z'es E. -.,.7.1:{2_772

209 (2.4) rank = rank e

E ME-A e

K E MNE-A

210 3. Partial causality. In this section, we first define the concept of partial

211 causality with respect to K for system (1.1a) and then derive an algebraic criterion
212 in terms of the system coefficient matrices to test the partial causality. The definition
213 of partial causality is a natural extension of causality of system (1.1a), which was
214 introduced by Hou and Miiller [16]. In this section, whenever needed, we take the
215 matrices E and A in their QKF (2.1) to simplify the proofs.

216 DEFINITION 3.1. System (1.1a), or simply the triple {E, A, B}, is said to be
217 partially causal with respect to K, if for every (z,u,y,z) € & the system (1.1) has a
218 solution such that z(t) = Kx(t) can be expressed in a form containing no derivatives
219 of u.

220 In order to analyze this property, we investigate the structure of solutions of
221 (1.1). The solution theory of descriptor systems is a simple application of the QKF
6
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(2.1) because it has a block diagonal structure and the associated variables can be
considered separately. Set

)

T T
(3.1) x:Q[a{ z} a] x| andPB=[B] B} B] BnT]

n

then in terms of the four different blocks in the QKF (2.1), (1.1a) reduces to

(3.2a) E.i.(t) = Acx(t) + Beu(t),
(3.2b) Lp(t) = Jyap(t) + Bru(t),
(32C) Joa}a(t) = ma(t) + Bau(t)7

(3.2d) Ey iy (t) = Ayxy(t) + Byu(t).

Thus, the following solution analysis of (1.1a), via (3.2), is now straightforward. Let
(z,u,y,2) € P with x partitioned as in (3.1) be given. Then
S1) in view of assertion 1. of Lemma 2.1, the pencil (AE. — A.) can (after,
possibly, an additional transformation) be written as A [I,,,, 0] —[Ae, A,].
Therefore, systems of the form (3.2a) can also be rewritten as

(3.3) (L. 0] [28] = [Ae,  Ad] [i;gﬂ + Beu(t).

.
Thus, any solution z. = [ZL'I xﬂ to (3.3) is given by

zi(t)| _

(1)
for some initial value 2§ € R™¢. Hence, in general, the system (3.2a) always
has a solution, and any solution can be expressed in a form such that x.
contains no derivatives of u.

S2) Corresponding to any initial condition x?c € R™, the solution of the state
space system (3.2b) is given by

exp(Ae t)a + [ exp(Ae, (¢ —( ;)) (Aeya(7) + Beu(r)) dT]
To t

xy(t) = eXp(th)x?c + /0 exp(Jy(t — 7)) Byu(r)dr.

Therefore, the solution of (3.2b) contains no derivatives of u.
S3) The solution of (3.2c) is given by

h—1
T(t) = =Y JiBu (1),
=0

where h is the nilpotency index of the matrix J,, for details see [12]. Hence,
the solution of (3.2¢) contains no derivative of u if, and only if, u()(t) €
ker(J:B,) for all 0 < i < h and for all ¢ > 0.

S4) Inview of assertion 4. of Lemma 2.1, the pencil (AE, —A,) can (after, possibly,

an additional transformation) be written as A [Ig"] - {im] . Therefore,
72
systems of the form (3.2d) can be rewritten as
() = Apy () + By, u(t),
0=A,,z,(t) + Bpu(t).
7
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Thus, corresponding to any initial condition 1:9, € R™, the solution is given

by

g(t) = exp(A, )2 + / exp(Ay, (t — 7)) By u(r)dr,

provided it satisfies 0 = A,,,x,(t) + By, u(t). Therefore, the solution of (3.2d)

contains no derivatives of u.

In summary, we see that x is forced to contain derivatives of the input w only due to
the o-block. If the contributions of this block can be excluded from the functional
vector z of system (1.1), then the system is partially causal. The following result will

play an important role in the proof of Theorem 3.3 below.

LEMMA 3.2. Consider system (1.1a) and (1.1c). Then the following statements

are equivalent:
1. {E, A, K} satisfies the rank condition

(3.4) rank F, 1 (g 4] = rank Fy 1 (5,4 K]

2. In view of the QKF (2.1) and K = [Ke K; K, Kn] we have K,J, =0

and K, = 0.

Proof. To simplify the rank of F,, 1 g 4], we apply the following operations:

1. Write the QKF (2.1) of (E, A) in each block row.

2. Apply Proposition 2.7 ((n+1)-times) from top to bottom to the full row rank

matrix F..

3. Apply Proposition 2.7 ((n + 1)-times) from top to bottom to the full rank

matrix Ip,.

4. Apply Proposition 2.7 ((n + 1)-times) from right to left to the full column

rank matrix F,,.
Therefore, we obtain

rank 7,41 (g,a) = (n+ 1) (rankEE +rank I, , + rankEn> +rank Fouy1,(7, 1., -

no s

Further, to simplify the rank of 7, 17, 1

In,
. 7:]0-. (QXQ
1. Multiply .7-'”+17[JU,I%] by U;, = ’._f.f,,]%
(—de) e o

.In

o

we apply the following operations:

from the right.

2. Apply Proposition 2.7 (n-times) from right to left to the full rank matrix L,,.

Therefore, in view of the fact that J**! = 0, we obtain

rank F, 1, (g,4] = (n+1) (rank E. +rank I,,, + rank En) +nrank [, _.

Similarly, to simplify the rank of 7,11 g a k], We apply the following operations:
1. Write the QKF (2.1) of (E,A) in the first (n 4 1)-block rows and K =

[Ke Ky K, K,]] in the (n + 2)"?-block row.

2. Apply Proposition 2.7 ((n + 1)-times) from top to bottom to the full rank

matrix Inf.
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3. Apply Proposition 2.7 ((n + 1)-times) from right to left to the full column
rank matrix F,.
Therefore, we obtain

rank Fp,11,(g,4,k] = (n + 1)(rank I,,, + rank ) +

rank}'n+17[[56 JUHAe IM],[Ke Ka]}.

Additionally, to simplify the rank of F , we apply the

n+17[[’5e JU]7[A€ Ina]7[xe K,,]}
following operations:

1. Multiply FnJrL[[E( JGHAE IHJ,[KG KU}] by
-
I’fba
I A
U;, = : Ly,

from the right.
2. Apply Proposition 2.7 (n-times) from right to left to the full rank matrix I,,_ .
3. Apply Proposition 2.7 to the first block row and full row rank matrix E..
Therefore, utilizing the fact that J?*! = 0, we obtain

rank F, 1 (g 4,k) = rank Ec + nrank I, + (n + 1)(rank I,,, + rank )

FnEc,Ad
+ rank K. K., |
where K, = [Ke 0 ... O]. Now, by applying Proposition 2.6 to the matrix
n-blocks
FulB.ad d using the fact that rank F, = nrank E, btai
K K, J, and using the fact that rank 7, (g 4.] = nrank E, we obtain

rank Fp,11,(g,4,x] = (n + 1)(rank E +rank I, + rank E,)) + nrank I,,, + rank(K,J,)
+ rank ((I - (KUJU)(KUJU)JF)RE(I - ‘FI[EE7A€]‘Fn,[EE,Ae])) .

Thus, rank condition (3.4) holds if, and only if,

rank(KoJ) = 0 and rank (I = (Ko Jo) (Ko Jo) VKol = Ff 5. 41 Faira)) =0
ie., KoJo=0and Ke(I—Fl 5 4 Fn[s.,a]) =0
i.e., KsJo,=0andkerF, g a,)C ker K.

We show that ker F,, [ 4. C ker K. is equivalent to K, = 0. Since ker K. = ker K. x

R™ x ... x R" it suffices to show that ker 7, | a,) C ker K, implies K, = 0. To
—_— [ Ee,Ae

(n—1)-times
this end, let v,, € R™< be arbitrary. Since the Wong sequences terminate after finitely

9
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many steps and in each iteration before termination the dimension increases by at
least one, we have that W[*Eﬁ A4.,00] = Wﬁie, AL0,0]" Furthermore, it is a consequence
of [2, Lem. 3.11] that Wi, 4 oo = R", thus v, € Wi, ). Therefore, there exist

v; € W[ZE AL0,0]7 t=1,...,n— 1, such that
Ev, + Aevn—l = 07 Eov,_1+ Aevn—Q = 07 LX) Ecvs + Aevl = 07 Eovp =0.

This implies that F, (g, 4.,)v =0 for v = (v, ,...,v{ )7, hence

vekerFy g a) Cker K =ker Kc x R™ x ... xR™ = 0, €kerK..
—_———
(n—1)-times

Since v,, was arbitrary, it follows that ker K. = R"<, thus K. = 0. Therefore, we have
shown that the rank condition (3.4) is equivalent to K,J, = 0 and K. = 0. a

The following theorem gives an algebraic characterization of partial causality of
system (1.1a) with respect to K, provided z can be determined uniquely irrespective
of x.

THEOREM 3.3. Consider system (1.1a), (1.1c) and assume that

(3.5) nor-rank {/\EK_ A} = nor-rank(AE — A).
Then the triple {E, A, B} is partially causal with respect to K if, and only if,
Fnj&,e] A
(3.6) rank {Fn’[‘g’m] R A } = rank Fn B4,
n,[E,A] ]C

0 0
A 0

Proof. In view of decomposition (2.2) set

wherec?:[E O],%:[A B],A[ },andlC[K 0].

.
(3.7) z=Vo [3:2 T xﬂ and KVp = [Ko K1 ... Kl} .
Also, in view of decomposition (2.1) of the pencil (AEp — Ap), set

T
(3.8) ar=Q [mj of ) xﬂ and KoQ=[K. K; K, K.

Now, we split the proof into the following five steps.

Step 1: In this step, first, we express the assumption (3.5) in terms of the triple
{Fo, Ao, Ko} and then in terms of the QKF (2.1) of the pencil (AEp — Ap). Utilizing
decomposition (2.2) and (3.7) for K, as well as assertion (a) of Lemma 2.8 and
Proposition 2.7 for the full column rank matrices A;, 1 < i < k — 1, we obtain
that

AEo — Ao
Ko
Again, by writing the pencil (AEo — Aop) in the QKF (2.1), Ko as in (3.8), and

applying Proposition 2.7 for the column regular matrix blk-diag{\l,, — J¢, AJs —
I.,, \E, — Ay}, (3.9) is equivalent to

AE. — A,
K

(3.9) (3.5) is equivalent to nor-rank [ } = nor-rank(AEo — Ap).

(3.10) nor-rank { ] = nor-rank(AE. — A¢) = me, i.e., K. =0

10
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361

362

363

364

because the pencil (AE. — A.) has full row rank for each A € CU {o0}.
Step 2: We claim that partial causality of the triple {E, A, B} with respect to K is
equivalent to partial causality of the triple {Eo, Ao, Bo} with respect to Ko.

In view of decomposition (2.2), system (1.1a) and (1.1c) can be written as

Eoi(t) + Ex—12k—1(t) + ... + Riq1(t) = Aoxk(t) + ... + Rz (t) + Bou(t),
(3.11a)
(311b) Ek,Q.’ﬁk,Q(t) +...+ &.’tl(t) = Akflxkfl(t) +...+ &xl(t),

(3.110) Eliﬁl(t) AQ.TQ(t) + &.’Jﬁl(t%
(3116) Z(t) l‘k(t)+Kk_1$k_1(t)++K11‘1(t)

Since A;, for 1 <4 <k — 1, has full column rank, solving system (3.11) from (3.11d)
o (3.11b), we obtain
Ty :O, 5132:0, ceey Th—1 =0.

Consequently, (3.11a) and (3.11e) reduce to

(3.12a) Eoi(t) = Aoz (t) + Bou(t),

(3.12b) 2(t) = Koxy(t).

Thus (z,u,y,z) € A if, and only if, the tuple (xg,u, z) satisfies (3.12), where z =
Vo ﬁ)k . This proves the claim.

Step 3: In this step, we show that the rank condition (3.6) is equivalent to
(313) rank ‘7:7’L+17[EO,A07K0] = rank ‘7:71+17[E0,AO}'

Fn,1&,a) A

-Fn,[E,A]
Fn,[E,4] in terms of E, A, B and substitute decomposition (2.2) in the first block row.
After that, perform the following operations in the i‘"-row, for i = 1 to i = (k — 1),
repeatedly:

To simplify the rank of [ ], write the matrices F,, (¢ ], A, and

1. Apply Proposition 2.7 to the full row rank matrix {El BZ}

2. Substitute decomposition (2.2) in the (i + 1)**-block row.
3. Apply Proposition 2.7 to the full column rank matrices A; in the it"-block
row, where 1 < j <4.
Therefore, we obtain

11
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376 + (r1 + (k—1)rank Ay) + (r2 + (k — 2) rank As) + . ..
377 coit (rp—1 +rank Ap_q),

_ T
378  where Ep = [Eg or ... OT} . Now, substitute & = [A B], decomposition (2.2)'

379 in the k**-block row, and perform the following operations in the i**-row, for i = k
380 to i = (n— 1), repeatedly:

381 1. Apply Proposition 2.7 to the full row rank matrix {EO BO} in the i*"-block
382 row.
383 2. Substitute decomposition (2.2) in the (i + 1)*"-block row.
384 3. Apply Proposition 2.7 to the full column rank matrices A; in the it"-block
385 row, where 1 < j <k —1.
386 Therefore, we obtain
(B0 Ao ]
F, A B4
337 rank |7 & = rank + (r1 + (n — 1) rank A4,)
Fn,[B,4 e
%y . A
'E
388 + (ra+ (n—2)rank As) + ... + (rp—1 + (n — (k — 1)) rank Ay _4)
389 + (n — k) rank [Eo BO] ,
300 where Ap = [AO 0 ... O]. Again, perform the following operations in the -
391 block row, for i =n to i = (2n — 1), repeatedly:
392 1. Substitute decomposition (2.2) in the (i + 1)!-block row.
393 2. Apply Proposition 2.7 to the full column rank matrices A; in the (i + 1)~
394 block row, where 1 < j < k — 1.
395 Therefore, we obtain
396 rank Fn.(6.2 A =(r1 +(n—1)rank A;) + (ro + (n — 2) rank Ao) + . ..
S [B,4]
397 (3.14) oot (rh—1+ (n—(k—1))rank Ay_1) + (n — k)rank [Eo  Bo|
398 +(n — 1)(rank Ay +rank Ay + ... +rank Ax_1) +rank F, 11 (£, 40]-

399 In a similar manner, we obtain

Fnj&,44] A
400 rank Fo g4 | =1+ (n—1)rank Ay) + (r2 + (n — 2)rank Ao) + . ..
K
101 (3.15) oot (rk—1+ (n— (k= 1))rank Ax—1) + (n — k) rank [Eo  Bo]
402 +(n —1)(rank Ay +rank Ay + ... +rank Ag_1) +rank F i1 (5o, 40, Ko]-

03 Hence, the identities (3.14) and (3.15) reveal that rank condition (3.6) is equivalent
04 to (3.13).

05 Step 4: (=) Assume that (3.6) holds. Then, Step 3 implies that rank condition
406 (3.13) holds. Therefore, in view of the QKF (2.1) for the matrix pencil (AEo — Ap)
07 and (3.8), Lemma 3.2 implies that K, = 0 and K,J, = 0. Clearly K,J.B, = 0
0
0

108 for all ¢ = 1, 2, ..., h — 1, where h is the nilpotency index of J,. Therefore, it
109 follows from the solution discussion of (3.2) in S1)-S4) and Definition 3.1 that the
12
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131

triple {Eo, Ao, Bo} is partially causal with respect to Ko. Hence, Step 2 implies
that the triple {E, A, B} is partially causal with respect to K.

Step 5: (<) Assume that the rank condition (3.5) holds and {E, A, B} is partially
causal with respect to K. Then, Step 2 implies that {Eo, Ao, Bo} is partially causal
with respect to Kp. By Lemma 2.8 (¢), the matrix [EO Bo] has full row rank. Let
P and @ be two nonsingular matrices such that P(AEp — Ap)Q is in the QKF (2.1)
and PBg is partitioned as in (3.1), then

E. B.
P[Eo Bo] [Q [} = ns s B,

E, B,

By singular value decomposition (SVD) there exist non-singular matrices U; and V;
Vst

such that E, = U, ﬁd V," and ¥, is invertible. Set U = 0 2 U;". Then

Uy B, = Ign
row rank as well. Again, it follows from the SVD of B,,, that there exist non-singular
matrices Uz and V3 such that B, = Us [En,g O] V3T and X, o is invertible. Hence,

it is clear that there exist invertible matrices S; and T such that

and Uy B,, = gn“ . Since [EO BO] has full row rank, B,,, has full
21

E. Be1 0

In, Bya 0

Si1[Eo Bo|Ti= Jo Boa 0
In, Byn 0

0 0 Imy—n,

Consequently, invoking the full row rank of FE., the assumption that the matrix
[EO Bo} has full row rank is equivalent to the fact that [Ja Baﬂ has full row rank.
In view of this decomposition, in the new coordinates the matrix [)\EO — Ao BO]
becomes

Si [\Eo — Ao Bo|Th

)\EE — AE Bs,l 0
M, — Jf Bfy 0
= Ao — In, Bo1 0
Ay, —Any Bpa 0

—Ay, 0 Imy-n,

Since the triple {Fo, Ao, Bo} is partially causal with respect to Ko, it follows
from the discussion of the solutions of (3.2) in S1)-S4) (applied to (3.12)) that
K,J.By u®(t) =0forallt >0,i=1,2,...,h—1, and for arbitrary (z,u,y, 2) € 2.
Equivalently, K, J:B,1 =0, for alli =1, 2, ..., h—1. By applying the transposed
version of Proposition 2.5 and using the fact that the matrix [JU Bml] has full row
rank, we obtain

rank (KJJ; [, Bg’l}) = rank(K,J.), fori=1,2,....,h— L.

Thus, for 1 <i < h—1, K,J:B,1 = 0 implies that rank(K,Jit1) = rank(K,J%) and
hence

(3.16) rank(K,J,) = rank(K,J?) = ... = rank(K,J") = 0, i.c., K, J, = 0.
13
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On the other hand, rank condition (3.5) and Step 1 imply that K. = 0. Therefore,
(3.10), (3.16), and Lemma 3.2 imply that rank condition (3.13) holds. This completes
the proof in view of Step 3. ]

Remark 3.4. A careful inspection of the proof of Theorem 3.3 reveals that the
assumption (3.5) is only needed to show that partial causality implies the rank
condition (3.6), but not for the converse.

Now, we extend the definition of partial causality of (1.1a) with respect to K to
partial causal detectability of system (1.1) with respect to K.

DEFINITION 3.5. System (1.1) is said to be partially causal detectable with respect
to K, if the triple {E, A,C} is partially detectable with respect to K and the triple

é] , and

{E, A, B} is partially causal with respect to K, where E = [fﬂ, A= [
— B 0
=5 )

Now, in the following theorem, we derive an algebraic characterization of partial
causal detectability with respect to K for system (1.1).

THEOREM 3.6. System (1.1) is partially causal detectable with respect to K if,
and only if, the following two rank conditions hold:

(3.17) YA€ CT: rank condition (2.4) and
Fn A
(€] - Fr &) A
(3.18) rank F | =rank C ,
n,[E,A] F =5
K n,[E,A]

where & = [E 0], o = [A B],A:[g 8],0:[0 0],E:[E},A:{A},
and K = [K 0]

Proof. (=): Assume that system (1.1) is partially causal detectable with respect
to K. Then {E,A,C} is partially detectable with respect to K and {E, A, B} is
partially causal with respect to K. Therefore, it follows from Proposition 2.16 that
(3.17) holds. Moreover, in view of Proposition 2.4, condition (2.4) implies

AE - A

(3.19) nor-rank [ I

} = nor-rank(\E — A).

Hence, it follows from (3.19), partial causality of { £, A, B} and Theorem 3.3 that

- Fol& oo A
J—_-n o ./4 n,[&, ]
(3.20) rank l (&) Foip A]] = rank fn,,[f,g}

Now, by writing the matrix F,, (s ;) in terms of the system coefficient matrices
E, A, B, C, D, and I, it is easy to see that the identity matrix I, appears in
(n— 1) columns corresponding to B. By permuting these identity matrices to the left

14
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468
469
470
471
472
473
A75
476
477
478

479

480

481
182
183

484
185

48

]

487

488

489

490

upper corner in diagonal positions and applying Proposition 2.5, we obtain

o i ] Fn,(6,5] A

(3.21) rank Foi el T Aﬁ _ | =rank C
(B4l Fn B, A]

_ 7, A

Fn,1& o) A 16 C
(3.22) rank Fon,B,4)| = rank o
]C TL,[E,A]

i K

+ (TL - l)pa

+ (n—1)p.

Then, Egs. (3.20), (3.21), and (3.22) imply rank condition (3.18).

(<)

Clearly, condition (3.17) implies partial detectability of {E, A,C} with

respect to K and (3.19). In addition, the assumption (3.18), rank identity (3.21)

and (3.22) imply that (3.20) holds.

Therefore, it follows from Theorem 3.3 that

{E, A, B} is partially causal with respect to K. This completes the proof. 0

By Theorem 3.6, partial causal detectability is characterized by the rank condition
(2.4) for partial detectability together with the rank condition (3.18). The latter is
amenable to a variety of further characterizations, which can be found in the following

theorem.

THEOREM 3.7. For system (1.1), the following statements are equivalent:

(i) rank condition (3.18) holds.

(ii) A~1 (Im]-'n,[g’ﬂo NkerCNker F, g 4 C ker K.

(iti) AT (ImF,, (5.01) N Wig a0,c) € ker K, where Ay = {

. — n—1 *
(iv) A~! (E (V[EAB’O])) NWip.a0.c) C ker K.

0

Al

(v) The completely controllable part of system (1.1) is partially impulse observable
with respect to the corresponding part of K according to Kalman controllability

decomposition from Proposition 2.12.

Proof. (i) < (i1): Let Z be any matrix such that ker Z = Im F,, ¢ 7). Then, in

view of Proposition 2.5, we obtain

ZA
rank C

Fn, (6,4
= rank

Fn, (6,4

rank = rank

ax

Fo

[es]]

Al

[

s

ax

Fol

[es]]

oy

I

—rank F, (£ o

—rank 7y, (£, o]

Thus, it follows from Proposition 2.3 that rank condition (3.18) holds if, and only if,

ZA
ker C

Fo|B,A)
15

(3.23)
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Since ker(ZA) = A™! (ker Z2) = A1 (Im ]:n’[g’g{]>, (3.23) is equivalent to

(3.24) AL (Im fn,[g,ﬂ]) NkerC N ker F,, 5.4 C ker K.
i1) = (iii): Let v, € AT ImFp 16 01) N WS be arbitrary. By (2.3) we
1 [6,] [E,A,0,C]
find that WEE A0,0] = WE‘E 4,0,0] Nker C' and since the Wong sequences terminate after

finitely many steps and in each iteration before termination the dimension increases
by at least one, we have W[*E“,A,O,O] = W[%,A,o,o]' Therefore, Un € Al_l(Im]:n’[g’gg]) N
ker C'N W[nE,A,O,O]' Hence, in particular, there exist v; € W[ZE‘,A,O,O]’ t=1,...,n—1,
such that
Ev, + Av,_1 =0, Evp_1+ Avy_0=0, ..., Evo+ Avy =0, Ev; =0.
This implies that F,, g v =0 for v = (v, ,...,v] ). Furthermore, we have that
(n—1)-times
———
(3.25a) AN Im T, (6 0) = AT (AM T, (6 o) X R™ x .. x R™,
n-block columns (n—1)-times
———
(3.25b) kerK=ker [K 0 ... 0] =kerK xR"x...xR",
n-block columns (n—1)-times
———
(3.25¢) kerC =ker [C 0 ... 0] =kerC xR" x...xR",

from which it follows
ve A7 (Im]:n,[g)d]) NkerCN ker F, 15,4) © ker IC,
hence v,, € ker K.
(ii) < (iid): Ifv e A1 (Im fndgﬂ]) NkerC Nker F,, 15 4], then, with a similar

argument as in the previous step, for v = (v, ,...,v{ )T it follows that v; € W[ZE 1,00

i =1,...,n; in particular v,, € Wig 100 = V5,400 Then invoking (3.25) and (2.3)

it follows that v,, € A;*(Im Foj&,0]) N W[’SE A0,0) ker K, thus v € ker K.
(#91) < (iv): In order to prove this, it is sufficient to show

(3.26) AT <E (Wiig,o])) = A (Im oy 5.,00))-

Let a nonzero vector z € A~1 (E (V[T}E_i B o])) be given. Then, there exists v,_1 €

V["E_’/l;,&o] such that Az = —Fwv,,_1. Therefore, there exist v; € V[iE,A7B,0] and u;41 €
R!, for 0 < i < n — 2, such that

(3.27a) Ev, 14+ Av;+ Bu; =0, for1<i<n-—1
(3.27b) Ev,_1+ Az =0.
vo vs
By taking v = [ : ], v; = [ul}’ for 0 < i < n—1, where ug := 0, and using the
Un—1 v
definitions of 7, ¢ ) and Aj, system (3.27) can be rewritten as,

]:n’[gwgg]’l) +A1z=0, e, z€ Afl(Imf,L7[g7£¢]).
16
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Thus,
(3.28) AT (E (V[nE,z}l,B,O])> C A (Im F 6.20)).

Now, let a nonzero vector z € Al_l(Imfm[gﬂ]) be given. This implies that

], where v; = [
Un—1

we have A1z = —F, ¢ o v. Using the definitions of 7, (¢ o) and Aj, the system
A2+ Fp (6,10 = 0 can be written as (3.27). Therefore, it follows from the definition

Vo
U

%

for some vector v = [ } € R"" for i € {0,1,...,n — 1},

of the sequence {V[iE,A,B,o]};O that v; € VfE,A,B,O]’ for i € {0,1,...,n — 1}, and

Ev,,_1 = Az. Therefore, z € A™! (E (V[’L:j‘ B 0])>, and hence

(3.29) AT (Im Fp r) © A™ (E (v[’};jwm)).

Thus, (3.26) follows from (3.28) and (3.29).

(1) & (v): In view of the rank identities (3.21) and (3.22), (3.18) is equivalent to
(3.20). Now, it follows from Step 3 of the proof of Theorem 3.3 that rank condition
(3.20) holds if, and only if,

(3.30) rank F, 11 155, 40] = rank Fo i1 (56, Ao, Kol
Here, Ep = Eo ,Ap = 4o , Bo = Bo 0 , Eo, Ao, Bo correspond to the
0 Co D -1,

decomposition (2.2) of E, A, B, and Cp, Ko are the corresponding parts of C, K
according to the decomposition (2.2), respectively. In addition, by Proposition 2.12,
for the tuple {Eo, Ao, Bo,Co, D} there exist two nonsingular matrices U and V such
that

(3.31)
- - E E ~ ~ A A ~ B 5
UEoV = [ 0 112]’ UdoV = [ 0 A;]’ Vo= [01] V=10 Gul,

where {FE11, A11, B1,C11, D} represents the completely controllable part of (1.1) and
mo € NU {O}

Thus, to prove the equivalence of statements (i) and (v), it is sufficient to show
that condition (3.30) is equivalent to partial impulse observability of {E11, A11,C41}
with respect to K71, where Kof/ = [Ku Ko K13]. Now, set

blk-diag{U, I,} V
Bl 1} '7-2?(1) &, .'%j)a- U
U, = . .1?@& ’ V) = . .[O]@@ ; Uy = I
blk-diag{U, I,,} 1%
Clearly, rank F, 1 15, 4, = rank(UiF, i1 (5, 4,V1)- We now write the matrix

Fni1,[Eo,Ao] 0 terms of Eo, Ao, Co, and obtain all the 2(n + 1)-block rows of
the matrix UhF, 11 [5,,4,V1- Thus, substituting decomposition (3.31) in all block
rows of UrF, 11 (E,, 4] V1, We see that an identity matrix I,,, appears (n + 1)-times

17
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on the diagonal. By permuting those matrices to the upper left corner and applying
Proposition 2.7, we obtain

rank F, 11 (5, 40] = (n+ 1)rank I,,, + rank F, 11 15, Ay

where By = [EOH} and Ay = [éll] . In a similar manner, we obtain
11

rank]:n+17[Eoﬂo,Ko] = rank (UQ‘anLl,[Eo,Ao,Ko]Vl)
= (n+1)rank I,,,, + rank Fo 4 (7, Ay Ko -

Thus, it follows from Proposition 2.3 that rank identity (3.30) is equivalent to
(n+1)-block columns

(3.32) ker F 1 (51,4, Sker [0 Kip O --- 0.

We show that (3.32) is equivalent to

(3.33) Wiz an0.00) N AT (Im Eyy) C ker K.
To see “<=", let v = (v} 1,...,v{ )" € ker F, 11 [E1y,4,,)» then
(3.34) Ejjvy =0, Eyjvipq + Aoy =0, for 1 <i < n.

In particular, v, € W[%u A11.0.0
ker C'1 ﬁAl_ll (Im E11). Again, since the Wong sequences terminate after finitely many

. o . n .
steps and the dimension increases in each step, we have W[Jli“u,fiu,O,O} = W[EH,AH,O,O]’
and from (2.3) it follows that v, € WFE11,A11,0,C11} N A7 (Im Eqq) C ker K11, thus
veker[O Ky 0 - 0].

For “=7, let v, € W[*EU’AM’O,CH] N Aﬁl (Im E11). Then, with a similar argument

] and since E’llvn+1 + Aqqv, = 0 we further have v,, €

as in the previous step, v, € W[%H A0 N ker C1; N A (Im Ey;), hence there
exist v,11 € R™ and v; € W[iEM A11.0.0]° i = 1,...,n, such that (3.34) holds, thus

v= (v 1,...,00) € ker F 1 15y, 4,,] C ker [0 Ki1 0 --- 0], by which v, €
ker K11~

Notably, (3.33) is equivalent to partial impulse observability of {E11, A11,C11}
with respect to K711, cf. Proposition 2.14. This completes the proof. ]

In view of the above results, the following remark is warranted.

Remark 3.8. For K = I,,, the statement (4i7) in Theorem 3.7 reduces to
(3.35) AT (Im Fy e o) O Wi 40,01 = {0}
Since W[*EyA,ch] = Uien WfE,A’ch], (3.35) implies
(3.36) AT Im Fy ,01) N W[lE,A,O,C] = {0}.

Further, by definition of the generalized Wong sequences, W[lE 4,0,0] = ker E Nker C.

Therefore, (3.36) becomes A" (ImF,, (s ) N ker C Nker E = {0}. Thus in this
case, Theorem 3.6 implies causal detectability of system (1.1), which is necessary
and sufficient for the full-state estimation via system (1.3); for more details, see [21,
Thm. 1]. Likewise, again invoking ker F Nker C' C W[*E 4,0, the characterizations
(iv) and (v) in Theorem 3.7, for the case K = I, imply alternative characterizations
for causality of system (1.1), which can be found in [5,21].

18
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4. Functional ODE estimator. In this section, we will prove that partial
causal detectability of system (1.1) with respect to K is necessary and sufficient for
the estimation of the functional vector z(¢) in (1.1) via system (1.3). First, we exploit
the behavior % to give a precise definition of functional ODE estimators for (1.1),
similar to [1, Def. 3.2].

DEFINITION 4.1. System (1.3) is said to be a functional ODE estimator for (1.1),
if for every (z,u,y,z2) € B there exist w € ACioc(R;R!) and 2 € LL (R;R") such
that (w,u,y, 2) satisfy (1.3) for almost all t € R, and for all w,Z with this property,
2(t) — z(t) fort — oo.

Remark 4.2. Note that if a functional ODE estimator satisfies the state matching
property, i.e., 2(0) = z(0) implies 2(t) = z(t), for almost all £ > 0, then it is known as
a functional ODE observer. In case K = I,,, this condition holds automatically and,
therefore, there is no difference between ODE observer and ODE estimator. However,
in the case of partial-state estimation (i.e., K # I,,), the state matching condition is
not always necessary to hold by default. Therefore, ODE observer and ODE estimator
are not the same in case of partial-state estimation. We will show this fact in Example
5.1 below.

Before providing the main result of this section, we will establish a necessary
condition for partial-state estimation of the o-block in the QKF (2.1) of (1.1) by a
functional ODE estimator (1.3).

LEMMA 4.3. Consider the system

(4.1a) Joio(t) = 25(t) + Boyu(t),
(4.1b) Yo (t) =0,
(4.1c) 2o (t) = Koxo (),

where J, is a nilpotent matriz with nilpotency index h. If there exists a functional
ODE estimator (1.3) for system (4.1), then K, J.By =0 for all 1 <i < h.

Proof. Assume that there exist a functional ODE estimator for the system (4.1).
Then the estimator is given by

(4.2a) w(t) = Nw(t) + Hu(t),
(4.2b) 2,(t) = Rw(t) + Mu(t),

and, by S2), the estimate 2, is given by

2,(t) =R (exp(Nt)w(O) + /0 exp(N(t — T))H’LL(T)CIT) + Mu(t).

Also, by S3), the solution of the system (4.1) is given by
h—1

Zo(t) = =Y Ko JiBou ().
i=0

Since system (4.2) is a functional ODE estimator for system (4.1), we have e(t) :=
25(t) — zo(t) — 0 as t — oo for each input function u and initial value w(0).
Let s be the largest index such that K,J;B, # 0 for 1 < s < h — 1. Choose

. 2
w(0) = 0 and u(t) = Smt#ek with ej being an arbitrary unit vector for 1 < k£ < m.
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Then it is straightforward to see that u(9(t) — 0 for i = 0,...,s — 1 and u(*)(t) 4 0.
Since Rexp(Nt) — 0 (which can be seen from choosing u = 0 and arbitrary w(0)),
it is easy to show that fg Rexp(N(t — 7))u(r)dr — 0 and together with e(t) — 0 it
follows that KUJgBUu(S)(t) — 0, which is only possible when K, JB,e, = 0. Since k
was arbitrary it follows that K,J’B, = 0, which contradicts the assumption on the
index s. Therefore, K,J:B, =0 for all i = 1,...,h — 1. This completes the proof. O

In the following theorem, we prove that partial causal detectability of system (1.1)
is equivalent to the existence of a functional ODE estimator.

THEOREM 4.4. For system (1.1), the following statements are equivalent:

(i) System (1.1) is partially causal detectable with respect to K.

(ii) There exists a functional ODE estimator for system (1.1).

Proof. (i) = (i1): To prove this part, first, we give a step-by-step procedure to
design a functional ODE estimator of the form (1.3).
Step 1: Compute orthogonal matrices Up and Vp according to Lemma 2.8, which
transform {E, A, B} as in (2.2), and obtain {Fo, Ao, Bo}. Define

CVO:[CO Ck,1 Cl] andKVo:[Ko kal Kl].

Step 2: According to Lemma 2.1, compute nonsingular matrices P and @) such that
(AEo — Ap) is in QKF (2.1), i.e.,

P(\Eo — A0)Q = blk-diag{\E. — A, \l,, — J, My — L, AEy — Ay},
_ T
PBp = [Bj B] Bl Bﬂ cand KoQ:=[K. K; K, K],
= lao T /10 5 130 0
WheI‘eEo—|:0:|,Ao—[co:|,andBo—|:D _Ip.

Step 3: Utilizing the Jordan decomposition, compute a non-singular matrix U; such
that U; 'J;U; = blk-diag{J},, Js,}, where o(J;,) € CT and o(Jy,) € C. Set

UT'By = [Bfl} and K Uy = [Ky, Kp,].

By,
Step 4: Utilizing the singular value decomposition, compute a nonsingular matrix Uy
such that Uy, E,, = In, . Set Us A, = An, and Uy B,, = B, )
O AVI2 BT]2
T u
Step 5: Set z =V [ka T, .. xﬂ , U= [y}’ and

.
vy = blk-diag{L,_, Uy, In, , In, }Q [:cj ), xf, @l xﬂ .

In the new coordinates, system (1.1) becomes
Beo(t) = Aco(t) + Bea(t),
ip (t) =Jy xfl( ) + By, u(t),
xf2(t) I xfz()Jrsz u(t),
Jolo(t) = 25(t) + By u( )
in(t) = Ap zy(t) + By, u(t),
0= Ap,zy(t) + an“( ),
2(t) = Kexe(t) + Kpxyp, (t) + Kpyxp, (t) + Koz (t) + Kyz, (2).
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Here 21 = 29 = ... = 2x—1 = 0 due to decomposition (2.2), for details see Step 2 in
the proof of Theorem 3.3.

Step 6: As shown in Step 2 of the proof of Theorem 3.3, partial detectability of
{E, A,C} with respect to K implies that {Eop, Ao, Co} is partially detectable with

respect to K. Hence it follows from [19, Lem. 4] that K. = 0 and K, = 0.

Step 7: The solution of the o-block is given by z,(t) = — E?:o JiB,u")(t) and the
tuple { Eo, Ao, Bo} is partially causal with respect to Ko, since {E, A, B} is partially
causal with respect to K by assumption. So, (3.16) reveals that K,.J, = 0 and hence,
Kyx,(t) = —K,B,u(t).

Step 8: In the new coordinates, the problem of functional ODE estimator design for
system (1.1) reduces to the problem of functional ODE estimator design for

(4.3a) jgf2(t) = szxfz(t> —I—BfoL(t),

(4.3b) i (t) = Ay @y (t) + By, u(t),

(4.3c) 0= A,,z,(t) + By, u(t),

(4.3d) 2(t) = Kp,xp,(t) + Kyay(t) — Ko Byu(t)

Step 9: Since rank [)\Inl’; Am} = n, for all A € C by Lemma 2.1, there exists
72

L € R X(ma=m0) guch that o(A,, — LA,,) C C.
Step 10: We claim that the following system is a functional ODE estimator for (4.3):

W(t) = Nuw(t) + Ha(t),
2(t) = Ruw(t) + Maf(t),

where N = blk-diag{Jy,, Ay, — LA}, R = [Ky, K|, M = —K,B,, and H =

[ By, } Sete:=%2—zand e; :==w — [xh]. Then
B, — Ty

. 0
L R

e(t) = Req(t).

Since o(N) CC7, e1(t) — 0 as t — oo. Consequently, e(t) — 0 as t — oo.

(#9) = (i) Assume that system (1.1) has a functional ODE estimator. Then,
with the same proof as in [19, Thm. 2|, partial detectability with respect to K can be
inferred. Now, by repeating Step 1 to Step 6 of the first part of the proof, we obtain
the system in the following form

‘i'fz(t) = szxf2(t) + Bf2’a(t)a

By the definition of functional ODE estimators, if one exists for the above system, then
also one exists for the system (4.1). Hence, it follows from Lemma 4.3 that K,J. B, =
0 for all i > 1. Since the QKF (2.1) is computed for the triple {Eo, Ao, Bo} and
[EO BO} has full row rank (see Step 3 in the first part), by performing a similar
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calculation as done in the proof of Theorem 3.3, it is easy to conclude that [Jg Bg]
has also full row rank. By repeating the same steps as done in Step 5 in the proof
of Theorem 3.3, we obtain that K,.J, = 0. Thus, by Definition 3.1 and the solution
discussion in S1)-S4), {Eo, Ao, Bo} is partially causal with respect to K. Therefore,
Step 2 in the proof of Theorem 3.3 implies that {E, A, B} is partially causal with
respect to K. This completes the proof. ]

5. Numerical illustration. In this section a numerical example is given to
illustrate the theoretical findings. Also, Example 5.1 reveals that it is not always
possible to design a functional ODE observer, if a functional ODE estimator exists
for the system (1.1).

EXAMPLE 5.1. Consider system (1.1) with coefficient matrices

100 0 1 0 0 0 1 17" 17"
010 0 0 -1 1 0 1 0 1
E=1g 010410 0 -1 0" B=1|"%=|o| K=
000 0 0 0 0 1 1 0 1

This system satisfies the condition of partial causal detectability with respect to K.
Hence, it follows from Theorem /.4 that there exists a functional ODE estimator of
the form (1.3).

We now design a functional ODE estimator for the given system by following the
procedure provided in the proof of Theorem 4.4.
Step 1: By Lemma 2.8 and the (adaptation of the) algorithm provided in [20] we
obtain Up = Iy, Vo = I and the following coefficient matrices for the reduced system:

EO:E7 AO:A7 BoZB7 CoZC, CdeozK.

Step 2: Using the method provided in [7], we obtain the following matrices to convert

0 I3 0O 0 1
the reduced system in QKF (2.1): P=|1 0 0| and Q= .
0 0 1 I 0

Step 3: This system does not contain positive finite eigenvalue and, hence U; =
I Je — -1 1

LT 00—

Step 4: B, = [1 O]T is already in the required form, thus Uy = 1.

Step 5: Therefore, in the new coordinates the system becomes

b0 =5 e ) ofa

0=ua,(t)+[1 0]a(t),
& (t) wy(t) + [1 0] a(t),
wn(t)+[ —1] a(t),

t) (1 1] @p(t) + o (t) + @y (2).

Step 6: This system has no e- and f1-blocks.
Step 7: From Step 5, we obtain

zo(t) = [-1 0]a(t) and z,(t) = [0 1] u(t).

Step 8: Thus, in the new coordinates, the problem of functional ODE estimator design
22
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for the given system reduces to the problem of functional ODE estimator design for

w0 =y e+ ]y o]

2(t)=[1 1apt)+ [-1 1]a(t).

Step 9: Since x,, is obtained in Step 7 above this step can be skipped.
Step 10: Finally, we obtain the functional ODE estimator for the given system as

follows:
i(t) = [—01 _11} w(t) + B 8] [;Eg]
sty =[1 1Jwt)+[-1 1] Bég]

Stmulation results conducted in MATLAB are shown in Figures 1 and 2. It can
be observed that the proposed new design method provides an asymptotic estimate 2
for the given functional z. In addition, it is clear from Figure 2 that the proposed
functional ODE estimator is not a functional ODE observer, i.e., it does not exhibit
the state matching property.

Functional vector z
Estimation error

Time t Time t

(a) Time response of state z(t) (b) Time response of estimation error in z

Fic. 1. Plot of estimated functional and estimation error with initial conditions x(0) =
1 2 3 OJT, w(0) = [4 5], and input u(t) =t.

Now, we claim that there exists no functional ODE observer for this system, which
is suggested by the fact that this system does mot satisfy the existence conditions
proposed in [20, 22-2/]. To see this, assume that there exists a functional ODE
observer of the form (1.3) and let (x,0,0, Kx) € B be arbitrary for the given system.
Then w =0 and 2 = 0 satisfy (1.3) with u =0 and y = 0. Since (1.3) is a functional
ODE observer for the given system, we find that

e(t) == z(t) — 2(t) = Kz(t) - 0 fort - o0 and €(0) =0 = e(t) =0, V¢>0.

For instance, let us take the initial condition as x(0) = [O -1 1 O]T, then the

solution of the system is x(t) = [0 (t —1)e' € O]T, y(t) =0, and z(t) = te* for
t > 0. Heree(0) =0 but 2(t) # 0 = 2(t) for allt > 0. Thus, there exists no functional
ODE observer for this system.
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Fic. 2. Plot of estimated functional and estimation error with nitial conditions x(0) =
12 3 0", wO)=[4 2], and input u(t) =t

6. Conclusion. A physically meaningful concept of partial causal detectability
for LTT descriptor systems (1.1) has been introduced, which is a natural extension of
causal detectability of (1.1) for K = I,,. Also, various equivalent characterizations of
partial causal detectability have been established. Moreover, it has been proved that
the notion of partial causal detectability is necessary and sufficient for the existence
of functional ODE estimators. Remarks 4.2 and Example 5.1 clarify that the concept
of ODE observer and ODE estimator are not the same when K # I,. Till date,
the proposed existence condition in [20] is the mildest known sufficient condition for
the existence of a functional ODE observer. However, conditions which are necessary
and sufficient for the existence of a functional ODE observer are not known. Future
research directions include the development of some physical characterization to fill
the gap between functional ODE observers and functional ODE estimators.
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