
GOOD MODELS FOR CUBIC SURFACES

ANDREAS-STEPHAN ELSENHANS

Abstract. This article describes an algorithm for finding a model of a hyper-
surface with small coefficients. It is shown that the approach works in arbitrary
dimension and degree. In the special case of a cubic surface it is completely
explicit.

1. Introduction

In [EJ] J. Jahnel and the author constructed cubic surfaces by using explicit
Galois descent and the hexahedral form. This leads to equations with big coef-
ficients. The aim of this note is to explain a way to find an isomorphic surface
with small coefficients. This isomorphism is an isomorphism of Q-schemes. In
general, the corresponding Z-schemes are not isomorphic.

The construction of a good equation consists of two parts. In the first part
one has to improve the model for the scheme over Zp for each prime p of bad
reduction. In an optimal situation, one can remove a bad prime completely. In
the second part, one has to look at the infinite prime. This is classical known as
reduction theory. It means to modify the embedding of the surface by operating
with Sl4(Z).

2. The finite places

In [K] J. Kollar discusses the problem of choosing good models in a very general
way. We follow this approach but we focus on the arithmetic situation.

Let V be the hypersurface given by a homogeneous polynomial f(x0, . . . , xn) = 0
in the projective space. Assuming that V is semi-stable leads to a least one non-
zero invariant I(f). Modifying f locally at the prime p changes this invariant by
a power of p. We use this to control the finiteness of the algorithm.

More precisely, we construct a sequence of polynomials fn with integral coeffi-
cients defining isomorphic schemes over Q such that vp(I(fn)) decreases. As I is
a polynomial in the coefficients of f , this process terminates after finitely many
steps.

1The author was partially suported by the Deutsche Forschungsgemeinschaft (DFG).
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Remark 1. Recall from invariant theory that a smooth hypersurface of degree
at least 3 is stable [MFK, Ch. IV, Proposition 4.2]. In this case one could choose
the discriminant as the non-zero invariant.

The main tool for the description of the algorithm are weights.

Definition 2. Let f(x0, . . . , xn) be a polynomial with integral coefficients. De-
note by multp f(x0, . . . , xn) the smallest p-adic valuation of a coefficient of f .

Remark 3. Let f be a homogeneous polynomial of degree d with
multp f(x0, . . . , xn) = 0. Then multp f(px0, . . . , pxn) = d.

Let M ∈ Mat((n + 1) × (n + 1),Z) ∩ Gln+1(Q) be given such that det(M) is a
power of p.

Then we can use M to modify the model. We get g = p−ef(Mx) with
e := multp(f(Mx)). The new equation g(x0, . . . , xn) = 0 is better if

vp(I(g)) < vp(I(f)). This is equivalent to e > vp(det(M)) deg(f)

n+1

Remark 4. Observe the following ambiguity. Suppose that the columns of M
and M ′ define the same Z-lattice. Then the resulting new models are equal (i.e.
isomorphic as Z-schemes).

Using the elementary divisor theorem, one can factor the matrix M into a product
of M1 ∈ Gln+1(Z) and a diagonal matrix M2, whose entries are powers of p. The
exponents of these diagonal entries are called a weight system. Without loss of
generality the entries of M2 are sorted.

Remark 5. One does not have to look at arbitrary weight systems here are some
obvious restrictions:

• As the entries of M2 are sorted the weights are sorted too.
• Replacing a weight system (w0, . . . , wn) by a translated weight system

(c + w0, . . . , c + wn) does not affect the model. So we can assume
0 = w0 ≤ w1 ≤ · · · ≤ wn.

All this can be interpreted in the language of affine Bruhat-Tits buildings.

Recall 6. The Bruhat-Tits building.

• The affine Bruhat-Tits building of type Ãn+1 for Qp is a n-dimensional
simplicial complex.

• The vertices are classes of (n + 1)-dimensional lattices in Qn+1
p .

• The class of a lattice L ⊂ Qn+1
p is [L] := {cL | c ∈ Q∗

p}.
• Assume that the lattices L0, . . . , Lk satisfy L0 ⊃ L1 ⊃ · · · ⊃ Lk ⊃ pL0.

Then their classes form a k-simplex.
• Let b0, . . . , bn be a basis of Qn+1

p . Then the classes of all lattices of the
form Zpp

e0b0⊕ · · · ⊕Zpp
enbn for e0, . . . , en ∈ Z form a sub-complex called

an apartment.
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• The apartment corresponding to the standard basis is called the standard
apartment.

• Any two simplices are contained in one apartment.

For a detailed description of buildings see, e.g., [B].

Remark 7. The factorization of the matrix M described above has the following
interpretation. The matrix M1 chooses the apartment containing the old and
the new lattice. The matrix M2 describes the position of the new lattice in the
apartment.

Doing the reduction with a concrete equation consists of two steps. First one has
to choose an apartment and then one has to choose weights, i.e., a lattice in the
apartment. If we assume that we have already chosen the right apartment then
the matrix M is diagonal.

Observation 8. Let f be a form of degree d and n + 1 variables. The
weight system (0, w1, . . . , wn) improves our equation with respect to the stan-
dard apartment if and only if f(x0, p

w1x1, . . . , p
wnxn) ≡ 0 (mod pk) for

k =
⌊

d
n+1

(w1 + · · ·+ wn)
⌋

+ 1. Writing

f =
∑

0≤i1≤···≤id≤n

ai1...idxi1 · · · xid

we get the equivalent statement

pk−wi1
−···−wid | ai1...id

for each d-tuple (i1, . . . , id) such that k − wi1 − · · · − wid is positive.

From this the following finiteness result is easily derived:

Proposition 9. Let n and d be fixed. Then a finite set of weight systems W
exists such that the following holds. A form f of degree d in n + 1 variables can
be improved if and only if it can be improved by using one of the weight systems
of W .

Proof. Without loss of generality the improvement takes place in the standard
apartment.

A form of degree d and n + 1 variables has m :=
(

n+d
d

)
coefficients. We identify

the space of all forms with Zm
p .

A form can be improved with a given weight system w if and only if the divisibility
conditions listed above are satisfied. This condition can be reformulated in terms
of the p-adic valuation of the coefficients.

More precisely a form can be improved with the weight system w if and
only if v(ai) ≥ ei(w). The ei(w) are non-negative integers depending on
w and not on p. We have to show that the infinite union of all cones
C(e1(w), . . . , em(w)) := {a ∈ Nm | ai ≥ ei(w)} has a finite sub-covering.
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We show this purely geometric statement by induction on the dimension. Assume
the the dimension is 1. Then the statement reduces to the fact that each non-
empty subset of N has a smallest element.

Assume that the statement is proven in dimension m− 1. We have to show that
it is true in dimension m. We start with the cones C(e), e ∈ E. We project onto
the first m− 1 coordinates. By induction we find finitely many cones that cover
the projection. We take arbitrary preimages C(e1), . . . , C(el) of the cones that
cover the projection. The union of the cones chosen in dimension m covers most
of the union of all cones.

All missing points have the property that the last coordinate is smaller than
M := max{(ej)m : j = 1, . . . , l}. As everything takes place in Nm the missing
points are located in finitely many layers with last coordinate between 1 and M .
Inspecting one layer we find the same kind of problem in dimension m − 1. By
induction hypothesis each layer leads to finitely many additional cones. ¤
Remark 10. This finiteness result proves the existence of an algorithm that
constructs an optimal model for a given place.

The algorithm uses the fact that the Bruhat-Tits-building is locally finite. This
ensures that only finitely many lattices exist which correspond to a given weight
system.

So one gets the existence of a finite list of lattices that improve an arbitrary
equation if it can be improved. Testing all these lattices either leads to a better
equation or to the proof that no better equation exists.

Repeating this until no better model can be found on gets an algorithm that
chooses a optimal one.

For semi-stable varieties this algorithm stops after finitely many steps.

Now we turn to a more concrete description of the necessary weight systems in
the case of cubic surfaces. A proposition stated at the end of J. Kollar’s paper
claims the following.

Proposition 11. Let f(x0, . . . , x3) = 0 be a model of a cubic surface. Assume
that this model can be improved. Then it can be improved with one of the following
five weight systems

(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (0, 1, 2, 2), (0, 2, 2, 3) .

Proof. The proof has the following strategy:

Assuming that a given weight system with respect to the standard apartment
leads to a better model, we show that one of the given five weight systems im-
proves the model, too.

The (0, 0, 0, 1)-case
The weight system (0, 0, 0, 1) improves the cubic equation f(x0, x1, x2, x3) = 0 if
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and only if all coefficients of the polynomial f(x0, x1, x2, px3) are divisible by p.
Equivalently the coefficients of x3

0, x
2
0x1, x

2
0x2, x0x

2
1, x0x1x2, x0x

2
2, x

3
1, x

2
1x3, x1x

2
2, x

3
2

in the original polynomial are divisible by p. All other weight systems which
imply these divisibilities can be replaced by the weight system (0, 0, 0, 1).

Claim: Assume that the sorted weight system (0, w1, w2, w3) improves our equa-
tion and satisfies the extra condition w1 +w3−3w2 ≥ 0. Then the weight system
(0, 0, 0, 1) improves the equation, too.

Check: We have to show that all monomials without x3 have coefficients
that are divisible by p. This is equivalent to k − wi1 − wi2 − wi3 ≥ 1 for

i1, i2, i3 ∈ {0, 1, 2}. Substituting k =
⌊

3(w1+w2+w3)
4

⌋
+ 1 the asserted inequal-

ity becomes 3
4
(w1 + w2 + w3) − wi1 − wi2 − wi3 ≥ 0. As the weights are sorted

it is enough to look at the case i1 = i2 = i3 = 2. We get 3
4
(w1 + w3)− 9

4
w2 ≥ 0,

which was assumed to hold.

The (0, 1, 2, 2)-case
Every sorted weight system (0, w1, w2, w3) which satisfies w1 + w3 − 3w2 ≤ 0,
w1 ≥ 1, and 3w1 − w2 − w3 ≤ 0 can be replaced by (0, 1, 2, 2).

We have to show that the coefficient of xi
0x

3−i
1 is divisible by p1+i, that the

coefficients of x2
0x2 and x2

0x3 is divisible by p2, and finally that the coefficients of
x0x1x2 and x0x1x3 are divisible by p.

As w1 is assumed to be at least 1, the first statement reduces to k−3w1 ≥ 1. The
second requirement reduces to k − w3 ≥ 2 and the last condition is entailed by
k−w1−w3 ≥ 1. Using w1 ≥ 1 we have to show k−3w1 ≥ 1 and k−w1−w3 ≥ 1.

The formula k =
⌊

3(w1+w2+w3)
4

⌋
+ 1 leads to the inequalities 3(w2+w3)

4
− 9

4
w1 ≥ 0

and 3
4
w2 − 1

4
w1 − 1

4
w3 ≥ 0, which are assumed to be true.

The (0, 2, 2, 3)-case
Every sorted weight system (0, w1, w2, w3) which satisfies w3 > w2,
3w1 − w2 − w3 ≥ 0, and w3 ≥ 3 can be replaced by (0, 2, 2, 3).

We have to show the following divisibilities

Monomial Coefficient is divisible by
x3

0 p6

x2
0x1, x

2
0x2 p4

x2
0x3 p3

x0x
2
1, x0x1x2, x0x

2
2 p2

x0x1x3, x0x2x3 p
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These are entailed by the inequalities

k ≥ 6

k − w1, k − w2 ≥ 4

k − w3 ≥ 3

k − 2w1, k − w1 − w2, k − 2w2 ≥ 2

k − w1 − w3, k − w2 − w3 ≥ 1 .

Using w3 > w2 ≥ w1 and the integrality of the wi we reduce this system of
inequalities to

k ≥ 6

k − w3 ≥ 3

k − w2 − w3 ≥ 1 .

Note that our assumptions imply w2 ≥ 2 and w3 ≥ 3. Hence it remains to show

k − w2 − w3 ≥ 1. Substituting k =
⌊

3(w1+w2+w3)
4

⌋
+ 1 leads to the inequality

3
4
w1 − 1

4
w2 − 1

4
w3 ≥ 0 which was our assumption.

The (0, 1, 1, 1)-case
Every sorted weight system (0, w1, w2, w3) which satisfies 3w1 + 3w2 − 5w3 ≥ 0
can be replaced by (0, 1, 1, 1).

We have to show the following divisibilities

Monomial Coefficient is divisible by
x3

0 p3

x2
0x1, x

2
0x2, x

2
0x3 p2

x0x
2
1, x0x1x2, x0x1x3, x0x

2
2, x0x2x3, x0x

2
3 p

The resulting system of inequalities can be simplified to k − 2w3 ≥ 1 by using

1 ≤ w3 ≥ w2 ≥ w1. The equality k =
⌊

3(w1+w2+w3)
4

⌋
+ 1 leads to the assumed

inequality.

The (0, 0, 1, 1)-case
Every sorted weight system (0, w1, w2, w3) which satisfies −5w1 + 3w2 − w3 ≥ 0
can be replaced by (0, 0, 1, 1).

We have to show the following divisibilities

Monomial Coefficient is divisible by
x3

0, x
2
0x1, x0x

2
1, x

3
1 p2

x2
0x2, x

2
0x3, x0x1x2, x0x1x3, x

2
1x2, x

2
1x3 p

The resulting system of inequalities reduces to k−3w1 ≥ 2 and k−2w1−w3 ≥ 1.
Our assumption contradicts w1 = w3. So we can use w3 ≥ w1 + 1. Only the
inequality k − 2w1 − w3 ≥ 1 is necessary.
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Using k =
⌊

3(w1+w2+w3)
4

⌋
+1 we get 3

4
w2− 5

4
w1− 1

4
w3 ≥ 0. This is our assumption.

The general case
We have to show that a weight system (0, w1, w2, w3) with 0 ≤ w1 ≤ w2 ≤ w3

can be replaced by one of the five given by J. Kollar.

If w1 = 0 then 3w2 − w3 is either ≥ 0 or < 0. So we are in the (0, 0, 1, 1) or the
(0, 0, 0, 1) case.

If w3 = 1 then we are in one of the three cases (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1).
So we can assume w3 ≥ 2.

If w1 ≥ 1 and w3 = 2 then we are in one of the cases (0, 1, 1, 2), (0, 1, 2, 2), or
(0, 2, 2, 2). They are covered by the (0, 0, 0, 1), (0, 1, 2, 2), and (0, 1, 1, 1) cases.

Now we can assume w1 ≥ 1 and w3 ≥ 3. We test w1 + w3 − 3w2. If this is not
negative we are in the (0, 0, 0, 1)-case. Otherwise we test 3w1 − w2 − w3. If this
is not positive we are in the (0, 1, 2, 2) case.

It remains to treat the case w1 ≥ 1, w3 ≥ 3, and 3w1 − w2 − w3 > 0. This is the
(0, 2, 2, 3)-case if w3 > w2 holds.

The last possibility is w1 ≥ 1, w2 = w3 ≥ 3, and 3w1−w2−w3 > 0. This is part
of the (0, 1, 1, 1) case. ¤

As the main inequalities found are homogenous we can visualize the result by
setting w3 = n. Then the space of all weight systems is covered by the five
cases as shown in the picture below. Note that the weight systems (0, 0, 1, 1)
and (0, 1, 1, 1) are only necessary for very special cases at the boundary and for
small w3.

(0,0,0,n) (0,0,n,n)

(0,n,n,n)

(0,0,0,1)
case

(0,0,1,1)
case

(0,1,2,2)
case

(0,1,1,1)
case

(0,2,2,3)
case

Covering of all weight-systems as shown in the proof
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To get a practical algorithm one needs a strategy for choosing lattices which
is better then an enumeration of all of them. We give a solution for this by a
reduction modulo p method. The main idea behind this is the following. We have
characterized the cases by divisibility conditions of the coefficients. Reduction
modulo p leads to cubic surfaces with very few monomials. These are known to
be singular. A detailed analysis of the singularities is the basis of the algorithm.

Proposition 12. Let f = 0 be a model of a cubic surface. Then the following
hold.

• An improvement with the weight system (0, 0, 0, 1) is possible if and only
if the reduction modulo p of f is reducible over Z/pZ.

• If the weight system (0, 0, 1, 1) leads to an improvement then the reduction
modulo p of f = 0 has at least a singular line.

For p > 3 the following holds. Let

[t : u] 7→ [g0(t, u), g1(t, u), g2(t, u), g3(t, u)]

be the parameterization of an arbitrary lift of the singular line. An im-
provement is possible if and only if f(g0, g1, g2, g3) ≡ 0 holds modulo p2.

• A necessary condition that the weight system (0, 1, 1, 1) leads to an im-
provement is that the reduction modulo p is a cone.

Further there exists a point P0 that reduces to a singular point and
satisfies f(P0) ≡ 0 modulo p3. If the cone has a unique apex then P0 is a
lift of this point.

Proof. Without loss of generality the improvement takes place in the standard
apartment.

The weight system (0, 0, 0, 1) works if and only if the coefficients of all monomials
without x3 are divisible by p. Equivalently x3 is a linear factor of the reduction
of f .

The possibility of an improvement with the weight system (0, 0, 1, 1) leads to the
following conditions

Monomial Coefficient is divisible by
x3

0, x
2
0x1, x0x

2
1, x

3
1 p2

x2
0x2, x

2
0x3, x0x1x2, x0x1x3, x

2
1x2, x

2
1x3 p

On the other hand let h = 0 be a cubic surface such that the reduction modulo
p has the singular line x2 = x3 = 0. This is characterized by

p | h(x0, x1, 0, 0) and p | ∂h

∂xi

∣∣∣∣
x2=x3=0

.

A sufficient condition for this is that the coefficients of all monomials m with
degx2

(m) + degx3
(m) ≤ 1 are divisible by p (for p > 3 this is equivalent). These

are the monomials listed in the table above.
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It remains to look at the extra conditions given by the p2 in the second line of the
table. This means p2 | f(x0, x1, 0, 0). Which is the last statement given above.
Note that for singular lines this condition is independent of the lift we choose.

Now we treat the weight system (0, 1, 1, 1). This leads to

f(x0, px1, px2, px3) = f(1, 0, 0, 0)x3
0 + px2

0l(x1, x2, x3) +

p2x0q(x1, x2, x3) + O(p3)

with a linear form l and a quadratic form q. Using p3|f(x0, px1, px2, px3) we get
p3|f(1, 0, 0, 0), p2|l, and p|q. This shows the claim. ¤
Proposition 13. Let f = 0 be a model of a cubic surface. Assume that it can
be improved with the weight system (0, 1, 2, 2) or (0, 2, 2, 3) with respect to the
standard apartment. Then [1 : 0 : 0 : 0] reduces to a singular point. Further
f(1, 0, 0, 0) ≡ 0 holds at least modulo p4.

Proof. We can use the conditions p4 | f(x0, px1, px2, p
2x3) or

p6 | f(x0, p
2x1, p

2x2, p
3x3). They imply the claim immediately. ¤

Remark 14. A deeper analysis of the singularities of the reduction modulo p
shows the following.

In the (0, 1, 2, 2)-case the quadratic form of the local expansion in the singular
point has rank at most 2. If it has rank 2 then this quadric is the union of two
planes. The common line of the two planes is contained in the cubic surface. The
singularity is of type A3 or worse.

In the (0, 2, 2, 3)-case the quadratic form of the local expansion in the singular
point has rank at most 1. This means the singularity is of type D4 or worse.

We will not use these facts for our algorithm. But it seams possible to improve
the algorithm by using them.

Algorithm 15. Given a model of a cubic surface by f = 0 over Q. This algo-
rithm computes one model of this surface which is optimal at each finite place.

The description starts at the top level. The subroutines follow afterwards.

i) Check that f = 0 is at least semi-stable. Otherwise terminate the algorithm
with an error-message. Output: “Unstable forms can not be treated.”

ii) Calculate the GCD of the coefficients of f . Divide f by it.

iii) Compute all primes p of bad reduction.

iv) For each prime p of bad reduction repeat the following until no better model
is found. If a better model is found start the computation for the next prime with
this model.

Try each of the five weight systems to improve the model. Use the order (0, 0, 0, 1),
(0, 0, 1, 1), (0, 1, 1, 1), (0, 1, 2, 2), (0, 2, 2, 3). If a better model is found then restart
immediately with the first weight system and the new model.
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v) Return the last model model found as an optimal one.

Try the weight system (0, 0, 0, 1)

i) Try to find a linear factor l of f in (Z/pZ)[x0, x1, x2, x3].

ii) If no factor is found terminate this subroutine.

iii) Compute the lattice generated by pZ4 and arbitrary lifts of three independent
kernel vectors of l.

iv) Write a basis of this lattice into the columns of a matrix M .

v) Set f̃ := f(Mx). Let c be the GCD of the coefficients of f̃ .

vi) return 1
c
f̃ as a better model.

Try the weight system (0, 0, 1, 1)

We assume that we are not in the (0, 0, 0, 1)-case.

Compute the primary decomposition of the singular locus of the reduction of f = 0
modulo p. For each line l found in the singular locus do the following.

i) Choose two points P0, P1 ∈ Z4 that reduce to two different points on the singular
line. Compute the lattice generated by P0, P1 and pZ4.

ii) Write a basis of this lattice into the columns of a matrix M .

iii) Set f̃ := f(Mx). Let c be the GCD of the coefficients of f̃ .

iv) If p2 | c then return 1
c
f̃ as a better model.

Try the weight systems (0, 1, 1, 1), (0, 1, 2, 2) and (0, 2, 2, 3)

We assume that we are not in the (0, 0, 0, 1)-case or the (0, 0, 1, 1)-case.

i) Compute the list L1 of relevant singular points. (Use the subroutine below.)

ii) For each point S in L1 do the following:

a) Compute the lattice generated by S and pZ4.

b) Write a basis of this lattice into the columns of the matrix M .

c) Set f̃ := f(Mx). Let c be the GCD of the coefficients of f̃ .

d) Test p3 | c.
e) If this divisibility condition is satisfied then return 1

c
f̃ as a better model.

f) Test p2 | c.
g) If this divisibility condition is satisfied then try to complete for then weight

systems (0, 1, 2, 2) or (0, 2, 2, 3) starting with the quotient 1
c
f̃ .

Search for relevant singular points

We assume that we are not in the (0, 0, 0, 1)-case or the (0, 0, 1, 1)-case.

i) Compute the primary decomposition of the singular locus of the reduction of
f = 0 modulo p.

ii) Write all isolated points (defined over Z/pZ) found into a list L1.
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iii) For each line l (defined over Z/pZ) found in the singular locus do the follow-
ing.

a) If p ≤ 3 then write all rational points of the line into the list L1.

b) If p > 3 compute a parameterization of an arbitrary lift of the
line [t : u] 7→ [g0(t, u) : g1(t, u) : g2(t, u) : g3(t, u)]. Solve
1
p
f(g0, g1, g2, g3) ≡ 0 (mod p). (As we are not in the (0, 0, 1, 1)-case this is not

the zero equation.) Write [g0(t, u) : g1(t, u) : g2(t, u) : g3(t, u)] for all solutions
[t : u] into the list L1.

iv) For each Galois orbit of lines found compute the intersection of all these lines.
If this leads to a point defined over Z/pZ add it to the list L1.

v) Return arbitrary representatives in Z4 of the points in L1 as a list of relevant
singular points.

Try to complete for (0, 1, 2, 2) and (0, 2, 2, 3)

Given an intermediate model f = 0 of a cubic surface.

i) Factor the reduction of f modulo p.

ii) If f is irreducible then terminate with the error-message “This can not hap-
pen”.

iii) If an irreducible quadratic factor q occurs then do the following. Compute the
singular locus of q = 0. If exactly one line is found then treat this line as in the
(0, 0, 1, 1)-case. If this does not lead to a GCD of at least p2 then no improvement
is possible. Terminate the subroutine. Otherwise return the new model.

iv) For each linear factors l that occurs do the following:

a) Handle l as in the (0, 0, 0, 1) case. Denote the new model by f̃

b) If a GCD of at least p2 occurs then return f̃ this as a new model.

c) Factor the reduction of f̃ modulo p. If a linear factor occurs then treat this
once more as in the (0, 0, 0, 1)-case. Return the resulting model as an improved
one.

v) If no linear factor of f occurs multiply then terminate the subroutine.

vi) Treat the multiple factor as in the (0, 0, 0, 1)-case. Call the resulting model f̃ .

vii) The reduction of f̃ modulo p is irreducible. Search for a singular line in the
reduction.

viii) If no singular line is found then terminate the subroutine.

ix) Treat this singular line as in the (0, 0, 1, 1)-case.

x) If the GCD that arises during the computation is at least p2 then return the
result as the new model.

xi) If the GCD that arises during the computation is only p then denote the new
model by g.

xii) Factor the reduction of g modulo p.
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xiii) If a linear factor occurs multiply then treat this factor as in the (0, 0, 0, 1)-
case. If the GCD that arises during the computation is at least p2 then return the
new model as an improved one.

xiv) Return “no improvement is possible”.

Remark 16. In [H] Hilbert gave a classification of unstable cubic surfaces. This
can be used to perform the first step.

Remark 17. Up to now the discussion of the (0, 1, 2, 2)-case and the (0, 2, 2, 3)-
case led to a practical description of the first basis element modulo p. I.e., it is
possible to change to the lattice generated by e0, pe1, pe2, pe3. The new coefficients
become divisible by p2. In order to explain the last subroutine of the algorithm
let us inspect this intermediate model f1. Note that f1 can always be improved
with the weight system (0, 0, 0, 1) by scaling the first basis element. This means
we return to the original model f . That is why the reduction of f1 is always
reducible.

We have to analyze the conditions p2|f1(x, y, pz, pw) and p4|f1(x, py, pz, p2w) in
this situation.

In the first case we find

Monomial Coefficient is divisible by
x3, x2y, xy2, y3 p2

x2z, x2w, xyz, xyw, y2z, y2w p

As a return to f is possible all monomials without x have coefficients divisible
by p.

Consequently the reduction of f1 has at most the monomials xz2, xzw, xw2. This
shows that the reduction consists (geometrically) of three planes. If the three
linear factors are defined over Z/pZ then we have to choose the right linear
factor and treat it as in the (0, 0, 0, 1)-case. Then we do one more step with the
weight system (0, 0, 0, 1). In the case that only one linear factor is defined over
Z/pZ we have to inspect the irreducible quadratic factor q. Then the scheme
q = 0 has a singular line. We treat it as in the (0, 0, 1, 1)-case.

In the second case we find

Monomial Coefficient is divisible by
x3 p4

x2y, x2z p3

x2w, xy2, xyz, xz2 p2

xyw, xzw, y3, y2z, yz2, z3 p

As a return to f is possible all monomials without x vanish in the reduction.
Summarizing the reduction consists of only one monomial xw2.

That means the reduction of f1 has a multiple linear factor. We can treat it as
in the (0, 0, 0, 1)-case. If a GCD of at least p2 occurs then we have an improved



GOOD MODELS FOR CUBIC SURFACES 13

model. If this is not the case then we have to continue with this new intermediate
model f2.

It remains to do a step with the weight system (0, 1, 1, 1). This leads to the
following divisibilities:

Monomial Coefficient is divisible by
x3 p3

x2y, x2z, x2w p2

xy2, xyz, xyw, xz2, xzw, xw2 p

Note that f2 = 1
p3 f(x, py, pz, p2w). This ensures the following additional divisi-

bilities:

Monomial Coefficient is divisible by
w3 p3

w2y, w2z p2

wz2, wzy, wy2, w2x p

Summarizing the reduction of f2 has only the monomials y3, y2z, yz2, z3. If the
reduction is reducible over Z/pZ then we can treat a linear factor as in the
(0, 0, 0, 1)-case. That means we do the same as in the (0, 1, 2, 2)-case and get a
better model. This is a very special situation because we expected the weight
system (0, 2, 2, 3) and found that the weight system (0, 1, 2, 2) works.

We have to handle irreducible f2. We expect the weight system (0, 1, 1, 1). But it
is simpler to do one (0, 1, 1, 0)-step and one (0, 0, 0, 1)-step. This avoids a search
for relevant singular points.

The set of possible monomials show that the reduction of f2 = 0 consists (only
geometrically) of three planes. They meet in a common line which is the singular
locus of the reduction. Treating this line as in the (0, 0, 1, 1) case leads to a model
f3. If a GCD of p2 occurs in this step then we are done. But this is impossible
as it would result in the weight system (0, 2, 2, 2). (This can be replaced by
(0, 1, 1, 1).)

A final step for f3 with the weight system (0, 0, 0, 1) has to be done. It must lead
to a GCD of at least p2, otherwise no improvement is possible.

Remark 18. This approach can be described in the language of Bruhat-Tits
buildings. We connect the start and the final lattice with a chain of 1-simplices.

Do not be confused with the notion of galleries and geodesics in Bruhat-Tits
buildings. These are different objects.

3. The infinite Place

Let f = 0 be a cubic surface. Further assume that the model is locally optimal
for every finite place p. It remains to choose a matrix M ∈ Gl4(Z) such that the
coefficients of f(Mx) are small.
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Naive approach. For a first try one could do the following:

i) Build up a list L of some matrices in Gl4(Z). Ensure that these matrices form
a generating system.

ii) If f(Mx) is smaller than f(x) for some M in L change to f(Mx).

iii) Repeat the last step until no better equation is found.

The main problem of this approach is the selection of the list L. Experimentally
we found that all matrices with at most two non-diagonal entries and all entries in
{0,±1} suffice in most cases to find a good equation. Further on this is very slow.
Next we describe a faster method with is based on a symbolic representation of
the surface and the LLL-algorithm.

Proposition 19. (Sylvester, Clebsch) Let f = 0 be a general cubic surface, then
there exist five linear forms l1, . . . , l5 such that f = l31 + l32 + l33 + l34 + l35. These
linear forms are unique up to order and multiplication by third roots of unity.
This is called the symbolic representation of f .

Remark 20. For some very special cubic surfaces this statement does not hold.
E.g. the diagonal cubic surface x3

0 + x3
1 + x3

2 + x3
3 = 0 has infinitely many such

representations. For these surfaces the approach will not work.

Definition 21. Let f = 0 be a cubic surface. The kernel surface (sometimes
called Hessian) is the quartic given by the equation

det

(
∂2f

∂xi∂xj

)

i,j

= 0 .

Proposition 22. (Clebsch) Let f = l31 + l32 + l33 + l34 + l35 be a general cu-
bic surface. Choose coefficients a1, . . . , a5 and linear forms k1, . . . , k5 such that
k1 + k2 + k3 + k4 + k5 = 0 and aiki = li. Then the singular points of the kernel
surface of f are the points given by ki1 = 1, ki2 = −1, ki3 = 0, ki4 = 0, ki5 = 0 for
{i1, i2, i3, i4, i5} = {1, 2, 3, 4, 5}.
Remark 23. The symbolic representation of a cubic surface can be computed
by inspecting the singular points of the kernel surface.

The main idea of the reduction algorithm is to do LLL-reduction with the linear
forms of the symbolic representation.

Algorithm 24. Let f = 0 be a general cubic surface this algorithm computes a
reduction of f for the infinite place.

i) Set q = det
(

∂2f
∂xi∂xj

)
i,j

.

ii) Compute the singular points of q = 0.

iii) Compute k1, . . . , k5 by solving the linear system of equations for k1, . . . , k5

given by the singular points of q.
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iv) Solve the linear system for the coefficients ai.

v) Set li := 3
√

aiki for i = 1, . . . , 5.

vi) Define the hermitian form
h(x) = ‖l1(x)‖2 + ‖l2(x)‖2 + ‖l3(x)‖2 + ‖l4(x)‖2 + ‖l5(x)‖2

vii) Use the LLL-algorithm to compute a matrix M whose columns are a reduced
bases of Z4 with respect to h.

viii) Return f(M−1x) as reduced polynomial.

Example 25. We start with the irreducible polynomial

t6 + 330t4 + 1452t3 + 13705t2 + 123508t + 835540 .

Its Galois group is of order 72. Doing the explicit Galois descent as described
in [EJ] naively leads to a cubic surface S0 with coefficients having up to 43 digits.
On the 27 lines of this surface operates a Galois group of order 144. S0 has bad
reduction at

p = 2, 3, 5, 7, 13, 113, 463, 733, 2141, 9643, 14143, 17278361, 22436341 .

Choosing better models and running the LLL-based reduction algorithm one gets
the new surface S

2x3 + 16x2z − 12x2w − 17xy2 + 61xyz − 26xyw

− 20xz2 + 95xzw + 18xw2 + 5y3 + 33y2z + 10y2w

− 25yzw − 22yw2 − 11z3 − 21z2w + 50zw2 − 52w3 = 0

S has bad reduction at

p = 2, 3, 5, 7, 13, 733, 22436341 .

Modulo p = 3, 5, 7, 13, 22436341 the singularity is one point of type A1. Modulo
p = 2 the surface has one singular point of type A1 and one of type A3. Modulo
733 the surface degenerates to a cone over a smooth curve.
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