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Abstract

We study the moduli space M̃ of marked cubic surfaces. By classical work
of A. B. Coble, this has a compactification M̃ , which is linearly acted upon by
the group W (E6). M̃ is given as the intersection of 30 cubics in P

9. For the
morphism M̃ → P(1, 2, 3, 4, 5) forgetting the marking, followed by Clebsch’s
invariant map, we give explicit formulas. I.e., Clebsch’s invariants are
expressed in terms of Coble’s irrational invariants. As an application, we give
an affirmative answer to the inverse Galois problem for cubic surfaces over Q.

Introduction

Cubic surfaces have been intensively studied by the geometers of the 19th cen-
tury. For example, it was proven at that time that there exactly 27 lines on every
smooth cubic surface. Further, the configuration of the 27 lines is highly symmet-
ric. The group of all permutations respecting the canonical class as well as the
intersection pairing is isomorphic to the Weyl group W (E6) of order 51 840.

The concept of a moduli scheme is by far more recent. Nevertheless, there are
two kinds of moduli schemes for smooth cubic surfaces and both have their origins
in classical invariant theory.

On one hand, there is the coarse moduli scheme of smooth cubic surfaces.
This scheme is essentially due to G. Salmon [Sa] and A. Clebsch [Cl]. In fact, in a
modern language, Clebsch’s result from 1861 states that there is an open embedding
Cl : M →֒ P(1, 2, 3, 4, 5) into the weighted projective space of weights 1, . . . , 5.
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On the other hand, one has the fine moduli scheme M̃ of smooth cubic surfaces
with a marking on the 27 lines. The marking plays the role of a rigidification and
excludes all automorphisms. That is why a fine moduli scheme may exist. It has its
origins in the work of A. Cayley [Ca]. An embedding into P9 as an intersection of
30 cubics is due to A.B. Coble [Co3] and dates back to the year 1917.

The two moduli spaces are connected by the canonical, i.e. forgetful, morphism
pr: M̃ →M . This is a finite flat morphism of degree 51 840. Its ramification locus
corresponds exactly to the cubic surfaces having nontrivial automorphisms.

The main result of this article is Theorem 3.9, giving an explicit description
of pr : M̃ →M . In other words, given a smooth cubic surface C with a marking on
its 27 lines, we give explicit formulas expressing Clebsch’s invariants of C in terms
of Coble’s, so-called irrational, invariants. It was certainly known to Coble that
there is such a comparison, but only rudiments of the explicit formulas could be
established at the time. Our approach is a combination of classical invariant theory
with modern computer algebra.

An application. When C is a cubic surface over Q, the absolute Galois group
Gal(Q/Q) operates on the 27 lines. This means, after having fixed a marking on
the lines, there is a homomorphism ρ : Gal(Q/Q) → W (E6). One says that the
Galois group Gal(Q/Q) acts upon the lines of C via G := im ρ ⊆ W (E6). When no
marking is chosen, the subgroup G is determined only up to conjugation.

As an application of the considerations on moduli schemes, we obtain the fol-
lowing affirmative answer to the inverse Galois problem for smooth cubic surfaces
over Q.

Theorem. –––– Let g be an arbitrary conjugacy class of subgroups of W (E6).
Then there exists a smooth cubic surface C over Q such that the Galois group acts

upon the lines of C via a subgroup G ⊆W (E6) belonging to the conjugacy class g.

The fundamental idea of the proof is as follows. We describe a twist M̃ρ of M̃ ,
representing cubic surfaces with a marking that is acted upon by the absolute Galois
group via a prescribed homomorphism ρ : Gal(Q/Q) → W (E6). The Q-rational
points on this scheme correspond to the cubic surfaces of the type sought for.

We do not have the universal family at our disposal, a least not in a sufficiently
explicit form. Thus, we calculate Clebsch’s invariants of the cubic surface from the
projective coordinates of the point found, i.e. from the irrational invariants of the
cubic surface. Finally, we recover the surface from Clebsch’s invariants.

The list. The complete list of our examples is available at both author’s web pages
as a file named kub fl letzter teil.txt. The numbering of the conjugacy classes
we use is that produced by gap, version 4.4.12. This numbering is reproducible, at
least in our version of gap. It coincides with the numbering used in our previous ar-
ticles.
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1 The moduli scheme of marked cubic surfaces

Generalities.

1.1. Definition. –––– Let S be any scheme. Then, by a family of cubic surfaces

over S or simply a cubic surface over S, we mean a flat morphism p : C → S such
that there exist a rank-4 vector bundle E on S, a non-zero section c ∈ Γ(O(3),P(E )),
and an isomorphism div(c)

∼=−→ C of S-schemes.

1.2. Remark. –––– The P3-bundle P(E ) is not part of the structure. Neverthe-
less, at least for p smooth, we have O(1)|C = (Ω∧2

C/S)
∨⊗L for some invertible sheaf

L on S. Thus, the class of O(1)|C in Pic(C)/p∗Pic(S) is completely determined by
the datum.

1.3. Definitions. –––– i) A line on a smooth cubic surface p : C → S is a
P1-bundle l ⊂ C over S such that, for every x ∈ S, one has degO(1) lx = 1.

ii) A family of marked cubic surfaces over a base scheme S or simply a marked cubic

surface over S is a cubic surface p : C → S together with a sequence (l1, . . . , l6) of
six mutually disjoint lines. The sequence (l1, . . . , l6) itself will be called a marking

on C.

1.4. Remarks. –––– i) A marked cubic surface is automatically smooth, accord-
ing to our definition. All its 27 lines are defined over S. They may be labelled as
l1, . . . , l6, l

′
1, . . . , l

′
6, l

′′
12, l

′′
13, . . . , l

′′
56, cf. [Ha, Theorem V.4.9].

ii) It is known since the days of A.Cayley that there are exactly 51 840 possible
markings for a smooth cubic surface with all 27 lines defined over the base. They are
acted upon, in a transitive manner, by a group of that order, which is isomorphic
to the Weyl group W (E6) [Ma, Theorem 23.9].

1.5. Convention. –––– In this article, we will identify W (E6) with the permuta-
tion group acting on the 27 labels l1, . . . , l6, l

′
1, . . . , l

′
6, l

′′
12, l

′′
13, . . . , l

′′
56.

1.6. Theorem. –––– Let K be a field.

i) Then there exists a fine moduli scheme M̃ of marked cubic surfaces over K.

I.e., the functor

F : {K-schemes} −→ {sets} ,
S 7→ {marked cubic surfaces over S}/∼
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is representable by a K-scheme M̃ .

ii) M̃ is a smooth, quasi-projective fourfold and, in addition, a rational variety.

Proof. First step. The quotient.

Let U ⊂ (P2)6 be the open subscheme parametrizing all ordered 6-tuples of points
in P2 that are in general position. I.e., no three lie on a line and not all six lie on
a conic. U is acted upon in an obvious manner by the algebraic group PGL3.

The Hilbert-Mumford numerical criterion [MFK, Theorem 2.1] immediately im-
plies that every point p ∈ U is PGL3-stable. In fact, the nonstable points on (P2)6

are those corresponding to configurations such that there are at least four points on
a line [MFK, Definition 3.7/Proposition 3.4]. Hence, the quotient scheme U/PGL3

exists. We will show that this is the desired fine moduli scheme.

Second step. The universal family.

Let π : P2
U
→ U be the structural morphism. There is the trivial rank ten vector

bundle π∗O(3) ∼= O10
U

over U formed by the cubic forms on P2
U

. Those forms van-
ishing in the six distinguished points form a rank four subvector bundle. Locally in
the base, a basis {C1, . . . , C4} may be chosen. There is exactly one nontrivial lin-
ear relation between the 20 cubics C3

1 , C
2
1C2, . . . , C

3
4 . This yields a cubic surface

p′ : C → U .

As an abstract scheme, C is the blow up of P2
U

in the six incidence subvarieties
Y1, . . . , Y6 ⊂ P2

U
, given as the inverse images of the diagonal ∆ ⊂ P2

P
2
K

under the
base extensions pr1, . . . , pr6 : U → P2

K . These incidence subvarieties are smooth,
hence regularly embedded, of codimension two.

Blowing up replaces Yi by an exceptional divisor li, being a P1-bundle over Yi.
As the projections Yi → U are isomorphisms, each li is actually a P1-bundle over U .
Further, every li is of degree one in the geometric fibers [Ha, Theorem V.4.9.a)] and
therefore a line. We fix the marking (l1, . . . , l6) on the cubic surface p′ : C → U .

For any γ ∈ PGL3, there is a natural isomorphism iγ : C → C compatible with
the operation of γ on U . As γ operates component-wise on U ⊂ (P2)6, the marking
is respected by construction. Altogether, we find a family

p : C := C/PGL3 −→ M̃ := U/PGL3

of marked cubic surfaces.

Third step. The universal property.

Let S be an arbitrary scheme and p : C → S be any marked cubic surface. Consider
the two disjoint lines l1 and l2. It is classically known that there are exactly five
lines on C that meet both, l1 and l2. These are l′3, . . . , l

′
6, and l′′12.

Locally in the base, we may choose isomorphisms l1 ∼= P1
U and l2 ∼= P1

U .
Here, U ∈ U for U a suitable open cover of S. Then the five intersecting lines
define a U -valued point ((p1, q1), . . . , (p5, q5)) on (P1 ×P1)5.
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Up to automorphisms of the two P1’s, we may assume that the first component
is (p1, q1) = (∞,∞). There is the birational map ι : Bl(1:0:0),(0:1:0) P

2 −→ P1 × P1

given by (x : y : z) 7→ ((y : z), (x : z)), which blows down the line “z = 0” to the
point (∞,∞). Therefore, the marked cubic surface p|p−1(U) induces a morphism

tp,U : U → U → M̃ ,

given by ((1 : 0 : 0), (0 : 1 : 0), ι−1(p2, q2), . . . , ι
−1(p5, q5)). Observe that, for every

x ∈ U , these six points are in general position [Ha, Proposition V.4.10].
This morphism is independent of choices, as is well-known in the case of a base

field [Be, Proof of Theorem 4.13]. Hence, for the various U ∈ U, the tp,U glue
together to give the classifying morphism tp : S → M̃ .

Fourth step. Quasi-projectivity, smoothness, rationality.
Let (p1, . . . , p6) ∈ U (K) be any geometric point. Then (p1, p2, p3, p4) is a projective
basis for P2. A standard result from projective geometry states that there is exactly
one γ ∈ PGL3(K) such that γ ·p1 = (1 : 0 : 0), γ ·p2 = (0 : 1 : 0), γ ·p3 = (0 : 0 : 1),
and γ ·p4 = (1 : 1 : 1).

Thus, there is an embedding M̃ →֒ (P2)2, the image of which is the open sub-
scheme parametrizing two points that are in general position together with the
given four. In particular, M̃ is smooth, quasi-projective, four-dimensional, and a
rational variety. �

1.7. Remarks. –––– i) In fact, such quotients are quasi-projective in much more
generality [MFK, Theorem 1.10.ii].

ii) By functoriality, M̃ is acted upon by W (E6). More precisely, every g ∈ G
defines a permutation of the 27 labels. For every base scheme S, this defines a map
Tg(S) : F (S)→ F (S), which is natural in S. By Yoneda’s lemma, that is equivalent
to giving a morphism Tg : M̃ → M̃ . Clearly, Tgg′ = TgTg′ for g, g′ ∈ W (E6) and
Te = id for e ∈W (E6) the neutral element.

The operation of W (E6) is not free, as cubic surfaces may have automorphisms.
It is, however, free on a non-empty Zariski open subset of M̃ .

A naive embedding.

1.8. –––– To give a K-rational point p on the variety U is equivalent to giv-
ing a sequence of six points p1, . . . , p6 ∈ P2(K) in general position. As we have
seen, there is a unique γ ∈ PGL3(K) mapping (p1, p2, p3, p4) to the standard basis
((1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1)). The K-rational points on M̃ may thus
be represented by 3× 6-matrices of the form




1 0 0 1 w y
0 1 0 1 x z
0 0 1 1 1 1


 .
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Observe that vanishing of the third coordinate of p5 would mean that p1, p2, and p5

were collinear, and similarly for p6. Hence, we actually have an open embedding
M̃ →֒ A4.

1.9. Lemma. –––– M̃ is an affine scheme.

Proof. The image of the naive embedding of M̃ in A4 is the complement of a di-
visor. �

Cayley’s compactification.

1.10. –––– The moduli scheme M̃ of marked cubic surfaces has its origins in the
middle of the 19th century. In principle, it appears in the article [Ca] of Arthur Cay-
ley. Cayley’s approach was as follows.

Every smooth cubic surface over an algebraically closed field has 45 tritangent
planes meeting the surface in three lines. Through each line there are five tritan-
gent planes. This leads to a total of 135 cross ratios, which are invariants of the
cubic surface, as soon as a marking is fixed on the lines.

It turns out that only 45 of these cross ratios are essentially different, due to
constraints within the cubic surfaces. Furthermore, they provide an embedding
M̃ →֒ (P1)45. The image is Cayley’s “cross ratio variety”. For a more recent treat-
ment of this compactification, we refer the reader to I. Naruki [Na].

2 Coble’s compactification. The gamma variety.

Coble’s irrational invariants.

2.1. –––– An advantage of the algebraic group SL3 over the group PGL3 is
that its operation on P2 is linear. This means that SL3 operates naturally on
O(n), and hence on Γ(P2,O(n)), for every n. It is well known that there is no
PGL3-linearization for OP2(1) [MFK, Chapter 1, §3].

There is, however, the canonical isogeny SL3 ։ PGL3, the kernel of which con-
sists of the multiples of the identity matrix by the third roots of unity. These matri-
ces clearly operate trivially on O(3). Thus, there is a canonical PGL3-linearization
for O(3), which is compatible with the SL3-linearization, cf. [MFK, Chapter 3, §1].

We may also speak of SL3-invariant sections of the outer tensor products
O(n1) ⊠ . . .⊠ O(n6) on (P2)6 for (n1, . . . , n6) ∈ Z6. If 3 |n1, . . . , n6 then PGL3 op-
erates, too, and the PGL3-invariant sections are the same as the SL3-invariant ones.

2.2. –––– For example, for 1 ≤ i1 < i2 < i3 ≤ 6, the corresponding minor

mi1,i2,i3 := det



xi1,0 xi1,1 xi1,2
xi2,0 xi2,1 xi2,2
xi3,0 xi3,1 xi3,2



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of the 6× 3-matrix 


x1,0 x1,1 x1,2

x2,0 x2,1 x2,2

. . .
x6,0 x6,1 x6,2




defines an invariant section of O(n1) ⊠ . . .⊠ O(n6) for ni :=

{
1 for i ∈ {i1, i2, i3} ,
0 for i 6∈ {i1, i2, i3} .Let us write miσ(1),iσ(2),iσ(3)

:= mi1,i2,i3 for every σ ∈ S3.

Further,

d2 := det




x2
1,0 x

2
1,1 x

2
1,2 x1,0x1,1 x1,0x1,2 x1,1x1,2

x2
2,0 x

2
2,1 x

2
2,2 x2,0x2,1 x2,0x2,2 x2,1x2,2

. . .
x2

6,0 x
2
6,1 x

2
6,2 x6,0x6,1 x6,0x6,2 x6,1x6,2


 ∈ Γ((P2)6,O(2) ⊠ . . .⊠ O(2))

is SL3-invariant, too.

A.Coble [Co3, formulas (16) and (18)] now defines 40 SL3-invariant, and hence
PGL3-invariant, sections γ. ∈ Γ((P2)6,O(3) ⊠ . . .⊠ O(3)).

2.3. Definition (Coble). —– For {i1, . . . , i6} = {1, . . . , 6}, consider

γ(i1i2i3)(i4i5i6) := mi1,i2,i3mi4,i5,i6 d2 and

γ(i1i2)(i3i4)(i5i6) := mi1,i3,i4mi2,i3,i4mi3,i5,i6mi4,i5,i6mi5,i1,i2mi6,i1,i2

Following the original work, we will call these 40 sections the irrational invariants.

2.4. Remarks. –––– i) Here, the combinatorial structure is as follows. Within the
parentheses, the indices may be arbitrarily permuted without changing the symbol.
Further, in the symbols γ(i1i2i3)(i4i5i6), the two triples may be interchanged. How-
ever, in the symbols γ(i1i2)(i3i4)(i5i6), the three pairs may be permuted only cyclically.
Thus, altogether, there are ten invariants of the first type and 30 invariants of the
second type.

ii) The 20 minors mi1,i2,i3 and the invariant d2 vanish only when the underlying six
points (x1, . . . , x6) are not in general position. Hence, on U , Coble’s 40 sections
have no zeroes.

iii) One has the beautiful relation

d2 = − det

(
m1,3,4m1,5,6 m1,3,5m1,4,6

m2,3,4m2,5,6 m2,3,5m2,4,6

)
,

cf. [Co1, (47)] or [Hu, formula (4.18)].
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2.5. Caution. –––– We have 40 sections γ. ∈ Γ((P2)6,O(3)⊠ . . .⊠O(3))PGL3 and
a machine calculation shows dim Γ((P2)6,O(3) ⊠ . . .⊠ O(3))PGL3 = 40.

It is, however, long known [Co3, (24)] that the 40 sections γ. span only a subvector
space of dimension ten. The mere fact that there is such a gap is quite obvious.
In fact, for (p1, . . . , p6) ∈ (P2)6 such that p1, . . . p4 are distinct points on a line l and
p5, p6 6∈ l, we have m3

1,2,5m
3
3,4,6 6= 0 but all γ. vanish.

In particular, the irrational invariants γ. do not generate the invariant ring

⊕

d≥0

Γ((P2)6,O(3d) ⊠ . . .⊠ O(3d))PGL3

and do not define an embedding of the categorical quotient ((P2)6)semi-stable/PGL3

[MFK, Definition 0.5] into P39. Observe, however, Theorem 2.7 below.

2.6. Notation. –––– The PGL3-invariant local sections of O(3)⊠ . . .⊠O(3) form
an invertible sheaf on M̃ = U/PGL3, which we will denote by L .

2.7. Theorem. –––– a) The invertible sheaf L on M̃ is very ample.

b) The 40 irrational invariants γ. ∈ Γ(M̃ ,L ) define a projective embedding

γ : M̃ →֒ P39
K .

c) The Zariski closure M̃ of the image of γ is contained in a nine-dimensional

linear subspace.

d) As a subvariety of this P9, M̃ has the properties below.

i) The image of M̃ under the 2-uple Veronese embedding P9 →֒ P54 is not contained

in any proper linear subspace.

ii) The image of M̃ under the 3-uple Veronese embedding P9 →֒ P219 is contained

in a linear subspace of dimension 189.

iii) M̃ is the intersection of 30 cubic hypersurfaces.

Proof. We will give a proof for b) in 2.14, below. It will not rely on the modular
interpretation, but be purely computational. Unfortunately, at a few points, machine
work will be necessary. a) is clearly implied by b).

c) follows from the fact that the vector space 〈γ.〉 spanned by the 40 irrational
invariants γ. is ten-dimensional.

d.i) and ii) As is easily be checked by computer, the purely quadratic expressions in
the γ. form a 55-dimensional vector space, while the purely cubic expressions form
a vector space of dimension 190.

iii) By ii), M̃ is contained in the intersection of 30 cubic hypersurfaces in P9. This in-
tersection is reported by magma as being reduced and irreducible of dimension four.

�
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2.8. Definitions. –––– i) We will call γ : M̃ →֒ P39
K Coble’s gamma map.

ii) The variety M̃ , given as the Zariski closure of the image of γ will be called Coble’s

gamma variety.

2.9. Remarks. –––– i) The fact that the vector space 〈γ.〉 is only of dimension
ten is, of course, easily checked by computer, as well.

A.B. Coble’s original proof [Co3, (24)] works as follows. One may write down [Co3,
page 343] five four-term linear relations, the S6-orbits of which yield a total of
270 relations. These relations form a single orbit under W (E6) and generate the
30-dimensional space of all linear relations.

In order to show that the dimension is not lower than ten, Coble has to use the
moduli interpretation. He verifies that there are enough cubic surfaces in hexahe-
dral form.

ii) The cubic relations are in fact more elementary than the linear ones. For example,
one has

γ(12)(34)(56)γ(23)(45)(16)γ(14)(36)(25) = γ(12)(36)(45)γ(34)(25)(16)γ(56)(14)(23) .

To see this, look at the left hand side first. The nine pairs of numbers in {1, . . . , 6}
that are used, are exactly those with an odd difference. Thus, when writing, accord-
ing to the very definition, the left side as a product of 18 minors, m1,3,5 and m2,4,6

can not appear. It turns out that each of the other minors occurs exactly once.
As the same is true for the right hand side, the equality becomes evident.

We remark that this relation is not a consequence of the linear ones. I.e., it does not
become trivial when restricted to P9. Its orbit under W (E6) must generate the 30-
dimensional space of all cubic relations. Indeed, that is an irreducible representation,
as we will show in the next subsection.

iii) In particular, the gamma variety M̃ is clearly not a complete intersection. Nev-
ertheless, the following of its numerical invariants may be computed.

2.10. Lemma. –––– i) The Hilbert series of M̃ is 1+5T+15T 2+5T 3+T 4

(1−T )5
.

ii) In particular, the Hilbert polynomial of M̃ is 9
8
T 4 + 9

4
T 3 + 27

8
T 2 + 9

4
T + 1. Fur-

ther, the Hilbert polynomial agrees with the Hilbert function in all degrees ≥0.

iii) M̃ is a projective variety of degree 27.

iv) The Castelnuovo-Mumford regularity of M̃ is equal to 4 and that of the ideal

sheaf IM̃ ⊂ OP39 is equal to 5.

Proof. i) follows from a Gröbner base calculation. ii) and iii) are immediate con-
sequences of i).

iv) By [DE, p. 219], it is pure linear algebra to compute the Castelnuovo-Mumford
regularity of a coherent OPN -module. We used the implementation in magma. �
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The operation of W (E6).

2.11. –––– It is an important feature of Coble’s (as well as Cayley’s) compactifi-
cations that they explicitly linearize the operation of W (E6). More precisely,

Lemma. There exists a W (E6)-linearization of L ∈ Pic(M̃ ) such that

i) the 80 sections ±γ. ∈ Γ(M̃ ,L ) form a W (E6)-invariant set.

ii) The corresponding permutation representation Π: W (E6) →֒ S80 is transitive.

It has a system of 40 blocks given by the pairs {γ,−γ}.
iii) The permutation representation W (E6) →֒ S40 on the 40 blocks is the same as

that on decompositions of the 27 lines into three pairs of Steiner trihedra.

Proof. i) As W (E6) is a discrete group, the general concept of a linearization of
an invertible sheaf [MFK, Definition 1.6] breaks down to a system of compatible
isomorphisms ig : T

∗
gL

∼=−→ L for Tg : M̃ → M̃ the operation of g.

For g ∈ S6 ⊂ W (E6), there is an obvious such isomorphism. Indeed, g per-
mutes the six labels l1, . . . , l6 and, accordingly, the six blow-up points p1, . . . , p6.
Simply permute the six factors of O(3) ⊠ . . .⊠ O(3) as described by g. Assertion i)
is clear for these elements.

Further,W (E6) is generated by S6 and just one additional element, the quadratic
transformation I123 with centre in p1, p2, and p3 [Ha, Example V.4.2.3]. In the
coordinates described in 1.8, this map is given by (w, x, y, z) 7→ ( 1

w
, 1
x
, 1
y
, 1
z
).

One may now list explicit formulas for the 40 irrational invariants γ. in terms
of these coordinates. Each of these sections actually defines a global trivialization
of L . Plugging in the provision (w, x, y, z) 7→ ( 1

w
, 1
x
, 1
y
, 1
z
) in a naive way, yields an

isomorphism i′I123 : T ∗
I123

L
∼=−→ L . It turns out that, under i′I123 , the 40 sections γ.

are permuted up to signs and a common scaling factor of 1
w2x2y2z2

. Thus, let us take
iI123 := w2x2y2z2 · i′I123 as the actual definition.

This uniquely determines ig for every g ∈ W (E6). One may check that
{ig}g∈W (E6) is a well-defined linearization of L . Assertion i) is then clear.

ii) We checked the first assertion in magma. The second statement is obvious.

iii) Note that, in the blown-up model, the 40 irrational invariants have exactly the
same combinatorial structure as the 40 decompositions, cf. [EJ5, 3.7]. �

2.12. Remarks. –––– i) The permutation representation Π has no other nontriv-
ial block structures.

ii) The restriction of Π to the index-two subgroup D1W (E6) ⊂ W (E6), which is
the simple group of order 25 920, is still transitive. Neither does it have more
block structures.
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iii) Lemma 2.11.i) suggests that it might have technical advantages to consider the
embedding γ′ : M̃ →֒ P79, linearly equivalent to the gamma map γ, which is de-
fined by the 80 sections ±γ.. To a certain extent, this is indeed the case, cf. Re-
marks 4.4 below.

2.13. Remarks (Representations of W (E6)). —– i) The dimensions of the irre-
ducible complex representations of W (E6) are 1, 1, 6, 6, 10, 15, 15, 15, 15, 20, 20,
20, 24, 24, 30, 30, 60, 60, 60, 64, 64, 80, 81, 81, and 90.

ii) The W (E6)-representation on the vector space 〈γ.〉 ∼= Γ(P9,O(1)) of dimension
ten is irreducible.

iii) The W (E6)-representation on the 220-dimensional vector space Γ(P9,O(3)) de-
composes into two copies of the ten-dimensional, two copies of a 30-dimensional, two
copies of the other 30-dimensional, and one copy of the 80-dimensional irreducible
representations [DK, Theorem 3.2.2]. This already implies that the 30-dimensional
sub-representation of cubic relations among the γ. is irreducible.

The proof that γ is an embedding.

2.14. Proof of Theorem 2.7.b). –––– We will verify the assertion in several
steps.

First step. Preparations.

The assertion may be tested after base extension to the algebraic closure K. We have
to show that γ separates points and tangent vectors. We will work with the coordi-
nates defined by the naive embedding as described in 1.8.

Let us first consider the composition γ̃ of γ with the linear projection to the P9,
formed by the ten invariants γ(i1i2i3)(i4i5i6). We will show that this morphism is at
most 2 : 1 onto its image and separates tangent vectors, already.

Second step. A linear projection I. Separating points.

A direct calculation shows that γ̃ is given by

(w, x, y, z) 7→ ((wz − xy − w + x+ y − z) : (wz − xy) : (z − y) : (x− w) : (w − y) :

: (−xy + x) : (−wz + z) : (−xy + y) : (−wz + w) : (x− z)) .

Fix a point (w, x, y, z) ∈ U (K). We have to find all points (w′, x′, y′, z′) ∈ U (K)
having the same image in P9.

As the projective morphism γ̃ is defined, among other regular functions, by the
differences z − y, x−w,w− y, and x− z, one must have w′ = uw + v, x′ = ux+ v,
y′ = uy + v, and z′ = uz + v for certain u, v ∈ K. Clearly, u = 0 leads to a point
outside U and (u, v) = (1, 0) yields the original point. So these possibilities may
be excluded.

11



Considering, in addition, the eighth component (−xy + y), we find the equation
u(−xy + y) = −(ux + v)(uy + v) + uy + v, which is equivalent to the requirement
that (u, v) be a point on the affine conic Cx,y, given by

xy ·u2 + (x+ y)·uv + v2 − xy ·u− v = 0 .

This is always a non-degenerate conic, as the discriminant turns out to be
−1

4
xy(x − 1)(y − 1) 6= 0. Furthermore, there are the three obvious points (0, 0),

(1, 0), and (0, 1) on Cx,y. Using the seventh component (−wz + z), we find the
analogous condition that (u, v) ∈ Cw,z(K).

It is impossible that the two conics Cx,y and Cw,z coincide. Indeed, that would
mean that either (x, y) = (z, w) or (x, y) = (w, z). But, in the first case, p5 = p6,
while, in the second case, p3, p5, and p6 were collinear.

Therefore, the fourth point of intersection of Cx,y and Cw,z is needed and that
may readily be computed to

(u, v) =
( (wz−xy)(wz−xy−w+x+y−z)

(w−x)(w−y)(x−z)(y−z)
, (wz−xy)(wxy−wxz−wyz+xyz+wz−xy)

(w−x)(w−y)(x−z)(y−z)

)
.

Hence, (w′, x′, y′, z′) for

w′ := (wz−xy)(z−1)
(x−z)(y−z)

, x′ := (wz−xy)(y−1)
(w−y)(y−z)

, y′ := (wz−xy)(x−1)
(w−x)(x−z)

, and z′ := (wz−xy)(w−1)
(w−x)(w−y)

(1)

is the only candidate that might, under γ, have the same image as (w, x, y, z).

Third step. A linear projection II. Separating tangent vectors.
Fix a point (w, x, y, z) ∈ U (K) and suppose there is a tangent vector T that is
mapped to zero under dγ̃. The argument is similar to that in the step above.

First, the differences x − w,w − y, x − z, and z − y alone enforce that
T = u(w ∂

∂w
+ x ∂

∂x
+ y ∂

∂y
+ z ∂

∂z
) + v( ∂

∂w
+ ∂

∂x
+ ∂

∂y
+ ∂

∂z
) for certain u, v ∈ K. Tak-

ing the eighth and tenth components into consideration, we find the equation
T (−xy+y

x−z
) = 0, which is equivalent to T (−xy+y)·(x−z)− (−xy+y)·T (x−z) = 0 or

v(1− x− y)− u·xy = 0 .

Analogously, one sees T (−wz+w
x−z

) = 0 leading to v(1− w − z)− u·wz = 0.
The assumption that (u, v) 6= (0, 0) now yields wz(1−x−y)−xy(1−w−z) = 0.

As this is exactly equivalent to d2 = 0, it is a contradiction to (w, x, y, z) ∈ U (K).

Fourth step. Separating points.
The proof is now readily completed by a machine computation involving Gröb-
ner bases. Our experiments using magma show the following.

Assume that (w, x, y, z) and (w′, x′, y′, z′), as given by formula (1), have the same
image in P11 under the morphism defined by γ(12)(34)(56), γ(12)(35)(46), and the ten
γ(i1i2i3)(i4i5i6). This defines in A4 an algebraic subset consisting of three components,
defined by γ(123)(456) = 0, γ(124)(356) = 0, and

w + x− y − z = xy − xz + yz + z2 − y − z = 0 ,
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respectively. Only the last condition is possible on U .
Assuming this condition and working with the morphism to P13 that takes

into account γ(13)(45)(26) and γ(15)(24)(36), too, we end up with an algebraic subset
in A4 consisting of five one-dimensional components, four lines and one conic.
None of them meets U . In fact, the subset is contained in the divisor defined
by (x− w)(w − y)(z − y) = 0. �

2.15. Remark. –––– The partner point (w′, x′, y′, z′) corresponds to the same
cubic surface as (w, x, y, z), but with the flipped marking. I.e., li is replaced by l′i and
vice versa. This is seen by a short calculation from [Co3, Table (2)], cf. [Co1, p. 196].

2.16. Remarks. –––– a) The embedding of the moduli scheme of marked cubic
surfaces into P9, originally due to A.B. Coble, was studied recently by D.Allcock
and E.Freitag [AF] as well as B. van Geemen [Ge]. Their approaches were rather
different from Coble’s. For example, van Geemen actually constructs an embedding
of the cross ratio variety, instead of U/PGL3, into P9. He obtains the 30 cubic
relations in [Ge, 7.9].

b) A short summary of Coble’s approach may be found in I. Dolgachev’s book on
classical algebraic geometry [Do, Remark 9.4.20].

3 The moduli scheme of un-marked cubic surfaces

3.1. –––– The quotient M̃ /W (E6) =: M is the coarse moduli scheme of smooth
cubic surfaces. The reader might consult [Na, Appendix by E. Looijenga] for more
details on this quotient. As cubic surfaces may have automorphisms, a fine moduli
scheme cannot exist.

3.2. –––– The moduli scheme of smooth cubic surfaces may as well be constructed
directly as the quotient V /PGL4 for V ⊂ P19 the open subscheme parametrizing
smooth cubic surfaces. In fact, by [Mu2, 1.14], every smooth cubic surface corre-
sponds to a PGL4-stable point in P19.

The PGL4-invariants have been determined by A.Clebsch [Cl, sections 4 and 5]
as early as 1861. In today’s language, Clebsch’s result is that there is an open em-
bedding Cl : V /PGL4

∼= M →֒ P(1, 2, 3, 4, 5) into a weighted projective space [Do,
formula (9.57)].

3.3. Definition. –––– i) The homogeneous coordinates on P(1, 2, 3, 4, 5) will be
denoted, in this order, by A, B, C, D, and E.

ii) Thus, given a smooth cubic surface over a field K, there is the corresponding
K-rational point on P(1, 2, 3, 4, 5). Its homogeneous coordinates form a vector
[A, . . . , E], which is unique up to weighted scaling, for the weight vector (1, . . . , 5).
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We will speak of Clebsch’s invariant vector or simply Clebsch’s invariants of the
cubic surface.

3.4. Example. –––– Consider the pentahedral family C → P4/S5 of cubic sur-
faces, given by

a0X
3
0 + a1X

3
1 + a2X

3
2 + a3X

3
3 + a4X

3
4 = 0 , (2)

X0 + X1 + X2 + X3 + X4 = 0

over P4/S5
∼= P(1, 2, 3, 4, 5). We will use the elementary symmetric functions

σ1, . . . , σ5 in a0, . . . , a4 as natural homogeneous coordinates on P4/S5.
Let us restrict our considerations to the open subset P ⊂ P4/S5 representing

smooth cubic surfaces having a proper pentahedron. The latter condition is equiva-
lent to σ5 6= 0.

Then, for t : P → M the classifying morphism, the composition
Cl◦t : P →M →֒ P(1, 2, 3, 4, 5) is given by the S5-invariant sections

I8 := σ2
4 − 4σ3σ5, I16 := σ1σ

3
5, I24 := σ4σ

4
5 , I32 := σ2σ

6
5, I40 := σ8

5 (3)

of O(8), O(16), O(24), O(32), and O(40), respectively. See [Do, formula (9.59)] or
[Sa, paragraph 543]. In other words (Cl◦t)−1(A) = I8, . . . , (Cl◦t)−1(E) = I40.

3.5. Lemma. –––– The classifying morphism t : P →M is an open embedding.

Proof. It will suffice to show that Cl◦t : P → P(1, 2, 3, 4, 5) is an open embedding.
For this, we first observe that Cl◦t is birational. Indeed, the two function fields are

K(P(1, 2, 3, 4, 5)) = K(B/A2, C/A3, D/A4, E/A5) = K(A2/B,A3/C,A4/D,A5/E)

and K(P) = K(σ2/σ
2
1, σ3/σ

3
1, σ4/σ

4
1 , σ5/σ

5
1). Both are of transcendence degree four

over K.
Consider the finitely generated K-algebra R := K[A

2

B
,A

3

C
,A

4

D
,A

5

E
, D
B2 ,

C2−AE
4B3 ,CE

B4 ,
E2

B5 ],
which is a subdomain of K(P(1, 2, 3, 4, 5)). The formulas (3) together with

(Cl◦t)−1( D
B2 ) = σ2/σ

2
1 , (Cl◦t)−1(C

2−AE
4B3 ) = σ3/σ

3
1 ,

(Cl◦t)−1(CE
B4 ) = σ4/σ

4
1 , (Cl◦t)−1(E

2

B5 ) = σ5/σ
5
1 ,

immediately define a K-algebra homomorphism ι : R → K(P). For p := ker ι, we
have a homomorphism Q(R/p) →֒ K(P) of fields.

As σ2/σ
2
1, σ3/σ

3
1, σ4/σ

4
1, and σ5/σ

5
1 are in the image, we see that (Cl◦t)−1 actu-

ally defines an isomorphism Q(R/p) ∼= K(P). In particular, Q(R/p) is of transcen-
dence degree four and, consequently, p = (0). As Q(R) = K(P(1, 2, 3, 4, 5)), the
claim follows.
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Furthermore, Cl ◦ t is a quasi-finite morphism. In fact, this may be tested
on closed points and after base extension to the algebraic closure K. Thus, let
p = (A, . . . , E) ∈ P(1, 2, 3, 4, 5)(K) be a geometric point. If E = 0 then
(Cl◦ t)−1(p) = ∅. Otherwise, there are eight solutions of σ8

5 = E and, for each
choice, σ1, . . . , σ4 may be computed directly.

Finally, P(1, 2, 3, 4, 5) is a toric variety [Fu, section 2.2, page 35] and hence a
normal scheme [Fu, section 2.1, page 29]. Therefore the assertion is implied by
[EGA III, Corollaire (4.4.9)]. �

3.6. Remarks. –––– i) In particular, a general cubic surface over a field has a
proper pentahedron, which will usually be defined over a finite extension field.

ii) Further, on the open subset of M representing smooth cubic surfaces with a
proper pentahedron, σ1, . . . , σ5 serve well as coordinates. It is highly remarkable
that they do not extend properly to the whole of M .

3.7. Example. –––– There are other prominent families of smooth cubic sur-
faces. The most interesting ones are probably the hexahedral families. Consider
C → H ⊂ P5, where C ⊂ H ×P4 is given by

X3
0 + X3

1 + X3
2 + X3

3 + X3
4 + X3

5 = 0 ,

X0 + X1 + X2 + X3 + X4 + X5 = 0 ,

a0X0 + a1X1 + a2X2 + a3X3 + a4X4 + a5X5 = 0 .

and H ⊂ P5 is the hyperplane defined by a0 + . . . + a5 = 0. This is the ordered

hexahedral family of cubic surfaces. Correspondingly, the base of the unordered

hexahedral family is the quotient H/S6
∼= P(2, 3, 4, 5, 6).

There are the tautological morphisms M̃
t1−→ H

t2−→ H/S6
t3−→M . It is clas-

sically known that t1 is an unramified 2 : 1-covering and that t3 is an unramified
36 : 1-covering. Clearly, t2 is generically 720 : 1.

3.8. Example (continued). —– It seems natural to use the elementary symmet-
ric functions σ2, . . . , σ6 in the hexahedral coefficients as homogeneous coordinates
on H/S6. Then it is possible, today, to give explicit formulas for the composition
Cl◦t3 : H/S6 →M →֒ P(1, 2, 3, 4, 5).

This means to convert the formulas (3) for Clebsch’s invariants to the hexahe-
dral form. The first of these formulas,

(Cl◦t3)−1(A) = 24[4σ3
2 − 3σ2

3 − 16σ2σ4 + 12σ6] , (4)

was established by C.P. Sousley [So, formula (17)], back in 1917. Here, the coeffi-
cient 24 is somewhat conventional, as it depends on the choice of an isomorphism
(Cl◦t3)∗O(1) ∼= O(6).
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Formula (4) agrees with the modern treatment, due to I.V. Dolgachev [Do,
Remark 9.4.19] as well as with [Hu, formula (B.56)]. Other coefficients were used,
however, in Coble’s original work [Co3, formula (9)] and to obtain [Hu, formula
(4.108)].

3.9. Theorem. –––– i) The canonical morphism

ψ : M̃
pr−→M

Cl→֒ P(1, 2, 3, 4, 5)

allows an extension to P39 under the gamma map. More precisely, there exists a

rational map ψ̃ : P39− //__ P(1, 2, 3, 4, 5) such that the following diagram commutes,

M̃
pr

//

��

γ

��

M // Cl
// P(1, 2, 3, 4, 5)

P39
ψ̃

//________ P(1, 2, 3, 4, 5) .

ii) Explicitly, the rational map ψ̃ : P39− //__ P(1, 2, 3, 4, 5), defined by the global sec-

tions

• −6P2 ∈ Γ(P39,O(2)) ,

• −24P4 + 41
16
P 2

2 ∈ Γ(P39,O(4)) ,

• 576
13
P6 − 396

13
P4P2 + 29

13
P 3

2 ∈ Γ(P39,O(6)) , (5)

• −62208
1171

P8 + 54864
1171

P6P2 + 203616
1171

P 2
4 − 61287

1171
P4P

2
2 + 13393

4684
P 4

2 ∈ Γ(P39,O(8)) ,

• 41472
155

P10 − 4605984
36301

P8P2 − 106272
403

P6P4 + 19990440
471913

P6P
2
2 + 47719206

471913
P 2

4P2

− 7468023
471913

P4P
3
2 + 10108327

18876520
P 5

2 ∈ Γ(P39,O(10)) ,

satisfies this condition. Here, Pk denotes the sum of the 40 k-th powers.

iii) In other words, these formulas express Clebsch’s invariants A, . . . , E in terms

of Coble’s 40 irrational invariants γ..

Proof. We will prove this theorem in several steps.

First step. Preparations.
The morphism ψ := Cl ◦ pr in the upper row defines a rational map
ϕ : M̃− //__ P(1, 2, 3, 4, 5) from the gamma variety. On the other hand, the gamma
map extends to a rational map γ : (P2)6− //__ M̃ .

Define M to be the closure of the graph of ϕ. This is a projective variety.
The canonical projections are a morphism ϕ′ : M → P(1, 2, 3, 4, 5) lifting ϕ and a
birational proper morphism, i.e. a blowing-up, π1 : M→ M̃ . In addition, let P be
the closure of the graph of π−1

1 ◦γ. We obtain a commutative diagram as follows,

P
γ′

//

π2

��

M
ϕ′

))R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

π1

��

(P2)6 γ
//______

M̃
ϕ

//______ P(1, 2, 3, 4, 5) ,

16



where π2 is a blowing-up, too.

Second step. The pull-back to P.
The rational map ϕγ is induced by a morphism

(P2)6 ⊇ U
′ ψ′

−→ P(1, 2, 3, 4, 5) ,

where U ′ ⊃ U is Zariski open. As P(1, 2, 3, 4, 5) is proper, we may sup-
pose that V ′ := (P2)6 \U ′ is of codimension ≥ 2. In particular, one has
Pic(U ′) = Pic((P2)6) ∼= Z6.

There is the discriminant ∆ ∈ Γ(P(1, 2, 3, 4, 5),O(4)). It is given by the formula
∆ = (A2 − 64B)2 − 211(8D + AC), cf. [Do, formula (9.58)] or [EJ1, Lemma 2.6].
The discriminant ∆ measures whether a cubic surface is singular. Hence, ψ′∗O(4)
has a section vanishing exactly at the divisor given by

d2 ·
∏

1≤i1<i2<i3≤6

mi1,i2,i3 = 0 .

As is classically known, the order of vanishing is 2 for every component, cf. [Co3,
formula (8)]. Therefore, ψ′∗O(4) ∼= O(24) ⊠ . . .⊠ O(24) and

ψ′∗
O(1) ∼= O(6) ⊠ . . .⊠ O(6) .

Thus, ϕγ is defined by five sections si ∈ Γ(U ′,O(6i)⊠ . . .⊠O(6i)), for i = 1, . . . , 5.
As codim(P2)6(V

′) ≥ 2, they are actually defined on the whole of (P2)6.
The morphism ϕ′γ′ : P −→ P(1, 2, 3, 4, 5) is obtained from ϕγ by elimination of

the points of indeterminacy. Therefore, we have

(ϕ′γ′)∗O(1) ∼= π∗
2(O(6) ⊠ . . .⊠ O(6))⊗O(−E2) ,

where E2 is an effective Cartier divisor supported in the exceptional fibers, cf. [Ha,
Example II.7.17.3]. In particular, π2∗(ϕ

′γ′)∗O(1) ⊆ O(6) ⊠ . . .⊠ O(6).

Third step. The pull-back to M.
Consider the first of Clebsch’s invariants, A ∈ Γ(P(1, 2, 3, 4, 5),O(1)). Its pull-back

(ϕ′γ′)−1(A) ∈ Γ(P, π∗
2(O(6) ⊠ . . .⊠ O(6))⊗O(−E2))

⊆ Γ((P2)6,O(6) ⊠ . . .⊠ O(6))

has been computed by A.B. Coble. The result is

(ϕ′γ′)−1(A) = (−6)

40∑

.

γ2
. ,

cf. [Co3, formula (38)] and [Hu, formula (4.108)]. It may be obtained by plugging the
formula [Co1, formula (85)], computing hexahedral coefficients out of six blow-up
points, into Sousley’s formula (4).
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Consequently, ϕ′−1(A) = (−6)
∑39

j=0X
2
j and, therefore,

ϕ′∗
O(1) ∼= π∗

1O(2)|M̃ ⊗ O(−E1) ,

where E1 is an effective Cartier divisor supported in the exceptional fibers of π1.
For i > 0, this implies ϕ′∗O(i) ∼= π∗

1O(2i)|M̃ ⊗ O(−iE1). Hence

π1∗ϕ
′∗
O(i) ⊆ O(2i)|M̃ .

The rational map ϕ : M̃− //__ P(1, 2, 3, 4, 5) is therefore given by five sections
ti ∈ Γ(M̃,O(2i)|M̃) for i = 1, . . . , 5.

Fourth step. Globalization of the sections. Completing the proof of i).
We claim that, for i = 1, . . . , 5, the section ti is an element of the image of the
restriction homomorphism Γ(P39,O(2i))→ Γ(M̃,O(2i)|M̃). For i = 1, this is clearly
true as t1 = ϕ′−1(A) = (−6)

∑39
j=0X

2
j .

For i ≥ 2, we will use the exact sequence

Γ(P39,O(2i)) −→ Γ(M̃,O(2i)|M̃) −→ H1(P39,IM̃(2i))

in cohomology. Recall from Lemma 2.10.iii) that the Castelnuovo-Mumford reg-
ularity of IM̃ is equal to 5. As 1 + 2i ≥ 5, this implies H1(P39,IM̃(2i)) = 0
[Mu1, Lecture 14]. Knowing this, the claim immediately follows. The proof of as-
sertion i) is complete.

Fifth step. The operation of W (E6).
By construction, the sections ti ∈ Γ(M̃,O(2i)|M̃) are invariant under the operation
of W (E6) on M̃ . The lifts Ti ∈ Γ(P39,O(2i)) may be chosen W (E6)-invariant, too,
by taking the average of an orbit.

Now recall that actually M̃ ⊂ P(V ) for V a ten-dimensional representation
of W (E6). An application of Molien’s formula [DK, Theorem 3.2.2] shows

dim Γ(P(V ),O(2i))W (E6) =





1 for i = 1 ,
2 for i = 2 ,
5 for i = 3 ,

11 for i = 4 ,
23 for i = 5 .

As these dimensions are rather low, one finds explicit systems of generators simply
by starting with sufficiently many monomials and considering the corresponding
orbit sums. The reduction process modulo a Gröbner base of IM̃ then shows that

Γ(M̃,O(2i)|M̃)W (E6) =





〈P2〉 for i = 1 ,
〈P4, P

2
2 〉 for i = 2 ,

〈P6, P4P2, P
3
2 〉 for i = 3 ,

〈P8, P6P2, P
2
4 , P4P

2
2 , P

4
2 〉 for i = 4 ,

〈P10, P8P2, P6P4, P6P
2
2 ,

P 2
4P2, P4P

3
2 , P

5
2 〉 for i = 5 ,

(6)
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for Pi :=
39∑
j=0

X i
j the i-th power sum.

Sixth step. Completing the proof of ii).

The rational map ϕ is defined by the five sections ti ∈ Γ(M̃,O(2i)|M̃)W (E6), for
i = 1, . . . , 5. To explicitly describe an extension to P39 as desired, the actual coeffi-
cients in the bases (6) have to be determined.

This is, in fact, an interpolation problem. Starting with a smooth cubic surface
in the blown-up model, one may directly compute the values of the 40 irrational in-
variants γ. and their power sums. On the other hand, using the methods described
in A.1, Algorithm A.4, and A.6, it is typically possible to compute Clebsch’s invari-
ants A, . . . , E. Having done this for sufficiently many surfaces, the 18 coefficients
are fixed up to the appropriate scaling factors.

iii) is only a reformulation of ii). �

3.10. Remark. –––– Similarly to 3.8, there is a minor ambiguity here, due to the
possibility of scaling. The coefficient (−6) in the first formula agrees with Sousley’s
formula (4).

4 Twisting Coble’s gamma variety

4.1. –––– Fix a continuous homomorphism ρ : Gal(K/K)→W (E6) and consider

Fρ : {K-schemes} −→ {sets} ,
S 7→ {marked cubic surfaces over SK such that Gal(K/K)

operates on the 27 lines as described by ρ}/∼ ,

the moduli functor, twisted by ρ.

4.2. Theorem. –––– The functor Fρ is representable by a K-scheme M̃ρ that is

a twist of M̃ .

Proof. Let L/K be a finite Galois extension such that Gal(K/L) ⊆ ker ρ. Then the
restriction of Fρ to the category of L-schemes is clearly represented by the L-scheme
M̃L := M̃ ×SpecK SpecL.

For g ∈W (E6), let Tg : M̃L → M̃L be the morphism corresponding to the oper-
ation of g on the 27 labels. This is the base extension of a morphism TKg : M̃ → M̃ .
Further, for σ ∈ Gal(L/K), write σ : M̃L → M̃L for the morphism induced
by σ−1 : L← L. Then

Gal(L/K) −→ MorK(M̃L, M̃L) ,

σ 7→ Tρ(σ)◦σ ,
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is a descent datum. Indeed, for σ, τ ∈ Gal(L/K), one has

Tρ(σ)◦σ◦Tρ(τ)◦τ = Tρ(σ)◦(σ◦Tρ(τ)◦σ−1)◦σ◦τ = Tρ(σ)◦Tρ(τ)◦σ◦τ = Tρ(στ)◦στ .
Observe that σ◦Tρ(τ)◦σ−1 = Tρ(τ), as Tρ(τ) is the base extension of a K-morphism.
Galois descent [Se1, Chapitre V, §4, n◦ 20, or J, Proposition 2.5] yields a K-scheme
M̃σ such that M̃σ ×SpecK SpecL ∼= M̃L.

By the universal property of the moduli scheme M̃L, for every K-scheme S, the
set Fρ(S) is in bijection with the set of all morphisms SL → M̃L of L-schemes such
that, for every σ ∈ Gal(L/K), the diagram

SL //

σ

��

M̃L

Tρ(σ)◦σ
��

SL //
M̃L

commutes. Galois descent for morphisms of schemes [J, Proposition 2.8] shows that
this datum is equivalent to giving a morphism S → M̃ρ of K-schemes. �

4.3. –––– This result suggests the following strategy to construct a smooth cubic
surface C over Q such that the Galois group Gal(Q/Q) acts upon the lines of C via
a prescribed subgroup G ⊆W (E6).

Strategy. i) First, find a Galois extension L/Q such that Gal(L/Q) ∼= G. This
defines the homomorphism ρ.

ii) Then a Q-rational point P ∈ M̃ρ(Q) is sought for.

iii) For the corresponding cubic surface CP over Q, the Galois group Gal(Q/Q)
operates on the 27 lines exactly as desired.

Unfortunately, we do not have the universal family over M̃ρ at our disposal, at
least not in a sufficiently explicit form. Thus, given a rational point P ∈ M̃ρ(Q),
only the 40 irrational invariants γ. will be known and the cubic surface has to be
reconstructed from this information. But, anyway, searching for a Q-rational point
on M̃ρ will be our main task.

4.4. Remarks. –––– i) There is the embedding γ′ : M̃L →֒ P79
L and both kinds of

morphisms, σ and Tρ(σ), easily extend to P79
L . One has

σ : (x0 : . . . : x79) 7→ (σ(x0) : . . . : σ(x79)) and

Tρ(σ) : (x0 : . . . : x79) 7→ (xΠ(ρ(σ))−1(0) : . . . : xΠ(ρ(σ))−1(79)) .

In the second formula, Π: W (E6) →֒ S80 is the permutation representation on the
irrational invariants ±γ.. To explain why the inverses are to be taken, recall that
Tρ(σ) permutes the irrational invariants, i.e. the coordinates. The element xi is moved
to position Π(ρ(σ))(i). Our formula describes exactly this procedure.
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ii) To give a K-rational point on M̃ρ is thus equivalent to giving an L-rational point
(x0 : . . . : x79) on γ′(M̃L) such that

(σ(xΠ(ρ(σ))−1(0)) : . . . : σ(xΠ(ρ(σ))−1(79))) = (x0 : . . . : x79)

or, equivalently, (σ(x0) : . . . : σ(x79)) = (xΠ(ρ(σ))(0) : . . . : xΠ(ρ(σ))(79)) for every
σ ∈ Gal(L/K).

iii) The stronger condition that

(σ(xΠ(ρ(σ))−1(0)), . . . , σ(xΠ(ρ(σ))−1(79))) = (x0, . . . , x79)

for all σ ∈ Gal(L/K) defines a descent datum for vector spaces and, hence, a
80-dimensional K-vector space in L80.

Further, the linear relations between the irrational invariants ±γ. are generated by
such with coefficients in K. In fact, rational numbers are possible as coefficients.
Hence, they form an L-vector space that is invariant under both operations, that of
Gal(L/K) and that of W (E6). This shows that the linear relations are respected by
the descent datum. Galois descent yields a 10-dimensional K-vector space V in the
10-dimensional L-vector space defined by the linear relations.

iv) Analogous observations hold for the space of cubic relations. They form a
30-dimensional L-vector space that is closed under the operations of Gal(L/K)
and W (E6) and, therefore, respected by the descent datum. Descent yields a
30-dimensional K-vector space.

Consequently, the Zariski closure of M̃ρ ⊂ P(V ) ∼= P9
K is the intersection of 30

K-rational cubic hypersurfaces.

General remarks on our approach to explicit Galois descent.

4.5. –––– i) Our approach works as soon as we are given a finite Galois exten-
sion L/K, a subscheme M ⊆ PN

L , and a K-linear operation T of G := Gal(L/K)
on PN

L such that M is invariant under Tσ◦σ for every σ ∈ G. Linearity means that
there is given a representation A : G → GLN+1(K) such that Tσ is defined by the
matrix A(σ).

In fact, every representation of a finite group is a subrepresentation of a sum of
several copies of the regular representation. Consequently, M allows a linearly
equivalent embedding into some PN ′

, N ′ ≥ N , such that the Tσ extend to PN ′

as automorphisms that simply permute the coordinates according to a permuta-
tion representation π : G → SN ′+1. We prefer permutations versus matrices in the
description of the theory only in order to keep notation concise.

ii) Consider the particular case that the Galois descent is a twist. I.e., a
K-scheme MK is given such that M = MK×SpecKSpecL and the goal is to construct
another K-scheme M ′

K such that M ′
K ×SpecK SpecL ∼= M .
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Then the descent datum on M is of the form {Tσ◦σ}σ∈G, where the Tσ are in fact
base extensions of K-scheme automorphisms of MK . What is missing in order to
apply i) is exactly a linearization of the operation T : G→ Aut(M).

iii) At least in principle, such a linearization always exists as soon as MK is quasi-
projective. Indeed, let L ∈ Pic(MK) be a very ample invertible sheaf. Then G
operates OMK

-linearly on the very ample invertible sheaf
⊗
g∈G

T ∗
gL . Use its global

sections for a projective embedding.

5 An application to the inverse Galois problem

for cubic surfaces

A general algorithm.

5.1. Algorithm (Cubic surface for a given group). —–
Given a subgroup G ⊆W (E6) and a field such that Gal(L/Q) ∼= G, this algorithm
computes a smooth cubic surface C over Q such that Gal(Q/Q) operates upon the
lines of C via the group Gal(L/Q).

i) Fix a system Γ ⊆ G of generators of G. For every g ∈ Γ, store the permutation
Π(g) ∈ S80, which describes the operation of g on the 80 irrational invariants ±γ..
Further fix, once and for ever, ten of the ±γ. that are linearly independent. Ex-
press the other 70 explicitly as linear combinations of these basis vectors.

ii) For every g ∈ Γ, determine the 10× 10-matrix describing the operation of g on
the 10-dimensional L-vector space 〈γ.〉. Use the explicit basis, fixed in i).

iii) Choose an explicit basis of the field L as a Q-vector space. Finally, make explicit
the isomorphism ρ−1 : G→ Gal(L/Q) ⊆ HomQ(L,L). I.e., write down a matrix for
every g ∈ Γ.

iv) Now, the condition that (σ(xΠ(ρ(σ))−1(0)), . . . , σ(xΠ(ρ(σ))−1(79))) = (x0, . . . , x79) for
all σ ∈ Gal(L/Q) is an explicit Q-linear system of equations in 10[L : Q] variables.
In fact, we start with Γ instead of Gal(L/Q) and get 80[L : Q]#Γ equations. The re-
sult is a ten dimensional Q-vector space V ⊂ 〈γ.〉, described by an explicit basis.

v) Convert the 30 cubic forms defining the image of γL : M̃L →֒ P79
L into terms

of this basis of V . The result are 30 explicit cubic forms with coefficients in Q.
They describe the Zariski closure of M̃ρ in P(V ).

vi) Search for a Q-rational point on this variety.

vii) From the coordinates of the point found, read the 40 irrational invariants γ..
Then use formulas (5) in order to calculate Clebsch’s invariants A, . . . , E. Fi-
nally, solve the equation problem as described in A.8 and Algorithm A.10.

In the case that A.8 or Algorithm A.10 fails, return to step vi).
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5.2. Remarks. –––– i) An important implementation trick was the following.
We do not solve the linear system of equations in L10 but in O10

L , for OL ⊂ L
the maximal order. The result is then a rank-10 Z-lattice. Via the Minkowski
embedding, this carries a scalar product. Thus, it may be reduced using the LLL-
algorithm [LLL]. It turned out in practice that points of very small height occur
when taking the LLL-basis for a projective coordinate system.

Applying the LLL-algorithm to the lattice constructed from the maximal order
should be considered as a first step towards a multivariate polynomial reduction
and minimization algorithm for non-complete intersections.

ii) There are two points, where Algorithm 5.1 may possibly fail. First, it may happen
that no Q-rational point is found on M̃ρ. Then one has to start with a different
field having the same Galois group.

Second, A.8 or Algorithm A.10 may fail, because of E = 0, ∆ = 0, or F = 0,
cf. Remarks A.12.ii) and iii). This means that the cubic surface found either has no
proper pentahedron, or is singular, or has nontrivial automorphisms.

These cases exclude a divisor from the compactified moduli space P(1, 2, 3, 4, 5).
Thus, Algorithm 5.1 works generically. In our experiments to construct examples
for the remaining conjugacy classes, we met the situation that ∆ = 0, but not the
situations that E = 0 or F = 0.

iii) In order to get number fields with a prescribed Galois group, we used J. Klüners’
number field data base http://galoisdb.math.upb.de .

The 51 remaining conjugacy classes.

5.3. Remark (Previous examples). —– There are exactly 350 conjugacy classes
of subgroups in W (E6). For a generic cubic surface, the full W (E6) acts upon
the lines. In previous articles, we presented constructions producing examples for
the index two subgroup D1W (E6) [EJ1], all subgroups stabilizing a double-six [EJ2],
all subgroups stabilizing a pair of Steiner trihedra [EJ3], and all subgroups stabilizing
a line [EJ4].

There are 158 conjugacy classes stabilizing a double-six, 63 conjugacy classes
stabilizing a pair of Steiner trihedra but no double-six, and 76 conjugacy classes
stabilizing a line but neither a double-six nor a pair of Steiner trihedra. Summing up,
the previous constructions completed 299 of the 350 conjugacy classes of subgroups.

5.4. –––– For some of the 51 conjugacy classes not yet covered, cubic surfaces are
easily constructed. In fact,

i) there are the twists of the diagonal surface

X3
0 +X3

1 +X3
2 +X3

3 = 0 .
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These cubic surfaces may be written as TrA/Q al3 = 0 for A an étale algebra of
degree 4 over Q, a ∈ A, and l a linear form in four variables over A. They have 18
Eckardt points [Do, section 9.1.4].

This approach yields nine of the 51 remaining conjugacy classes. Their numbers in
the list are 245, 246, 289, 301, 303, 327, 337, 338, and 346.

ii) The surfaces of the type

λX3
0 = F3(X1, X2, X3)

generically have nine Eckardt points, the nine inflection points of the cubic curve,
given by F3(X1, X2, X3) = 0. This approach yields another seven conjugacy classes.
Their numbers are 172, 235, 236, 299, 317, 332, and 345.

5.5. Remark. –––– In these cases, the sets of Eckardt points are Galois invariant.
Hence, these two constructions produce Galois groups that are contained in the
stabilizers of these sets. These are the two maximal subgroups of index 40. On the
other hand, the field of definition of the 27 lines contains ζ3, essentially due to the
Weil pairing on the relevant elliptic curve. Thus, there is no hope to construct in
this way examples for all the groups contained in these two maximal subgroups.

5.6. –––– Further, there are a few obvious ways to try a computational brute
force attack.

i) We systematically searched through the cubic surfaces such that all 20 coefficients
are in the range {−1, 0, 1}. This led to examples for 14 more conjugacy classes.
They correspond to the numbers 144, 232, 267, 269, 272, 273, 305, 307, 309, 310,
329, 333, 334, 339 in the list.

ii) Similarly, but less systematically, we searched for cubic surfaces with a rational
tritangent plane but no rational line. This means, to choose a cubic field extension
K/Q with splitting field of type A3 or S3, to fix a linear form l ∈ K[X1, X2, X3],
and to search for surfaces of the type

NK/Q l +X0F2(X0, X1, X2, X3) = 0 .

As there are only ten unknown coefficients, we could search in an a little bit
wider range. Note that the generic case of this construction gives the remaining
maximal subgroup of index 45 in W (E6).

Six surfaces with orbit structures of types [3, 12, 12] and [3, 24] have been found.
The corresponding gap numbers are 90, 153, 260, 324, 335, and 344.

iii) In analogy with i), we searched through all pentahedral equations with small co-
efficients. As this family has only 5 parameters, we could inspect all surfaces with
coefficients up to 500. Similarly, we inspected all pentahedral equations with unit
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fractions as coefficients and denominator not more than 500. This was motivated
by simplifications shown in [EJ1b, Fact 2.8].

This approach results in examples for group� 149 of order 24 and� 326 of order 324.
The pentahedral coefficients are [ 1

256
, 1

241
, 1

225
, 1

81
, 1

81
] and [ 1

84
, 1

64
, 1

52
, 1

49
, 1].

iv) Following the same path, we systematically searched through all invariant vec-
tors [A, . . . , E] such that |A|, . . . , |E| < 100. In each case, we solved the equation
problem as described in A.8 and Algorithm A.10. This led to examples for six more
conjugacy classes. Their gap numbers are 216, 239, 302, 313, 319, and 336.

5.7. Remark (concerning approach i)). —– A priori, the search through the
surfaces with small coefficients, as described in i), requires the inspection of more
than 3 ·109 surfaces. However, using symmetry, we can do much better. For this,
one has to enumerate the 312 possible combinations of monomials of the form
X2

0X1, . . . , X2X
2
3 . Then one may split this set into orbits under the operation of

(Z/2Z)4
⋊ S4, where S4 permutes the four indeterminates and (Z/2Z)4 changes

their signs.
This leads to 1764 representatives. Each representative can be extended to a

cubic surface in 38 ways by choosing coefficients for the monomials X3
0 , X3

1 , X3
2 , X3

3 ,
X0X1X2, X0X1X3, X0X2X3, and X1X2X3. Thus, approximately 1.1 ·107 surfaces
had to be inspected.

5.8. Remark (concerning approaches iii) and iv)). —– Before trying approa-
ches iii) and iv), exactly 15 conjugacy classes were left open. It turned out that all
these were either even, i.e. contained in the index-2 subgroup D1W (E6) ⊂ W (E6),
or had a factor commutator group that was cyclic of order 4 or 8. This implies
strong restrictions on the discriminant ∆ of the cubic surfaces sought for.

To understand this, recall the following property, which partly characterizes the
discriminant ∆. If the 27 lines on a a smooth cubic surface C over Q are acted upon
by an odd Galois group G ⊆W (E6) then the quadratic number field corresponding
to the subgroup G ∩ D1W (E6) ⊂ G is exactly Q(√

(−3)∆
)

[EJ1, Theorem 2.12].
Correspondingly, if G ⊆ W (E6) is even then (−3)∆ must be a perfect square.

In the odd case, the factor commutator group G/D1G of G surjects onto
G/G ∩ D1W (E6) ∼= Z/2Z. Hence, G/D1G corresponds to a subfield L of the field
of definition of the 27 lines containing Q(√

(−3)∆
)
.

In other words, there is an embedding Q(√
(−3)∆

)
⊂ L into a field L that is

Galois and cyclic of degree of degree 4 (or even 8) over Q.

5.9. Lemma. –––– i) If a quadratic number field Q(
√
D) allows an embedding

into a field L that is Galois and cyclic of degree 4 over Q then D > 0 and all prime

factors p ≡ 3 (mod 4) in D have an even exponent.

ii) If Q(
√
D) even allows an embedding into a field Galois and cyclic of degree 8

then the same is true for all primes p ≡ 5 (mod 8).
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Proof. i) is shown in [Se2, Theorem 1.2.4]. For ii), the proof is analogous. Both re-
sults are direct applications of class field theory. �

We used this restriction in approaches iii) and iv) as a highly efficient pretest. It im-
mediately ruled out most of the candidates.

5.10. –––– To summarize, using relatively naive methods, we found examples for
44 of the 51 remaining conjugacy classes. Thus, only for the last seven, we had to
use the main algorithm. In the list, they correspond to the numbers 73, 155, 169,
177, 179, 266, 286.

Remarks concerning the running times.

5.11. –––– We implemented the main algorithm and the elementary algorithms
described in the appendix in magma, version 2.18. We worked on one core of an
Intel(R)Core(TM)2 Duo E8300 processor.

i) To compute the numerical invariants of the gamma variety M̃ , given in Lemma
2.10, the running times were less than 0.1 seconds.

ii) To determine the coefficients in Proposition 3.9.ii), the running time was around
10 seconds per knot.

There are certainly faster methods to compute the Clebsch’s invariants for a given
cubic surface. We preferred the approach described as it does not depend on deep
theory and leads to compact code. In fact, we do much more than just calculating
Clebsch’s invariants, as we completely determine the pentahedron.

iii) Our code implementing the main algorithm for the subgroup� 73, which is cyclic
of order nine, is available on both author’s web pages as a file named c9 example.m.
It runs within a few seconds on the magma online calculator.

As one might expect, it takes longer to run examples that involve larger num-
ber fields. Further, for the point search, a completely naive O(N10)-algorithm
is used. Thus, the existence of a point of very small height is absolutely neces-
sary for our implementation to succeed.

A Some elementary algorithms

Computing an equation from six blow-up points.

A.1. –––– Given six points p1, . . . , p6 ∈ P2(K) in general position, it is pure linear
algebra to compute a sequence of 20 coefficients for the corresponding cubic surface.
First, one has to determine a base of the kernel of a 6× 10-matrix in order to find four
linearly independent cubic forms F1, . . . , F4 vanishing in p1, . . . , p6. To find the cubic
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relation between F1, . . . , F4 means to solve a highly overdetermined homogeneous
linear system of 220 equations in 20 variables.

A.2. Remark. –––– Actually, there is a second algorithm, which is simpler but
certainly less standard. Starting with the six points p1, . . . , p6 ∈ P2(K), one may use
formula (85) of A.B. Coble [Co1] to find hexahedral coefficients a0, . . . , a5 ∈ K for
the corresponding cubic surface. From this, an explicit equation is immediately ob-
tained.

Computing the pentahedron and Clebsch’s invariants from an equation.

A.3. –––– For a cubic surface in pentahedral form,

C(X0, X1, X2, X3) := a0X
3
0 + a1X

3
1 + a2X

3
2 + a3X

3
3 − a4(X0 +X1 +X2 +X3)

3 = 0

such that a0, . . . a4 ∈ K\{0}, its Hessian det ∂2C
∂Xi∂Xj

(X0, X1, X2, X3) = 0 has exactly
ten singular points. These are simply the intersection points of three of the five
planes defined by X0 = 0, . . . , X3 = 0 and X4 := −(X0 + X1 + X2 + X3) = 0.
Thus, each plane contains six of the ten singular points.

Hence, given a cubic surface in the form of a sequence of 20 coefficients, one has
to compute its Hessian first. If the singular points have a configuration different from
what was described then there is no pentahedron. Otherwise, one has to determine
the five planes through six singular points and to normalize the corresponding linear
forms l0, . . . , l4 such that their sum is zero. To find the five coefficients a0, . . . , a4

means to solve an overdetermined homogeneous linear system of 20 equations in
five variables.

There is, however, one serious practical difficulty. The pentahedron is typically
defined only over an S5-extension of the base field K. For this situation, we have
the following algorithm.

A.4. Algorithm (Pentahedron from cubic surface). —– Let a cubic surface C
be given as a sequence of 20 coefficients. Suppose that there is a proper pentahedron
and that its field of definition is an S5- or A5-extension of the base field K. Then this
algorithm computes the pentahedral form.

i) Determine a Gröbner basis for the ideal IHsing
⊂ K[X0, . . . , X3] of the singular

locus of the Hessian H of C. In particular, this yields a univariate degree-10 poly-
nomial F defining the S5- or A5-extension.

ii) Uncover a degree-5 polynomial F with the same splitting field. When K = Q,
this may be done as follows. Run a variant of Stauduhar’s algorithm [St]. This yields
p-adic approximations of the ten zeroes of F together with an explicit description
of the operation of S5 or A5. Then calculate p-adically a relative resolvent polyno-
mial [St, Theorem 4], corresponding to the inclusion S4 ⊂ S5 or A4 ⊂ A5, respec-
tively. From this, the polynomial F ∈ Q[T ] is obtained by rational recovery.

27



Put L to be the extension field defined by F . Clearly, [L : K] = 5.

iii) Factorize F over L. Two irreducible factors, F 1 of degree 4 and F 2 of degree 6,
are found.

iv) Determine, in a second Gröbner base calculation, an element of minimal de-
gree in the ideal (IHsing

, F 2) ⊂ L[X0, . . . , X3]. The result is a linear polynomial l.
Its conjugates define the five individual planes that form the pentahedron.

v) Scale l by a suitable non-zero factor from L such that TrL/K l = 0. This amounts
to solving over K a homogeneous system of four linear equations in five variables.
Then calculate a ∈ L such that the equation of the surface is exactly TrL/K al

3 = 0.

Return a. Its five conjugates are the pentahedral coefficients of C. One might want
to return l as a second value.

A.5. Remarks. –––– i) Observe that it is not necessary to perform any compu-
tations in the Galois hull L̃ of L.

ii) Let us explain the idea behind Algorithm A.4. The Galois group Gal(L̃/K) ∼= S5

or A5 permutes the five planes of the pentahedron. The ten singular points of
the Hessian are in bijection with sets of three planes and permuted accordingly.
Further, Gal(L̃/L) is the stabilizer of one plane. Under this group, the six singular
points that lie on that plane form an orbit and the four others form another.

The same is still true after projection to the (X0, X1)-line. Indeed, the Galois oper-
ation immediately carries over to the coordinates. Further, no two of the ten points
may coincide after projection, as this would define a nontrivial block structure for
the image of Gal(L̃/K) in S10. Our assumptions ensure, however, that this subgroup
is primitive. This explains the type of factorization described in step iii).

In addition, (IHsing
, F 2) is the ideal of the six singular points lying on the L-ratio-

nal plane. That is why a Gröbner base calculation for this ideal may discover the
equation for that plane.

iii) It is not necessary to check the assumptions of this algorithm in advance, as its
output may be verified by a direct calculation. Actually, when there is no proper
pentahedron, the algorithm should usually fail in the very first step, detecting that
K[X0, . . . , X3]/IHsing

is not of length ten. If the Galois group is too small then more
than two irreducible factors or even multiple factors may occur in step iii).

iv) It would certainly be possible to make Algorithm A.4 work for an arbitrary
subgroup of S5. Somewhat paradoxically, for small subgroups, the algorithm should
be of lower complexity but harder to describe. We did not work out the details,
since the present version turned out to be sufficient for our purposes.

v) To compute the pentahedron for a cubic surface given by an explicit equation was
considered as being a hopeless task before the formation of modern computer alge-
bra. The reader might compare the concluding remarks of [Ke, section 6.6.2].
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A.6. (Clebsch’s invariants from pentahedral coefficients). —–
Having found the pentahedral coefficients, Clebsch’s invariants may be directly cal-
culated using formulas (3).

A.7. Remark. –––– The algorithms described up to this point were used in the
proof of Proposition 3.9.ii).

Computing a cubic surface from Clebsch’s invariants. The equation problem.

A.8. –––– The other way round, given Clebsch’s invariants [A,B,C,D,E] such
that E 6= 0, one can calculate the corresponding base point in the pentahedral family
as follows.

Replace [A,B,C,D,E] by [A′, B′, C ′, D′, E ′] := [AE3, BE6, CE9, DE12, E16] and
set σ5 := E2, first. Then put σ1 := B′

σ3
5
, σ2 := D′

σ6
5
, σ4 := C′

σ4
5
, and, finally, σ3 :=

σ2
4−A

′

4σ5
.

This may be simplified to

[σ1, . . . , σ5] = [B,D, C
2−AE

4
, CE,E2] .

A.9. Remark. –––– If σ1, . . . , σ5 ∈ K then one would strongly expect that the
corresponding cubic surface is defined over K. We learn, however, from formulas (2)
that C(σ1,...,σ5) is a priori defined only over the splitting field L of the polynomial
g(T ) := T 5 − σ1T

4 ± . . .− σ5 ∈ K[T ].
But, at least when g has no multiple zeroes, C(σ1,...,σ5) is equipped with a canonical

descent datum. Indeed, let a0, . . . , a4 ∈ L be the zeroes of g. For σ ∈ Gal(L/K), de-
note by π(σ) ∈ S5 the corresponding permutation of a0, . . . , a4. I.e., aπ(σ)(i) = σ(ai).
Then put

Gal(L/K) −→ MorK(C(σ1,...,σ5),C(σ1,...,σ5)) ,

σ 7→ ((x0 : . . . : x4) 7→ (σ(xπ(σ)−1(0)) : . . . : σ(xπ(σ)−1(4)))) .

It is easily checked that these morphisms indeed map C(σ1,...,σ5) onto itself and that
they form a group operation.

A.10. Algorithm (Computation of the Galois descent). —–
Given a separable polynomial g(T ) = T 5 − σ1T

4 ± . . . − σ5 ∈ K[T ] of degree five,
this algorithm computes the Galois descent to K of the cubic surface C(σ1,...,σ5).

i) The polynomial g defines an étale K-algebra A := K[T ]/(g). Compute, according
to the definition, the traces ti := trA/K T

i for i = 0, . . . , 4.

ii) Determine the kernel of the 1×5-matrix

(
t0 t1 t2 t3 t4

)
.

Choose linearly independent kernel vectors (c
(0)
i , . . . , c

(4)
i ) ∈ K5 for i = 0, . . . , 3.
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iii) Compute the term

T ·
[ 4∑

j=0

(c
(j)
0 X0 + . . .+ c

(j)
3 X3)T

j

]3

modulo g(T ). This is a cubic form in X0, . . . , X3 with coefficients in A.

iv) Finally, apply the trace coefficient-wise and output the resulting cubic form
in x0, . . . , x3 with 20 rational coefficients.

A.11. Lemma. –––– For g = T 5−σ1T
4± . . .−σ5 ∈ K[T ] a separable polynomial,

Algorithm A.10 computes a cubic surface over K that is geometrically isomorphic

to C(σ1,...,σ5).

Proof. The étale algebra A = K[T ]/(g) has five embeddings i0, . . . , i4 : A →֒ K
into the algebraic closure. For a0, . . . , a4 ∈ K the images of T , we substituted into
the equation a0W0 + . . .+ a3W3 + a4(−W0 − . . .−W3) = 0 the linear form

l0 := C0X0 + . . .+ C3X3 = i0

( 4∑
j=0

c
(j)
0 T j

)
X0 + . . .+ i0

( 4∑
j=0

c
(j)
3 T j

)
X3

and l1, l2, l3, three of its conjugates.
By construction, C0, . . . , C3 form a basis of the K-vector space N ⊂ A consisting

of the elements of trace zero. In particular, l4 := −l0 − . . . − l3 is indeed the
fourth conjugate.

To show the isomorphy, we only need to ensure that l0, . . . , l3 are linearly in-
dependent linear forms. This means that the 5 × 4-matrix (C

σj

i )0≤j≤4,0≤i≤3 is of
rank 4. Extending {C0, . . . , C3} to a base {C0, . . . , C4} of L, it suffices to verify that
the 5 × 5-matrix (C

σj

i )0≤j≤4,0≤i≤4 has full rank. This is, however, independent of
the choice of the base and clear for Ci = T i. Indeed, we then have a Vandermonde
matrix of determinant ±∏

i<j

(T σi − T σj ) = ±∏
i<j

(ai − aj) 6= 0. �

A.12. Remarks. –––– i) It is not hard to show that Algorithm A.10 computes
the descent of the cubic surface C(σ1,...,σ5) according to exactly the descent data de-
scribed above. We skip the proof as it closely follows the lines of [EJ2, Theorem 6.6].

ii) Algorithm A.10 fails when g has multiple zeroes. For the cubic surface C, this
means that some of its pentahedral coefficients coincide. By [Do, Example 9.1.25],
this is equivalent to C having an Eckardt point, which, in turn, means that C has
a nontrivial automorphism [Do, Theorem 9.5.8]. Further, there is the well-known
section F ∈ Γ(P(1, 2, 3, 4, 5),O(25)) that vanishes exactly on the locus correspond-
ing to the cubic surfaces having an Eckardt point. In pentahedral coefficients, F is
given by the expression I2

100 [Do, section 9.4.5].

If F = 0 then we actually face an ill-posed problem. Due to the presence of twists,
the Clebsch invariants do not determine the cubic surface up to isomorphism over K,
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but only up to isomorphism over the algebraic closure K. Thus, the information
available to us is insufficient on principle in order to perform a Galois descent.

iii) Observe that, when E 6= 0 and F 6= 0, the discriminant ∆ may nevertheless van-
ish. Then the corresponding cubic surface is singular.

A.13. –––– It is classically called the equation problem [Hu, Definition 4.1.17] to
determine an equation for the cubic surface when the invariants A, . . . , E are known.
If E 6= 0 and F 6= 0 then A.8 and Algorithm A.10 together provide an algorithmic
solution to the equation problem.

A.14. Remark. –––– If F 6= 0 but E = 0 then one might start with
E = ε8 ∈ K[ε] (or E = ε) instead and run Algorithm A.10 over the function field.
Unfortunately, the resulting cubic surface typically has bad reduction at ε = 0.
Thus, one cannot specialize ε to 0, naively. An application of J.Kollár’s polynomial
minimization algorithm [Ko, in particular Proposition 6.4.2] is necessary to find a
good model. The reduction at ε = 0 then solves the equation problem.
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