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Abstract. We test the methods for computing the Picard group of a

K3 surface in a situation of high rank. The examples chosen are resolutions
of quartics in P3 having 14 singularities of type A1. Our computations
show that the method of R. van Luijk works well when sufficiently large
primes are used.

1. Introduction

1.1. The methods to compute the Picard rank of a K3 surface V are limited
up to now. As shown, for example in [vL] or [EJ1], it is possible to construct a
K3 surface with a prescribed Picard group. But when a K3 surface is given, say,
by an equation with rational coefficients, then it is not entirely clear whether its
geometric Picard rank may be determined using the methods presently known.

1.2. Generally speaking, it is always possible to give upper and lower bounds.
For the lower bound, it is necessary to specify divisors explicitly and to verify
that their intersection matrix is nondegenerate. This part is definitely problem-
atic. It might happen that a nontrivial divisor is hidden somewhere and very
difficult to find.

The general strategy for the computation of upper bounds is to use re-
duction modulo p. The idea to use characteristic p methods here is due to
R. van Luijk [vL]. We will describe this approach in more detail below.

Observe, however, that the Picard rank of a K3 surface over Fp is conjectured
to be always even. In particular, if rkPic(VQ) is odd then there is no prime p
such that rkPic(VFp

) = rkPic(VQ). Even more, the rank over Q being even or
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odd, there is no obvious reason why there should exist a prime number p such
that rkPic(VFp

) is at least close to rkPic(VQ).

1.3. The goal of this article is to test van Luijk’s method on a randomly chosen
sample ofK3 surfaces. We will focus on surfaces of Picard rank ≥15. The reason
for this is a practical one. For surfaces of small Picard rank, one is forced to work
with very small primes such as 2 or 3 as, otherwise, the computations run out
of time. This would make it impossible to systematically study the behaviour
of a single surface at various primes. When the Picard rank is larger, prime
numbers in a bigger range may be used.

Concretely, our sample consists of the resolutions of quartic surfaces having
only A1 singularities. We chose 1600 quartic surfaces with 14 singularities.
For each of the surfaces, we computed the upper bounds which were found at all
the primes p < 50. In some cases, we continued the computations using larger
primes up to p = 103.

We could compute all the geometric Picard ranks, including those that are
odd, using the method described below.

The method of van Luijk in detail. The Picard group of a K3 surface
is isomorphic to Zn where n may range from 1 to 20. An upper bound for the
Picard rank of a K3 surface may be computed as follows. One has the inequality

rkPic(VQ) ≤ rkPic(VFp
)

which is true for every smooth variety V over Q and every prime p of good re-
duction [Fu, Example 20.3.6].

Further, for a K3 surface V over the finite field Fp, one has the first Chern
class homomorphism

c1 : Pic(VFp
) −→ H2

ét(VFp
,Ql(1))

into l-adic cohomology. There is a natural operation of the Frobenius endo-
morphism Frob on H2

ét(VFp
,Ql(1)). All eigenvalues are of absolute value 1.

The Frobenius operation on the Picard group is compatible with the operation
on cohomology.

Every divisor is defined over a finite extension of the ground field. Conse-
quently, on the subspace Pic(VFp)⊗ZQl ↪→ H2

ét(VFp
,Ql(1)), all eigenvalues are

roots of unity. These correspond to eigenvalues of the Frobenius operation
on H2

ét(VFp
,Ql) which are of the form pζ for ζ a root of unity. One may there-

fore estimate the rank of the Picard group Pic(VFq
) from above by counting how

many eigenvalues are of this particular form.
Doing this for one prime, one obtains an upper bound for rkPic(VFp) which

is always even. The Tate conjecture asserts that this bound is actually sharp.
For this reason, one tries to combine information from two primes. The assump-
tion that the surface would have Picard rank 2l over Q and Fp implied that the
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discriminants of both Picard groups, Pic(VQ) and Pic(VFp
), were in the same

square class. Note here that reduction modulo p respects the intersection prod-
uct. When combining information from two primes, it may happen that one finds
the rank bound 2l twice, but the square classes of the discriminants are different.
Then, these data are incompatible with Picard rank 2l over Q. One gets the
rank bound (2l − 1).

Remark 1.4. There are refinements of the method of van Luijk described
in [EJ3] and [EJ5]. We will not test these refinements here.

Question 1.5. As mentioned above, the central point is the existence of
good primes. For a prime p, being good means here that the geometric Pi-
card rank of the reduction modulo p does not exceed the Picard rank over Q by
more than one. Do there exist good primes for all K3 surfaces over Q?

Example 1.6. Let V be a K3 surface of Picard rank 1. We denote by

V n :=
n

5
i=1

V

the n-fold cartesian product. Then, the Picard rank of V n is equal to n. As-
suming the Tate conjecture, one sees that the Picard rank of the reduction at
an arbitrary prime is at least 2n.

This shows that, for n ≥ 2, there is no good prime for V n. Not knowing
the decomposition of V n into a direct product, we could not determine its Pi-
card rank.

Analytic discriminants – The Artin-Tate formula. For the final step in
the argument above, one needs to know the discriminant of the Picard lattice.
One possibility to compute this is to use the Artin-Tate formula.

Conjecture 1.7 (Artin-Tate). Let V be a K3 surface over a finite field Fq.
Denote by ρ the rank and by ∆ the discriminant of the Picard group of V,
defined over Fq. Then,

|∆| =
lim
T→q

Φ(T )
(T−q)ρ

q21−ρ#Br(V )
.

Here, Φ denotes the characteristic polynomial of Frob on H2
ét(VFq

,Ql). Finally,
Br(V ) is the Brauer group of V .

Remarks 1.8. i) The Artin-Tate conjecture is proven for most K3 surfaces.
Most notably, the Tate conjecture implies the Artin-Tate conjecture [Mi1, The-
orem 6.1]. In these cases, #Br(V ) is a perfect square.

On its part, the Tate conjecture is proven for K3 surfaces under various addi-
tional assumptions. For example, it is true for elliptic K3 surfaces [ASD].
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ii) In such a case, the Artin-Tate formula allows to compute the square class of
the discriminant of the Picard group over a finite field. No knowledge of explicit
generators is necessary.

2. Singular quartics

Singular quartic surfaces were extensively studied by the classical geometers
of the 19th century, particularly by E.Kummer and A.Cayley. For example, the
concept of a trope is due to this period [Je].

Definition 2.1. Let V ⊂ P3 be any quartic surface. Then, by a trope on V ,
we mean a plane E such that V ∩E is a double conic. This is equivalent to the
condition that the equation defining V becomes a perfect square on E.

Remark 2.2. Tropes lead to singular points on the surface V ∨ ⊂ (P3)∨ dual
to V .

Lemma 2.3 (Kummer). A quartic surface without singular curves may have at
most 16 singular points. �

Fact 2.4. Let V be a normal quartic surface.

a) Then, not more than three singular points on V may be collinear.

b) If three singular points on V are collinear then the line connecting them lies
on V .

Proof. b) Otherwise, this line would meet V in each of the three singular points
with multiplicity at least two.

a) Suppose k ≥ 4 singular points are collinear. Then, the line connecting them is
contained in V . Choose a plane through this line not meeting any other singular-
ity. The intersection consists of the line and a possibly degenerate cubic curve.
They may not have more than three points in common. �

A classical family. A classification of the singular quartic surfaces with at
least eight singularities of type A1 was given by K.Rohn [Ro]. In this article,
we will deal with one of the most important classical families.

Lemma 2.5 (Cayley, Rohn). A family of quartics in P3 such that the generic
member has 14 singularities of type A1 and no others is given by

det


0 l1 l2 l3
l1 0 l′3 l′2
l2 l′3 0 l′1
l3 l′2 l′1 0

 = 0 .

Here, l1, l2, l3, l
′
1, l

′
2, l

′
3 ∈ C[x, y, z, w] are linear forms. �
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Remark 2.6. According to K.Rohn [Ro], every quartic surface with exactly
14 singular points, each being of type A1, is contained in this family. Cf. [Je,
Ch. I, §12].

Remarks 2.7. i) Evaluating the determinant, we find the explicit equation

l21l
′
1
2
+ l22l

′
2
2
+ l23l

′
3
2 − 2l1l2l

′
1l

′
2 − 2l1l3l

′
1l

′
3 − 2l2l3l

′
2l

′
3 = 0 .

ii) A singular point is given by l1 = l2 = l3 = 0. As the equation has the three
independent symmetries li ↔ l′i, there are eight singularities of this type.

Two further singular points are given by l1 = l′1 = l2l
′
2− l3l

′
3 = 0. As the roles of

the indices are interchangeable, there are a total of six singularities of this form.

iii) Each of the six planes l1 = 0, l2 = 0, l3 = 0, l′1 = 0, l′2 = 0, l′3 = 0 is a trope.
Generically, these are the only tropes on such a quartic. Each trope passes
through six of the 14 singular points.

3. The desingularization

Lemma 3.1. Let π : Ṽ → V be the desingularization of a normal quartic sur-
face V with only A1 singularities. Then, Ṽ is a K3 surface.

Proof. On the smooth part of V , the adjunction formula [GH, Sec. 1.1, Exam-
ple 3] may be applied as usual. For the canonical sheaf, one has KP3 = O(−4).
This shows that the invertible sheaf Ω2

V reg is trivial. Consequently, KṼ is given
by a linear combination of the exceptional curves.

However, for an exceptional curve E, we have E2 = −2. Hence, according to
the adjunction formula, KṼ E = 0, which shows that KṼ is trivial. The clas-
sification of algebraic surfaces [Be] assures that Ṽ is either a K3 surface or an
abelian surface.

Further, a standard application of the theorem on formal functions implies
that R1π∗OṼ = 0. Hence, χalg(Ṽ ) = χalg(V ) = 2. This shows that Ṽ is in fact
a K3 surface. �

Remarks 3.2. i) For the assertion of the lemma, it is actually sufficient to
assume that the singularities of V are of types A, D, or E [Li].

ii) In general, the desingularization of a normal quartic surface is a K3 surface,
a rational surface, a ruled surface over an elliptic curve, or a ruled surface over a
curve of genus three [IN]. The latter possibility is caused by a quadruple point.
The existence of a triple point implies that the surface is rational. It is, however,
also possible that there is a double point, not of type A, D, or E. Then, Ṽ is
rational or a ruled surface over an elliptic curve.

Blowing up one singular point. A generic line intersects a quartic V ⊂ P3

in precisely four points. Assume that P is a double point on V which is not
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contained in a line lying on V . Then, the generic line through P intersects V in
two further points. As the lines through P are parametrized by P2, this leads
to a double cover of P2 birational to V .

Definition 3.3. We will call this scheme the degree two model corresponding
to V .

Remarks 3.4. i) It is not hard to make the construction explicit. For this,
suppose that P = (0 : 0 : 0 : 1). Then, V is given by an equation of the
form Q(x, y, z)w2 +K(x, y, z)w+F (x, y, z) = 0 for a quadratic form Q, a cubic
form K, and a quartic form F . Multiplying by Q and substituting W for Qw
yields

W 2 +K(x, y, z)W + F (x, y, z)Q(x, y, z) = 0 .

The ramification locus is the sextic curve given by 4FQ−K2 = 0. Actually, when
there are lines through P lying on V , this transformation works, too.

ii) If there is no line on V containing P then the degree two model is simply the
blow-up of V in P . Indeed, there is a morphism from the blow-up to the degree
two model which is finite and generically one-to-one. As the degree two model
is a normal scheme, Zariski’s main theorem applies.

In general, the degree two model is the blow-up of V in P with the lines con-
taining P blown down.

iii) Observe that the conic “Q = 0” is tangent to the ramification sextic.
Hence, this conic splits in the double cover. Actually, the exceptional divisor
produced by blowing up the singular point is one component of the preimage.

Remark 3.5. When we apply this construction to the particular singular quar-
tics described above, the ramification sextic must have exactly 13 singular points.
According to Plücker, such a highly singular degree-six curve is necessarily re-
ducible. It is the union of three lines and a singular cubic or the union of two
lines and two conics.

4. Point counting

In order to determine the eigenvalues of the Frobenius on H2
ét(ṼFq

,Ql), the
usual method is to count the points on V defined over Fq and extensions and to
apply the Lefschetz trace formula [Mi2, Ch.VI, Theorem 12.3].

Fact 4.1 (Elliptic fibration). Let V ⊂ P3 be an irreducible quartic surface
having at least two singular points. Then, Ṽ is a rational surface or has an
elliptic fibration.

Proof. Intersect V with the pencil of hyperplanes through the two singu-
lar points. This yields a fibration of a surface birationally equivalent to V .
The assumption implies that the generic fiber is an irreducible curve. Depend-
ing on whether or not the line connecting the two singularities lies on V , it is
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either a cubic curve or a quartic curve with at least two singular points. In both
cases, Plücker’s formulas show that its genus is at most one. The existence of a
fibration into curves of genus zero implies that Ṽ is rational. �

To count the points on a singular quartic surface V over Fq, we have at least
the following possibilities.

Algorithms 4.2 (Point counting). i) Count points directly. This means, in-
tersect V with a 2-dimensional family of lines. For each line, determine the
number of points on it. This last step amounts to solving an equation of degree
four in Fq.

ii) Use the elliptic fibration. Enumerate all fibers, defined over Fq. On each
fiber, count the number of points.

iii) Compute a degree two model of the surface and count the points there.
This means, one has to evaluate a sextic form on P2 and run an is-square
routine at each step.

Remarks 4.3. a) If the surface is defined over Fp then it suffices to count the
points on a fundamental domain of the absolute Frobenius. This leads to a
significant speed-up for all three methods.

b) In our examples, it turned out that the degree two model approach was the
fastest one. We used it except for those surfaces where there were lines through
each singularity defined over Fp.

5. Lower bounds for the Picard rank

Lemma 5.1. Let π : Ṽ → V be the desingularization of a proper surface V
having only A1-singularities.

a) Then, the exceptional curves define a non-degenerate orthogonal system
in Pic(Ṽ ).

b) In particular, the Picard rank of Ṽ is strictly bigger than the number of
singularities of V .

Proof. a) The exceptional curves have self-intersection number (−2) each and
do not meet each other.

b) For H the hyperplane section, π∗OV (H) is orthogonal to the excep-
tional curves. �

Remark 5.2. A strategy to calculate the square class of the discriminant
of Pic(Ṽ ) is thus as follows. Consider in Pic(Ṽ ) the orthogonal complement
P := ⟨E1, . . . , En⟩⊥. Then, disc Pic(Ṽ ) ∈ 2n(discP )Q∗2.
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5.3. The only method known to prove a non-trivial lower bound for the Pi-
card rank is to write down divisors explicitly. We always have the hyperplane sec-
tion. For special quartics from the Cayley-Rohn family, we observed two types
of additional divisors.

i) Lines. One could search for lines on the surfaces by a Gröbner base calcu-
lation. However, in our particular situation, every line connects at least two
singular points. We will show this in Proposition 5.7 below.

ii) Conics. There is a special case in that there exists a plane containing exactly
four singularities, no three of which are collinear. Then, the quartic curve on
this plane splits into two conics. The same may happen when a plane through
three singularities is tangent to the surface at another point.

5.4. In both these situations, one may directly calculate the corresponding in-
tersection matrices.

i) Let k = 2, 3 be the number of singularities connected by the line l. Choose a
plane through l such that the intersection curve splits into l and a smooth
cubic curve. Then, on Ṽ , we have two divisors L and C such that L2 = −2,
C2 = 0, and CE = 3 − k. For E1, . . . , Ek the exceptional divisors met by L,
L′ := L+ 1

2E1+ . . .+ 1
2Ek and C ′ := C+ 1

2E1+ . . .+ 1
2Ek are in the orthogonal

complement of the exceptional divisors (after tensoring by Q). Indeed, this is
an immediate consequence of Lemma 5.6, shown below. We find the intersection

matrix
(−2+k/2 3−k/2

3−k/2 k/2

)
of determinant 2k − 9.

ii) Here, there are two conics meeting in four points, k of which are singular
on V . This yields two divisors Q1 and Q2 on Ṽ such that Q2

1 = Q2
2 = −2

and Q1Q2 = 4−k. In a manner analogous to i), we end up with the intersection

matrix
(−2+k/2 4−k/2

4−k/2 −2+k/2

)
of determinant 2k − 12.

Remark 5.5. Observe the following rules of thumb that apply as long as there
are no multiplicities >1. If D meets exactly k singular points then D′2 = D2+ k

2 .
If D1 ̸= D2 are irreducible curves having k singular and k′ smooth points in
common then D1D2 = k′ + k

2 .

Lemma 5.6. Let C be a curve on a surface V having an A1-singularity in P .
Suppose P ∈ C and that P is smooth on C. Then, on the desingulariza-
tion π : Ṽ → V , the strict transform of C meets the exceptional curve π−1(P )
of order one.

Proof. Indeed, the model case for this situation is given by a conical quadric V
in P3 and a line l on V . Then, the desingularization is a Hirzebruch surface Σ2

which is a ruled surface over P1 with exactly one (−2)-curve B. The strict
transform of l is a line F from the ruling. It is well known that BF = 1. �
Proposition 5.7 (Lines on special quartics). Let V be a quartic surface with
14 singular points. Then, every line on V contains two or three singular points.
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Proof. Let l be a line on V . By Fact 2.4, l cannot contain more than three sin-
gularities. Suppose first that l is contained in one of the tropes. Then, this is
a degenerate trope, the conic splitting into two lines. As a trope contains six
singular points, there must be three on each line.

Otherwise, l meets each trope in a single point. We claim that these six points
of intersection are all singular. Then, the assertion follows, since a point cannot
be contained in more than three tropes.

To show the claim, assume that l would meet a trope in a smooth point p.
As l is supposed to be contained in V , it is everywhere tangential to V . But for
a point on a trope, the tangent plane is the trope itself. Hence, l would be
contained within the trope. This is a contradiction. �

6. Computations and numerical data

6.1. Consider the Cayley-Rohn family of determinantal quartics as described in
Lemma 2.5. Then, over a Zariski open subset of the base, one may normalize to
l1 = x, l2 = y, l3 = z, and l′1 = w. We will write l′2 = c1x + c2y + c3z + c4w
and l′3 = c5x+c6y+c7z+c8w for a coefficient vector [c1, . . . , c8]. Over a possibly
smaller Zariski open subset, one has c1, c2, c3 ̸= 0 in which case these coefficients
may be normalized to 1.

The computations carried out. We chose a sample of 1600 singular quartics
from the Cayley-Rohn family. We worked with the normal form as described
in 6.1. The coefficient vectors were produced by a random number generator.
The coefficients themselves were integers in the range −20, . . . , 20. We always
put c1 = c2 = c3 = 1.

For each surface V in the sample and each prime p < 50 of good reduction, we
counted the number of points in V (Fp), V (Fp2), and V (Fp3). From these data,
we tried to compute the characteristic polynomial of the Frobenius. For the
determination of the sign in the functional equation, we followed the strategy
described in [EJ4]. We used the explicitly known 15-dimensional sublattice of
the Picard group generated by the hyperplane section and the exceptional curves
in order to adapt the conditions to our situation. In 430 cases, we computed, in
addition, #V (Fp4). Here, p was up to 23. From the characteristic polynomial,
we read off the rank of Pic(VFp

) and, using the Artin-Tate formula, computed

its discriminant.

Remark 6.2. In the cases that remained with an unknown sign, we worked
with the pair of possible characteristic polynomials. This means, we took the
maximum of the predicted ranks as an upper bound. In the case that both upper
bounds were equal to 16, we got a pair of possible square classes for the discrim-
inants. Combining information from different primes then amounted to forming
the intersection of these sets. To give a typical example, for p = 31, these sign
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problems occurred in 139 of 1299 cases of good reduction. Other primes led to
similar rates.

Remark 6.3. According to Fact 4.1, every surface in the sample is elliptic.
This is enough to show that the Artin-Tate formula 1.7 for the discriminant
is applicable.

The average value for a prime. The probability to obtain a good rank bound
increases when the prime numbers increase. Let us visualize this by a diagram.

250

500

750

1000

1250

1500

good reduction

rank bound 16

primes

3 11 17 23 31 41 47

Figure 1. Number of surfaces with good reduction and rank
bound 16 for p < 50

The discriminants. We computed the discriminant in all cases of Picard
rank 16. In 4690 cases, we obtained a rank bound of 16 and the determination
of the sign in the functional equation was possible. These data led to 59 distinct
square classes for the discriminant. The most frequent square class was (−1) with
819 repetitions. The next one was (−2) having 608 repetitions. On the other
hand, each of the discriminants (−47), (−59), (−67), (−71), (−82), (−101),
(−118), (−141), (−149), and (−177) occurred only once.

The ranks over Q. On each surface in the sample, we searched for addi-
tional divisors. It turned out that 1504 of the surfaces contained no line and
no plane through four singular points. For these, we tried to prove that the Pi-
card rank is 15. For the others, we tried to prove Picard rank 16. The statistics
over the primes used is given by the table below.
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prime #cases finished #cases left

11 2 1502
13 15 1487
17 36 1451
19 57 1394
23 151 1243
29 181 1062
31 219 843
37 214 629
41 173 456
43 136 320
47 118 202
53 80 122
59 44 78
61 36 42
67 20 22
71 12 10
73 6 4
79 2 2

103 1 1

Rank 15 expected

prime #cases finished #cases left

5 1 95
7 3 92

11 3 89
13 5 84
17 2 82
19 4 78
23 11 67
29 7 60
31 6 54
37 8 46
41 12 34
43 7 27
47 6 21
53 4 17
59 1 16
61 3 13
67 3 10
73 1 9
79 1 8
83 3 5
97 1 4

Rank 16 expected

Table 1. Progress of the upper bounds

Observe that there were a few cases where the data for p < 50 were not sufficient.
For these, we continued the point count, in an extreme case up to p = 103.

Testing isomorphy. As a byproduct of the computations, we proved that the
surfaces in our sample are pairwise non-isomorphic. For this, it was sufficient
to show that, for each pair of surfaces, there existed a prime where both have
good reduction, but the geometric Picard groups differ in rank or discriminant.
In order to do this, we had to continue the point count in a few cases. In fact,
the data for p ≤ 61 contained enough information.

The five examples left.

Example 6.4. Let S1 be the surface given by the coefficient vector
[1, 1, 1,−7, 16, 6,−9, 12]. Here, there is a plane through three singularities which
is tangent to S1 at a fourth point. The intersection curve splits into two conics.
The Picard rank is thus at least 16. On the other hand, we found the rank
bound 16 for p = 61, 71, 83, and 101.

Examples 6.5. Let S2, S3, and S4 be the surfaces given by
the vectors [1, 1, 1,−1,−16, 7, 10,−10], [1, 1, 1, 3,−16, 2, 4, 15], and
[1, 1, 1,−1, 13,−11, 1, 15], respectively. For each surface, we found rank 18 at
several primes with various discriminants. Hence, in each case, there was an
upper bound of 17 for the Picard rank.
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i) On S2, we found a plane E through four singular points P1, . . . , P4. On E,
the quartic splits into two conics Q1, Q2. Further, there are two lines L1, L2

through P1 and P2 on V which meet in a smooth point. Actually, L1 and L2

form a degenerate trope. Arguing as in 5.4, we find the intersection matrix
0 2 1

2
1
2

2 0 1
2

1
2

1
2

1
2 − 1

2 1
1
2

1
2 1 −1

2


of rank three. This confirms Picard rank 17.

ii) On S3, the situation is analogous to that on S2. The only difference is that
the plane E meets three singular points and is tangent to V at a fourth point.
L1 and L2 meet E in singular points. We find the intersection matrix

− 1
2

5
2

1
2

1
2

5
2 −1

2
1
2

1
2

1
2

1
2 −1

2 1
1
2

1
2 1 − 1

2


of rank three. Again, this confirms Picard rank 17.

iii) Here, we have a plane E through five singular points. On E, the quartic
splits into a conic Q and two lines L1, L2. There are two further lines L3, L4

through three singularities. L1 and L3 meet in a smooth point. Together, they
form a degenerate trope. The same is true for L2 and L4. Finally, L3 and L4

have a singular point in common. We find the intersection matrix
0 1 1 0 0
1 −1

2
1
2 1 0

1 1
2 − 1

2 0 1
0 1 0 −1

2
1
2

0 0 1 1
2 −1

2


of rank three. Again, this confirms Picard rank 17.

Example 6.6. Let S5 be the surface given by the coefficient vector
[1, 1, 1,−1,−13, 0, 11,−11]. We got a rank bound of 18 for p = 23, 31, 61,
79, 89, 97, and 101.

On the other hand, we found quite a number of particular divisors on this sur-
face. There are six planes through exactly four singular points. On each of
these planes, the quartic splits into two conics. The combinatorial structure is
rather interesting. In a somewhat arbitrary numbering, the table below describes
which plane meets which singular points.
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E1 P1 P2 P9 P11

E2 P3 P4 P13 P14

E3 P3 P7 P12 P14

E4 P4 P8 P10 P13

E5 P5 P6 P9 P11

E6 P7 P8 P10 P12

Table 2. Planes through four singular points

Further, we have the two lines, L1 through P9, P10 and P14, and L2 through
P11, P12 and P13. The lines L1 and L2 have a smooth point in common.
They form a degenerate trope. The intersection matrix of L1, the two conics
in E2, and one of the conics in E3 alone is

−1
2

1
2

1
2

1
2

1
2 0 2 1
1
2 2 0 1
1
2 1 1 0


of rank four. This proves that the Picard rank is 18.

Summary 6.7. We considered the resolutions of 1600 randomly chosen Cayley-
Rohn quartics with exactly 14 singularities of type A1. The corresponding
K3 surfaces were mutually non-isomorphic. It turned out that all the Picard
ranks could be determined. However, at several examples rather large primes
up to p = 103 had to be considered. We found Picard rank fifteen 1503 times
and Picard rank sixteen 93 times. Further, there were three surfaces of Picard
rank seventeen and one surface of Picard rank eighteen in the sample.
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