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Abstract

We study error correcting constant dimension subspace codes for network
coding. The codewords are F2-subspaces of F2n , having at most 1-dimensional
intersections. F∗

2n is contained in the automorphism group of the code.
We give a lower bound for the size of such codes, being constructed by a

greedy method. Further we describe a code in F22m with 23m codewords, for
which we finally present a construction, an encoding and a decoding algorithm.
This is based on the geometry of F22m as a 2-dimensional F2m space and the
operation of fractional linear transformations.

1 Introduction

In [KK], Kötter and Kschischang developed the theory of subspace codes for appli-
cations in network coding. In the following years different methods for the construc-
tion of such codes have been investigated [EV, KK, KoKu, MGR, S, SKK, TK].
In [EKW], Wassermann and the authors showed how to get a practical (there is
a good decoding algorithm) code with many codewords. The code consists of 3-
dimensional subspaces in V = F

n
2 . Identifying V with the field F2n , we get an

action of the multiplicative group F∗
2n . This enables us to construct F∗

2n-orbits of
3-dimensional subspaces, containing 2n − 1 elements in general. A randomly cho-
sen 3-dimensional F2-subspace in F2n leads to a good orbit of this length. Good
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means here that two different subspaces of the orbit have an at most 1-dimensional
intersection. This leads to a code with minimum distance 4.

In [EKW], an error correcting decoding algorithm is presented for such codes.
Finally, a heuristic argument for the possibilities of combining many such F∗

2n-orbits
to a bigger code is given.

In this note, we study the conditions for a k-dimensional subspace to lead to a
good orbit. More precisely, we construct a finite list of equations (L1) such that
being good is equivalent to the fact that none of the equations is satisfied.

Further, we construct a second finite list of equations (L2) such that none of
them is satisfied if and only if two different subspaces lead to two orbits which can
be used in common. I. e., the pairwise intersections of the subspaces of the orbits
are at most one-dimensional.

By bounding the number of solutions of the equations in (L1) and (L2), we get
a lower bound for the number of subspaces that can form a code. For fixed k and
n → ∞, our lower bound and a trivial upper bound differ only by a constant factor.

In the second part of this article, we explain how to handle a code in F22n having
2n or more F∗

22n-orbits of subspaces. For that, we give algorithms for construction,
coding, and decoding.

2 Existence and equations for good orbits
We intend to use F∗

2n-orbits of k-dimensional F2-subspaces in F2n as a code. The
following lemma will show that such an approach is possible.

2.1. Lemma. –––– If n is sufficiently large then there exists a k-dimensional sub-
space U such that the equality z1U = z2U , z1, z2 ∈ F∗

2n, implies z1 = z2.

Proof: As z1
z2

is an element of the stabilizer of U , we have to show that there exists
a k-dimensional subspace with trivial stabilizer in F∗

2n .
First, we analyze the possible stabilizers S. As each element in U \ {0} has

trivial stabilizer, this set decomposes into orbits all having length #S. Therefore,
we get #S | 2k−1. Thus, each element in the stabilizer is a solution of the equation
z2

k−1 − 1 = 0. We denote the set of all solutions of the last equation by Z.
To construct U , we start with an arbitrary element b1 ∈ F∗

2n . If we can ensure
that the only element of the form zb1 (z ∈ Z) in U is b1 then we are done.

The elements zb1 (z ∈ Z) generate a subspace of dimension at most 2k − 1.
Completing a basis of this space to a basis of F2n , we can construct the desired
subspace U as soon as n ≥ 2k − 1 + (k − 1). �

2.2. Remark. –––– The lemma shows that, for n large enough, a F∗
2n-orbit of

length 2n − 1 exits. The inequality n ≥ 2k − 2 + k is very weak. We will prove
stronger existence statements below.
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Such an orbit gives rise to a constant dimension subspace code with 2n − 1
codewords.

For error correcting purposes, we have to control the distance d between two
codewords. The distance is given by the distance in the Hasse diagram of the
subspace lattice. It can be computed by d(U, V ) = dim(U + V )− dim(U ∩ V ).

In the following, we will focus on F∗
2n-orbits of k-dimensional subspaces such that

dim(U ∩ V ) ≤ 1 for all U, V in the orbits. Such an orbit is a code with minimum
distance 2(k − 1).

2.3. Definition. –––– i) We denote by Grk,n(Fq) the set of all k-dimensional sub-
spaces in Fn

q .
ii) We denote the cardinality of the Graßmannian Grk,n(Fq) by the Gaußian coeffi-
cient [

n
k

]
:=

(qn − q0) · · · (qn − qk−1)

(qk − q0) · · · (qk − qk−1)
.

iii) We denote by Aq(n, 2δ, k) the maximal number of k-dimensional subspaces in
F

n
q such that the pairwise intersection has at most dimension k − δ.

2.4. Remark. –––– In this note, q will always be 2. The vector space Fn
2 will be

identified with the field F2n . Thus, we get an action of F∗
2n on Grk,n(F2).

2.5. Definition. –––– i) For a subset U of F2n , we define its quotient set by

Q(U) :=

{
u1

u2

∣∣∣∣u1, u2 ∈ U \ {0}, u1 ̸= u2

}
.

ii) We call the subspace U ∈ Grk,n(F2) good if dim(U ∩ tU) ≤ 1 for all t ∈ F∗
2n \{1}.

iii) We call a subspace bad if it is not good. Further, a basis is bad if the generated
subspace is bad.
iv) We call two subspaces U, V ∈ Grk,n(F2) combinable if dim(U ∩ tV ) ≤ 1 for all
t ∈ F∗

2n .
v) A subset of Grk,n(F2) is called good and combinable if all elements are good and
pairwise combinable.

2.6. Remark. –––– Note that Q(U) = Q(zU) for all z ∈ F∗
2n .

Each good subspace leads to an F∗
2n-orbit of length 2n−1. The minimum distance

of the corresponding code is 2(k − 1). A good and combinable subset of Grk,n(F2)
with m elements leads to a code with m(2n − 1) codewords and minimum distance
2(k − 1).

The goal of this section is to prove a lower bound for the size of a maximal good
and combinable subset in Grk,n(F2).
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2.7. Lemma. –––– Let k ≥ 2 and U, V ∈ Grk,n(F2).

i) The subspace U is good if and only if the quotients u1

u2
for u1, u2 ∈ U \{0}, u1 ̸= u2

are pairwise different.
ii) The subspaces U and V are combinable if and only if the quotient sets Q(U) and
Q(V ) are disjoint.

Proof:

i) Assume the intersection of U and zU has dimension at least 2. Then, we get
u1, u2 ∈ (U ∩ zU) \ {0} with u1 ̸= u2 and u1 =: zu3 and u2 =: zu4. This leads to
u1

u2
= u3

u4
.

On the other hand, when u1

u2
= u3

u4
with u1 ̸= u2 is satisfied, we set z := u1

u3
. Then,

we get u1 = zu3 and u2 = zu4. Thus, the intersection has two non-zero elements
and its dimension is at least 2.
ii) Is analogous. �

2.8. Remark. –––– To show the existence of good subspaces, we analyze the con-
dition given in the first part of the lemma above. More precisely, we bound the
number of bad bases.

Let b1, . . . , bk be a basis of U ∈ Grk,n(F2). We think of the bi as variables. The
non-zero elements of the generated subspace are represented by 2k−1 non zero linear
forms in F2[b1, . . . , bk].

Thus, for each 4-tuple l1, l2, l3, l4 ∈ F2[b1, . . . , bk] of linear forms l1 ̸= l2, l3 ̸= l4,
(l1, l2) ̸= (l3, l4), we get the algebraic equation

l1l4 = l2l3 , (1)

which encodes that the corresponding quotients l1
l2
, l3
l4

are equal. Note that we never
get the zero-equation. Assuming l1l4 = l2l3 as an equality of polynomials, we get
{l1, l4} = {l2, l3} as the polynomial ring has unique factorization. This is a contra-
diction.

Note that a basis is bad if and only if it solves at least one of the equations of
(1).

An obvious upper bound for the number of equations is (2k − 1)4. As each equa-
tion has degree two, it has at most 2(2n−1)k−1 solutions in F2-linearly independent
k-tuples in F2n . Thus, we have at most (2k − 1)42(2n − 1)k−1 bad bases. In total
there are at least 2k(n−1) bases of k-dimensional subspaces.

This observation already leads to an interesting existence theorem for good sub-
spaces as, for fixed k and n → ∞, the total number of bases growth faster than the
number of bad bases. We give better estimates in the following. The next lemma
reduces the number of equations.
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2.9. Remark. –––– The linear forms l1, . . . , l4 lead to the equation

l1l4 − l2l3 = 0.

To sort the equations, we inspect the F2-subspace generated by l1, . . . , l4. This is of
dimension 2, 3, or 4. In the following lemma, we will analyze each of the cases.

2.10. Lemma. –––– We fix the subspace L of linear forms in F2[b1, . . . , bk].
i) If L is of dimension two then exactly one equation (which may be solvable by
linearly independent elements in F2n) will correspond to L.
ii) If L is of dimension three then exactly 28 equations (which may be solvable by
linearly independent elements in F2n) will correspond to L.
iii) If L is of dimension four then exactly 280 equations (which may be solvable by
linearly independent elements in F2n) will correspond to L.

Proof: We use magma [M]. We enumerate all the equations in an iterated loop and
eliminate insolvable equations and repetitions. �

2.11. Remark. –––– For each of the cases of the lemma above, we give a few
examples to explain why some equations are insolvable and why so many repetitions
occur.
a) Let l1, l2 be two linearly independent linear forms. The equation l1l2 = (l1 + l2)l2
is insolvable, as it implies 0 = l22. Note here that a non-zero linear form never
evaluates to zero on linearly independent vectors. Thus, this equation eliminates no
linearly independent k-tuple as a basis for a good subspace.
Further, the equations l1l1 = (l1 + l2)l2 and (l1 + l2)l1 = l2l2 are equivalent.
b) Let l1, l2, l3 be three linearly independent linear forms. Then, the equation
l1l2 = l3l2 is insolvable. It implies that the non-zero linear form l1 − l3 evaluates to
zero, which is impossible on a basis.
Further, l1l3 = l22, (l1 + l2)l3 = (l2 + l3)l2, and (l1 + l2)l2 = (l2 + l3)l1 are equivalent.
c) If l1, l2, l3, l4 generate a 4-dimensional subspace then we get many equivalent equa-
tions. E.g., l1l4 = l2l3, (l1 + l2)l3 = (l3 + l4)l1.

Summarizing, we have a set (L1) of

G(k) :=

[
k
2

]
+ 28

[
k
3

]
+ 280

[
k
4

]
(L1)

equations, which is far below the trivial estimate (2k − 1)4.

2.12. Remark. –––– To simplify the following formulas, we denote by
N := (2n − 1) · . . . · (2n − 2k−1) the number of linearly independent k-tuples in
F2n . Then, we get the following upper bounds for the number of solutions of the
equations with F2-linearly independent k-tuples in F2n .

5



i) The only relevant equation in the 2-dimensional case is l1
l2
= l2

l1+l2
. It is equivalent

to l21 + l1l2 + l22 = 0. For each value of l1, at most two values of l2 lead to a solution.
Thus, at most 2

2n−2
N linearly independent k-tuples are solutions.

ii) In the 3-dimensional case, each of the 28 equations is equivalent to an equation of
the form l1

l2
= l3

al1+bl2+cl3
for a, b, c ∈ F2. Here, l1, l2, l3 is a basis of the 3-dimensional

subspace. This is equivalent to l1(al1+bl2)+(cl1+ l2)l3 = 0. As cl1+ l2 is a non-zero
linear form, we get l3 = l1(al1+bl2)

cl1+l2
. For each pair of linearly independent values for

l1, l2, we get one solution for l3. Thus, at most 1
2n−4

N linearly independent k-tuples
are solutions.
iii) Let the linear forms l1, l2, l3, l4 be linearly independent. The equation l1

l2
= l3

l4
is equivalent to l1l4 = l2l3. For fixed non-zero values of l1, l2, and l3, we get one
solution for l4. Thus, at most 1

2n−8
N linearly independent k-tuples are solutions.

2.13. Proposition. –––– Assume n ≥ 4k − 6. Then, there exists a good element
in Grk,n(F2).

Proof: We have to show that the number of linearly independent k-tuples is bigger
than the number of bad bases that solve at least one of the equations in (1). Again,
we denote by N := (2n−1)(2n−2) · · · (2n−2k−1) the number of linearly independent
k-tuples in F2n .

In the case k = 3, the counting arguments above exclude at most

N ·
([

3
2

]
2

2n − 2
+

[
3
3

]
28

1

2n − 4

)
bad bases. Thus, in the case 14

2n−2
+ 28

2n−4
< 1, a good subspace exists. This inequality

is satisfied for all n ≥ 6.
In the case k ≥ 4, the counting arguments above exclude at most

N ·
([

k
2

]
2

2n − 2
+

[
k
3

]
28

1

2n − 4
+

[
k
4

]
280

1

2n − 8

)
bad bases. We have to check that the bracket is less than 1. It is a staight forward
computation to show that n ≥ 4k − 6 implies this. �

2.14. Remark. –––– The equations encoding that two good k-dimensional sub-
spaces U and V can be combined are simpler to count. When we fix a two-
dimensional subspace of U and a two-dimensional subspace of V , we get 6 equations.
In total, we get a set (L2) of

C(k) := 6

[
k
2

]2
= (2k − 1)2(2k − 2)2/6 (L2)

bilinear equations.
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For fixed U , each equation excludes at most 1
2n−2

N linearly independent k-tuples
of vectors for a basis of V . Thus, many orbits can be combined, forming a code with
a huge number of codewords.

2.15. Example. –––– i) In the special case that U has dimension 3, the good
orbit conditions lead to 35 equations (see Remark 2.11). Thus, at least
(2n − 1)(2n − 2)(2n − 4) − 14(2n − 1)(2n − 4) − 28(2n − 1)(2n − 2) linearly inde-
pendent triples (b1, b2, b3) exist, which lead to a good orbit. The combination of two
orbits is controlled by 6

[
3
2

]2
= 294 equations. Thus choosing one orbit excludes at

most 294(2n−1)(2n−4) triples of vectors for a basis of subspaces for a combination.
This shows that a greedy strategy can combine at least

(2n − 1)(2n − 2)(2n − 4)− 14(2n − 1)(2n − 4)− 28(2n − 1)(2n − 2)

294(2n − 1)(2n − 4)

=
(2n − 2)(2n − 4)− 14(2n − 4)− 28(2n − 2)

294(2n − 4)

orbits. For n = 64, we can combine more than 1016 orbits.
ii) In the special case that U has dimension 4, we get 735 equations. The three groups
of equations exclude at most 35·2(2n−1)(2n−4)(2n−8) , 28·15(2n−1)(2n−2)(2n−8),
and 280(2n − 1)(2n − 2)(2n − 4) of the (2n − 1)(2n − 2)(2n − 4)(2n − 8) linearly
independent 4-tuples (b1, b2, b3, b4) for a basis of a good subspace. The combinability
of two orbits is controlled by 7350 equations. Thus, choosing one orbit excludes at
most 7350(2n − 1)(2n − 4)(2n − 8) possible 4-tuples for a combination. This shows
that a greedy strategy can combine at least

(2n − 2)
(
1− 35·2

2n−2
− 28·15

2n−4
− 280

2n−8

)
7350

orbits. For n = 64, we can combine more than 1015 orbits. For n = 128, we can
combine more than 1034 orbits.

2.16. Proposition. –––– For all n and k, at least

(2n − 2)

(
1−

[
k
2

]
2

2n − 2
−
[
k
3

]
28

2n − 4
−

[
k
4

]
280

2n − 8

)
6

[
k
2

]
·
[
k
2

]
combinable good subspaces exist.

Proof: We use the greedy method to construct a code. I.e., we enumerate all
linearly independent k-tuples. Then, we eliminate all that do not lead to a good
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subspace. Then, we choose one of them for our code. Now, we eliminate all that
are not combinable with the one chosen. We repeat the last two steps until the
enumerated list is exhausted. The estimates given above show that the result will
contain at least the given number of good combinable subspaces. �

2.17. Corollary. ––––

A2(n, 2(k − 1), k) ≥ 6
(2n − 1)(2n − 2)

[(2k − 1)(2k − 2)]2(
1−

[
k
2

]
2

2n − 2
−

[
k
3

]
28

2n − 4
−
[
k
4

]
280

2n − 8

)
.

Proof: This is the lower bound of 2.16 multiplied with the length of the orbits. �

2.18. Remark. –––– There is a trivial upper bound for the maximal possible
number of codewords in a constant dimension subspace code where two codewords
have at most 1-dimensional intersection. For this, note that each 2-dimensional
subspace is contained in at most one of the subspaces used in the code. And each
subspace contains several of them. This leads to the known [WXS] upper bound[

n
2

]/[
k
2

]
=

(2n − 1)(2n − 2)

(2k − 1)(2k − 2)
≥ A2(n, 2(k − 1), k) .

for the size of the code.

2.19. Remark. –––– Note that the lower and the upper bounds for the possi-
ble size of a code are similar. The quotient of the upper and the lower bound is
asymptotically equal to

[
k
2

]
for n → ∞ as long as we have k ≤ n/5.

2.20. Remark. –––– Following [EKW], the coding and the decoding algorithms
for such codes are easy and fast. But one disadvantage is obvious. A representative
of each orbit has to be stored. We will solve this problem in the next section by
choosing a transversal of the orbits with more structure.

3 The new code
3.1. Recall. –––– It is well known that the Riemann sphere C ∪ {∞} is a 2-
dimensional R-manifold. The automorphism group preserving the complex struc-
ture is given by fractional linear transformations z 7→ az+b

cz+d
. These are called

Möbius transformations. Every fractional-linear map is constant or bijective
C ∪ {∞} → C ∪ {∞}. The inverse of such a maps is again fractional linear. It can
be computed by inverting the companion matrix. In fact, the automorphism group
is PGL2(C).
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b4

b3

b1

t=0

t=0

t=0

t=0

b2

Figure 1: Initial set of lines

We get a geometry of lines and circles. PGL2(C) acts transitively on these curves.
Two different curves have at most two points in common.

All this carries over to Fq2 ∪{∞} as a 2-dimensional space over Fq. In the finite
case, it is the well known construction of a Miquelian inversive plane starting from
a quadratic field extension [De, p. 257]. One way to define a circle is as the image
of a line. Removing one point from this inversive plane leads to the affine plane
F

2
q [De, p. 253].

3.2. Algorithm for Construction. –––– To construct the new code of k-
dimensional subspaces in F22n , we start with k arbitrary affine lines in F22n . I.e.,
we choose k maps bi : F2n → F22n by setting bi(t) := ai + sit for ai, si ∈ F22n . We
intend to use Γ: t 7→ ⟨b1(t), . . . , bk(t)⟩ as a transversal with 2n elements.

In a first step, we have to check that all subspaces in the transversal are good.
Here, we have to check that the bi(t) are linearly independent for all t. Further, the
equations (1) for bad subspaces will lead to equations for bad values of t. If none of
them is solvable, all subspaces in the transversal are good. Otherwise, we have to
exclude the solutions as values for t. Usually, these equations will have no solutions.

In a second step, we have to check that Γ(t1) and Γ(t2) are combinable for each
pair t1 ̸= t2 in F2n . Here, the equations from 2.14 will lead to equations for t1, t2.
On the average, each equation will exclude one value for t.

3.3. Lemma. –––– Assume the ai ∈ F22n are F2-linearly independent. Then, for
at most 2k−1 values of t, the subspace generated by bi(t) has dimension less then k.

Proof: We assume that a non-trivial linear combination leads to zero. I.e., we have
c1(a1+s1t)+ · · ·+ck(ak+skt) = 0 for ci ∈ {0, 1} not all zero. As the ai are assumed
to be F2 linearly independent, a non-zero equation for t results. This has at most
one solution in F22n . �
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3.4. Remark. –––– We have proven that ⟨b1(t), . . . , bk(t)⟩ has dimension k for at
least 2n − 2k + 1 values of t.

3.5. Remark. –––– The quotient sets Q(< b1, . . . , bk >) were used in section 2 to
describe good and combinable subspaces. Now, we get (2k−1)(2k−2) parametrized
quotients t 7→ li(b1(t),...,bk(t))

lj(b1(t),...,bk(t))
. These are circles in the inversive plane. The circles

might degenerate to a point.

t=0

t=0

t=0

t=0
t=0

t=0

t=0t=0

Figure 2: Quotient circles

3.6. Lemma. –––– Assume that t = 0 leads to a good orbit. Then, each of the
equations in 2.8 for good orbits excludes at most two values of t.

Proof: All equations are of degree 2. Plugging the bi(t) into one of them leads to
a quadratic equation for t. This is not the zero equation as t = 0 is not a solution.
As a consequence, each equation excludes at most 2 values of t. �

3.7. Remark. –––– For randomly chosen ai, si, we expect that no value of t ∈ F2n

is excluded by the conditions of Lemma 3.3 and Lemma 3.6. To explain this, note
that the equations constructed are defined over F22n . Usually, they have no solution
in the smaller field F2n . All computed examples confirm this expectation.

Now we turn to the second part of the construction. I.e., we analyze whether
the subspaces are combinable.

3.8. Lemma. –––– Let Γ be as above. Each equation of Remark 2.14(encoding
pairwise different quotients) for Γ(t1) and Γ(t2) excludes at most 2 values for t or it
excludes all possible values.
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Proof: The quotient map is given by

t 7→ σ1t+ α1

σ2t+ α2

.

The σi and αi are linear combinations of si and ai. The image of each quotient
map is a circle or a point. Two circles have at most two points in common or they
coincide. �

3.9. Remark. –––– It would be nice to have a criterion that excludes the degen-
eration of a quotient circle to a point or the case of two identical circles.

These degenerations seem to be very unlikely. We never observed them in a
computed example.

3.10. Definition. –––– In the following, we call the parameters that lead to inter-
section points of quotient circles (Lemma 3.8) and the parameters that are excluded
by the other conditions (Lemma 3.3 and Lemma 3.6) the exceptional set of the code.

3.11. Remark. –––– The arguments above show that, in a non-degenerated case,
the exceptional set has at most ϵ := 2k − 1 + 2(2k − 1)(2k − 2)[(2k − 1)(2k − 2)− 1]
elements. Therefore, we can construct a code with (22n − 1)(2n − ϵ) codewords.

4 Experiments

4.1. Example –––– [A 3-dimensional subspaces code in F264 ] We chose ai, ci for
i = 1, 2, 3 by a random number generator. We repeated this 100 times.

We had to exclude about 300 parameter values, each time. The smallest num-
ber of exclusions was 234. The exclusions were always caused by intersections of
quotient-circles (Lemma 3.8). The resulting code has (264−1)(232−234) codewords.

4.2. Example –––– [A 4-dimensional subspaces code in F2128 ] We chose the val-
ues of ai, bi by a random number generator. We repeated this 100 times.

We had to exclude about 7250 parameter values in each step. The smallest
number of exclusions was 7044. The exclusions were always caused by the conditions
given in Lemma 3.8. The resulting code has (2128 − 1)(264 − 7044) codewords.

4.3. Remark. –––– The excluded parameters are given by the intersections of the
quotient circles. These are C(k) independent conditions. Each of them leads to a
quadratic equation for the parameter. On average, it has one solution. Therefore
the number of excluded parameters depends only on k.

Thus, a 3-dimensional subspace code in a 128- or 256-dimensional ambient space
also has about 300 exceptions and about 2192, resp. 2384, codewords.
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5 Construction, encoding, and decoding

The numbers of codewords of the constructed codes are slightly below an exact
power of 2. It is easy to fill the gap by iterating the construction. In this section,
we will first give an algorithm for the construction of such a code. After that we
will give two algorithms for encoding and decoding of such a code.

5.1. Algorithm for Construction. –––– We suggest the following strategy to
construct a code with 23n codewords.
1) Choose the values of ai and ci (i = 1, . . . n), two times. I.e., prepare two codes
C1 and C2.
2) Compute the exceptional set of parameters for the two codes.
3) Check that the exceptional sets are disjoint. If not, restart at the first step.
4) Define the fill-set to be the exceptional set of C1 and one additional value t0 which
is in none of the two exceptional sets.
5) For each parameter in the fill-set, compute all quotients generated by C2 and this
parameter.
6) Test for all quotients, computed in step 5), whether they occur as quotients
generated by C1.
7) If these two quotient sets are disjoint we are done. Otherwise, we have to restart
in step 1).

5.2. Remark. –––– The algorithm will give us 2n + 1 combinable subspaces of
F22n , giving a code with (2n + 1) (22n − 1) = 23n +22n − 2n − 1 codewords. The pa-
rameters ai and ci describe the code and are known to sender and receiver. We used
this construction method in the experiments above to get a code of 3-dimensional
and a code of 4-dimensional subspaces in F264 . In both cases, the first trial was
successful.

5.3. Algorithm for Encoding. –––– For practical encoding, we explain how to
transform an element (t, z) ∈ F2n × F22n (which is more or less a sequence of 3n
bits) into a subspace.
1) Use t as a parameter to get an orbit of the first code.
2) In the improbable case that t is in the fill-set, switch to the second code.
3) In each case, a F2-subspace Γ(t) of F22n results. This is a canonical representative
of a Singer orbit.
4) Translate this subspace inside the orbit by multiplying with z.
5) In the improbable case that z is zero, use the the additional parameter t0 intro-
duced in step 4). Code (t, 0) by an element of the F∗

22n-orbit of the subspace with
parameter t0 in the second code.

12



6) To do this, we need an injective map F2n → F
∗
22n . This is given by addition of

an arbitrary element r0 ∈ F22n \ F2n .

5.4. Remark. –––– In the algorithm above the second code C2 works as an
backup, which is used in the case that the first part t of the encoded word was
from the exceptional set of the code C1 or if the second part z is zero which is a
non-valid element from the Singer cycle.

5.5. Remark. –––– In principle, the decoding algorithm of [EKW] for subspace
codes with minimal distance 2(k − 1) applies to this code. The basic idea of the
decoding algorithm is to start with the quotients generated by the vector space
received. We give a decoding algorithm below, which allows the decoding including
the correction of up to (k − 2) errors (resp. erasures).

5.6. Algorithm for Decoding. –––– Input is a received subspace U ⊂ F22n .
1) Loop through all 2-dimensional subspaces in U .
2) For each subspace, compute one quotient of a pair of different non-zero elements.
3) For each pair of F2-linear combinations of the bi(t) of the first code C1, compute
the value of t ∈ F22n which leads to the quotient computed in 2).
4) If t is in the subfield F2n and not in the exceptional set of the code C1 then the
parameter found is possible.
5) For each possible parameter t found, reconstruct the translation factor z by a
division in F22n .
6) For each pair (t, z), compute the distance between the space received and the
space encoding (t, z).
7) If the distance is at most (k − 2) then return (t, z) as the decoding result.
8) Redo the last 5 steps with the second code C2 instead of C1. Continue in step 4)
only if the parameter is in the fill-set. Take special care of t0 in step 7).
9) Return an error-message. There are too many errors for decoding.

5.7. Remarks. –––– i) As the subspace distance between the received space U
and the original codeword is at most (k− 2), there is only one possible parameter t
finishing the algorithm in step 7).
ii) If the received subspace has a bigger dimension than k then one can restrict to a
lower dimensional part [EKW]. This reduces the number of pairs to be handled in
step 1). The number of 2-dimensional subspaces to be checked is in the worst case[
k
2

]
=(2k−1)(2k−2)

6
.

iii) As the quotient map is fractional linear, its inverse is fractional linear, too. In
practice, we suggest to precompute the inverse maps in an initialization routine in
order to speed up step 3).

13



iv) For the computation of the distance in step 6), we suggest to use the algorithm
in [SE].

6 Generalizations
Let us mention a few generalizations of the construction given above.
i) It is possible to do the same for Fq instead of F2.
ii) As there is still a large gap between the size of the constructed code and the
lower bound for the possible size of the code, one could try to combine several such
F2n-families of F∗

22n-orbits. This would lead to significantly bigger exceptional sets
that have to be managed.
iii) A less obvious generalization is the following. Think of F2mn as a m-dimensional
F2n-space. Then, one replaces the parameter t by m− 1 parameters in F2n .
For example, one could choose n = 64 and m = 4. Then, the resulting code has
about 24·64−64 codewords in F2256 . The initial construction, i.e. n = 128 and m = 2,
would give us only 24·64−128 codewords in the same ambient space.
Doing this, the exceptional set becomes by far more complicated. Each equation
will lead to one (m− 2)-dimensional variety of exceptional parameters.
As above, one could try to modify the code in the exceptional cases, using an other
code, constructed in the same way. This will only work in most of the cases. Finitely
many (m−3)-dimensional varieties in the parameter space will still lead to problems.
One could repeat this exception handling process. One expects that each iteration
will reduce the dimension of the remaining exceptional set by one.
In practice, one could try to use Gröbner bases for an explicit description of the
varieties of exceptional parameters. It is not clear whether this is suitable for appli-
cations.
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