
INVARIANTS FOR THE COMPUTATION OF INTRANSITIVE

AND TRANSITIVE GALOIS GROUPS

ANDREAS-STEPHAN ELSENHANS∗

Abstract. One hard step in the computation of Galois groups by Stauduhar’s
method is the construction of relative invariants. In this note, a representation-

theoretic approach is given for the construction in the case of an intransitive
group.

In the second part of the article, it is shown that the construction can be

used for groups that have a suitable intransitive subgroup. The construction
solves an open question of Fieker and Klüners.

1. Introduction

Computing the Galois group of a polynomial is an interesting problem in algorith-
mic number theory. Nowadays, methods ([Ge], [FK]) are based on Stauduhar’s [Sta]
approach. The idea of this is as follows.

We start with a polynomial f of degree n over Z. First, we compute the roots
r1, . . . , rn of f as complex or p-adic numbers. Then, we choose a permutation group
G that is known to contain the Galois group (e. g. Sn).

Now, one computes all conjugacy classes of maximal subgroups of G. For a rep-
resentative U of such a class, one takes a so called relative invariant polynomial
I(x1, . . . , xn) ∈ Z[x1, . . . , xn]. This is a polynomial such that the stabilizer of I in
G is U . Then, one chooses a list of coset-representatives of G/U . For each repre-
sentative g, one computes Ig(r1, . . . , rn). We assume that the values are pairwise
distinct. In this case, one can prove that the value Ig0(r1, . . . , rn) is rational if and
only if the Galois group is contained in Ug0 . If this is the case then one replaces G
by Ug0 and repeats the step.

Many difficulties are hidden in the details of the method. See [Ge] or [GK] for
details and several optimizations.

Such a relative invariant is by no means unique and in many cases its evaluation
takes most of the running time. What properties of the invariant determine the
evaluation time?

First, there is the degree of the invariant. It has a direct influence on the compu-
tation time. The point is that the numerical precision that is needed in Stauduhar’s
algorithm is approximately proportional to the degree of the invariant. Thus, the
degree should be moderate, but we are not forced to minimize it.

An other point is the number of operations that is needed to evaluate the invari-
ant. If one expresses the invariant as a sum of monomials then this is impractical in
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many cases. If one can express the invariant as a sum of products of simpler polyno-
mials then the number of operations for the evaluation can decrease dramatically.
Thus, the invariants are given by straight-line programs [BCS, 4.1].

Classically, people focused on invariants for transitive groups. They listed several
special invariants. This means they produced a table with one invariant for each
pair of groups U ⊂ G ⊂ Sn (n ≤ 23 [Ge]). Each of the special invariants needs only
very few operations for the evaluation, but in many cases they are not of minimal
degree. Some of the special invariants extend to families of subgroups.

Further, there is the construction of generic invariants. Generic invariants are
given by summing an U -orbit of a monomial. If one has a good strategy to choose
the monomial then this approach leads to an invariant of minimal degree. This was
done in [Gi] for the case of transitive maximal subgroups in Sn and An and the
case of a solvable transitive subgroup in Sp (p prime). The costs for the evaluation
are given by the length of the orbit. In the worst case, this is just the group order.

The intransitive case can be reduced to the transitive case. After a determination
of the Galois action on each orbit one proceeds as follows. First, one forms the
cartesian product of all orbits. This gives a new permutation representation of the
initial group, which is still not transitive. To get a transitive group, one restricts
to the action on an orbit. Now, one can apply the known constructions for special
invariants.

From a practical point of view, the situation is as follows. The special invariants
for transitive groups are practical as long as they are known. Frequently, the
reduction from the intransitive case to special invariants of transitive groups leads
to invariants of a degree that is far too big. In many cases, the use of generic
invariants leads to large computation times and huge memory usage.

The aim of this note is to show that the intransitive case can be handled directly.
In many cases, the construction will lead to an invariant that is given as a product
(one factor for each orbit). This factorization will reduce the number of operations
for the evaluation.

The article is arranged as follows:

• First, we will review subdirect products. This is the group theory that is
involved in the construction.

• Then, we will construct invariants in the case that the base field contains
enough roots of unity.

• Next, we will explain that avoiding roots of unity is only a formal problem.
• Finally, we will show that this approach can be used for some transitive
groups that have a suitable intransitive subgroup.

Motivation. This investigation was motivated by computations in arithmetic geom-
etry. For example, given a smooth cubic surface or a special quartic surface then
this surface contains a finite number of lines. The Galois group that acts on the
lines is automatically a subgroup of the automorphism group of the intersection
configuration of the lines.

The lines can be detected explicitly by a Gröbner basis computation. If the
coordinates are chosen sufficiently general then the Gröbner basis will contain an
univariate polynomial such that its zeros correspond 1-1 to the lines. The Galois
action on the roots of this polynomial is exactly the action on the lines.



INVARIANTS FOR THE COMPUTATION OF GALOIS GROUPS 3

Knowing the Galois group, one can derive arithmetic invariants of the surface.
The calculations done by Jahnel and the author in [EJ1] and [EJ2] drew interest
on algorithms for Galois groups.

2. Subdirect products

Recall 2.1. Let G = G1×G2 be the cartesian product of two groups. A subgroup
U of G is called a subdirect product if the projections to G1 and G2 are surjective.

The simplest construction for subdirect products is the following. Let H be a
third group and ϕi : Gi → H be two surjective homomorphisms. Then

{(g1, g2) ∈ G1 ×G2 | ϕ1(g1) = ϕ2(g2)}

is a subdirect product of G1 and G2.
Let us show that each subdirect product U arises in this way. For this, we denote

the identity element of Gi by ei. Then, we can construct normal subgroups Ki of
Gi by K1 := {g1 ∈ G1 | (g1, e2) ∈ U} and K2 := {g2 ∈ G2 | (e1, g2) ∈ U}.

AsK := K1×K2 ⊂ U one can pass to the quotient U/K ⊂ G1/K1×G2/K2. Note
that the projections of U/K to G1/K1 and G2/K2 are still surjective. Counting
elements, we get #U/K = #G1/K1 = #G2/K2. Thus, U/K, G1/K1, and G2/K2

must be isomorphic groups. Calling this group H, we get surjective morphisms
ϕi : Gi → H. Now, U = {(g1, g2) ∈ G1 ×G2 | ϕ1(g1) = ϕ2(g2)} results.

Remark 2.2. Subdirect products are exactly the groups we have to deal with
when we compute the Galois group of a reducible polynomial. For example, let the
product f1 · f2 be given. First, one may compute the Galois groups G1, G2 of the
factors. The result will be a subdirect product of these groups.

Thus, the algorithm of Stauduhar will built up a descent-chain starting at the
cartesian product of G1 and G2 to smaller and smaller subdirect products.

Proposition 2.3. Let U ⊂ U0 ⊂ G1 × G2 be two subdirect products. Assume U
to be maximal in U0. Then, there exist irreducible representations ϕ1, ϕ2 of G1, G2

such that U = {(g1, g2) ∈ U0 | ϕ1(g1) = ϕ2(g2)}.

Proof. As U is a subdirect product, there exist representations ψ1, ψ2 such that
U = {(g1, g2) ∈ U0 | ψ1(g1) = ψ2(g2)}. Just take a faithful representation of the
group H considered above.

We express the representations as direct sums of irreducible representations
ψ1,j , ψ2,j for j = 1, . . . , k. This leads to

U = {(g1, g2) ∈ U0 | ψ1,j(g1) = ψ2,j(g2), j = 1, . . . , k} .

Now, we define

Uj := {(g1, g2) ∈ U0 | ψ1,j(g1) = ψ2,j(g2)} .

We get U =
k∩

j=1

Uj . As U is maximal in U0, there must be a j such that U = Uj . �

3. Relative invariants for subdirect products

Recall 3.1 (Basic representation theory in characteristic zero). Let G be a finite
group and V be a vector space over a subfield of C.

i) A homomorphism ϕ : G→ Gl(V ) is called a representation.
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ii) There exists a G-invariant scalar product on V . Thus, without restriction, the
image of ϕ is already contained in the unitary group.

iii) Given two representations ϕi : G→ Gl(Vi), we can form the tensor product with
the G-action g ◦ (v1 ⊗ v2) := ϕ1(g)v1 ⊗ ϕ2(g)v2.

iv) For a representation ϕ, its composition Tr ◦ϕ with the trace map is called the
character of ϕ.

v) A character is a class function. I.e., it is constant on each conjugacy class.

vi) The character of the tensor product of two representations is given by pointwise
multiplication of the characters of the factors.

vii) The space of all class functions is equipped with the scalar product

⟨χ1 | χ2⟩ :=
1

#G

∑
g∈G

χ1(g)χ2(g) .

viii) The characters of all absolutely irreducible representations form an orthonor-
mal base of the space of all class functions.

ix) Two representations are isomorphic if and only if they have the same character.

Recall 3.2 (Link between representations and invariants). Let G ⊂ Sn be a per-
mutation group. The canonical action of G on the polynomial ring C[X1, . . . , Xn]
is a linear representation of G. Each homogeneous component of the polynomial
ring gives us a finite-dimensional subrepresentation. Usually, these representations
split further into components. For example, the G-action on the linear span of the
G-orbit of X0

1X
1
2 · · ·Xn−1

n is the regular representation of G. Thus, we can find all
irreducible representations of G in it.

From now on, we will use the language of representations. The reader might
think of them as subrepresentations of the polynomial ring. Thus, we switch from
relative invariant polynomials for the subgroup U ⊂ G to relative invariant vectors.
More precisely, let V be a representation of G. Then, a vector v ∈ V is a relative
invariant if and only if StabG(v) = U . Thus, a non-trivial irreducible representation
of G gives us a relative invariant if and only if its restriction to U contains trivial
components.

Proposition 3.3. i) Let ϕ1, ϕ2 be irreducible representations of a finite group G.
Then, ϕ1⊗ϕ2 contains a trivial component if and only if ϕ1 and ϕ2 are isomorphic.

ii) Let the unitary group Un(C) act on the tensor product Cn ⊗Cn by

M ◦ (u⊗ v) = (Mu)⊗ (Mv) .

Then, the only trivial component of the representation is spanned by e1⊗ e1+ · · ·+
en ⊗ en.

Proof.
i) Denote by χ1, χ2 the characters of ϕ1, ϕ2 and the trivial character by χ0. Us-
ing [JL, Exercise 19.1] we get ⟨χ1 ⊗ χ2 | χ0⟩ = ⟨χ1 | χ2⟩. Now the orthogonality
relations of irreducible characters imply the claim.

ii) This is a straightforward computation. �
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Remark 3.4. Let ϕ1, ϕ2 be the representations considered in Proposition 2.3.
Then, the last proposition shows that a relative invariant for U ⊂ U0 is some-
where in the tensor product ϕ1 ⊗ ϕ2. If the representations are explicitly given in
the standard unitary group then we can write down the relative invariant.

Examples 3.5. Let us explain in a few examples how this representation-theoretic
approach leads to relative invariant polynomials in product form.

i) Let
G := Sn × Sm and U := {(g1, g2) ∈ G | sgn(g1) = sgn(g2)}.

The action of Sk on

∆k(X) :=
∏

1≤i<j≤k

(Xi −Xj)

is given by the sign homomorphism. Thus, the action on ∆n(X)∆m(Y ) is exactly
the tensor product of the two representations. We have a relative invariant for U .

ii) Let D4 = ⟨(1, 2, 3, 4), (1, 3)⟩ ⊂ S4 be the symmetry group of the square. The
abelian quotient of D4 is isomorphic to (Z/2Z)2. The action on the polynomials

r1(X) := (X1 −X3)(X2 −X4)

r2(X) := (X1 +X2 −X3 −X4)(X2 +X3 −X1 −X4)

leads to two different 1-dimensional representations. Note that these two repre-
sentations differ by the only non-trivial outer automorphism of D4, which roughly
interchanges the action on edges and vertices.

Invariants for all index 2 subgroups of D4 × D4 are given by products of r1(X),
r2(X), r1(Y ), r2(Y ). Even simpler (but less systematically), one could use

r3(X) := X1 +X3 − (X2 +X4)

instead of r2.

iii) More generally, we can inspect G := Dn
4 , the n-fold cartesian product of the

dihedral group. For any pair of groups [G,G] ⊂ U2 ⊂ U1 ⊂ G (U2 maximal in U1),
we get a relative invariant as the product of a subset of

{r1(X(k)), r2(X
(k)) | k = 1, . . . , n} .

iv) The only subdirect products in D4×D4, for which we have not yet constructed
a relative invariant, is the diagonally embedded D4.

This can be done as follows. First, note that the action of D4 on the vector space,
spanned by {X1−X3, X2−X4}, is exactly the usual 2-dimensional representation.
The tensor product of two such representations gives us the relative invariant

(X1 −X3)(X5 −X7) + (X2 −X4)(X6 −X8)

for the diagonal in D4×D4. A relative invariant for the skew diagonally embedded
D4 is given by

(X1 +X2 −X3 −X4)(X5 −X7) + (X1 +X4 −X2 −X3)(X6 −X8) .

v) Let Cn ⊂ Sn be the cyclic group of order n. All irreducible representations of
Cn are given by the action on polynomials of the form

rn(X) := X1 + ζnX2 + ζ2nX3 + · · ·+ ζn−1
n Xn .

Here, ζn denotes an n-th root of unity.
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Thus, relative invariants for all subdirect products in Cn1 × · · · ×Cnk
are given by

products of rni(X
(i)) and the correct choice of the roots of unity.

Remark 3.6. The last example used roots of unity as coefficients of the invariant.
This is typical as, in general, all representations are defined over cyclotomic exten-
sions. See [Fi1] for the computation of extensions of minimal degree that allow the
construction of a representation.

Unfortunately, the computation of Galois groups needs invariants with rational
coefficients.

4. Invariants with integer coefficients

4.1. Let R := Z[T ]/p(T ) be an integral extension of the integers and d := deg(p).
Further, let R[X1, . . . , Xn] be the multivariate polynomial ring. An element f ∈
R[X1, . . . , Xn] can uniquely be written in the form

f =
d−1∑
i=0

T ifi

with fi ∈ Z[X1, . . . , Xn]. We call the fi the components of f . For σ ∈ Sn, we have

fσ =
d−1∑
i=0

T ifσi .

If f is a relative invariant for the maximal subgroup U ⊂ U0 then one of its
components is also a relative invariant. To see this, first note that the intersection
of all stabilizers of the fi in U0 is U . As U is maximal, we are done.

Example 4.2. Let C4 ⊂ S4 be the cyclic group of order 4. A relative invariant for
the diagonal of C4 × C4 is given by

p(X,Y ) = (X1 + TX2 + T 2X3 + T 3X4)(Y1 + T 3Y2 + T 2Y3 + TY4)

in
(
Z[T ]/(T 2 + 1)

)
[X,Y ]. Splitting this into components, we get the two polyno-

mials

p0(X,Y ) = (X1 −X3)(Y1 − Y3) + (X2 −X4)(−Y2 + Y4)

p1(X,Y ) = (X1 −X3)(Y2 − Y4) + (X2 −X4)(Y1 − Y3) .

Note that the stabilizer of p in S4×S4 is exactly the diagonally embedded C4. The
stabilizers of p0 and p1 are larger. Further, p0 +2p1 has the same stabilizer as p in
S4 × S4.

Remark 4.3. The last example suggests that the use of the extension Z[T ]/(T 2+1)
instead of Z is purely formal. But this is not the case.

First, the approach gives us an invariant vector instead of an invariant. When
running Stauduhar’s algorithm, we have to check that the values of the invariant
polynomial are distinct. Thus, working with the entire vector solves some degener-
ated cases. A second advantage becomes visible when we work with more factors.

Example 4.4. Let ρ be an isomorphism C4 → Z/4Z. Then, we can write down
the group

Uk := {(a1, . . . , ak) ∈ Ck
4 | ρ(a1) + · · ·+ ρ(ak) = 0} .



INVARIANTS FOR THE COMPUTATION OF GALOIS GROUPS 7

A relative invariant for Uk ⊂ Ck
4 is given by

k∏
i=1

(X
(i)
1 + TX

(i)
2 + T 2X

(i)
3 + T 3X

(i)
4 ) .

This polynomial can be evaluated by (k− 1) multiplications in Z[T ]/(T 2 + 1). The
components of this invariant do not have a nice product representation.

Remark 4.5. When we perform Stauduhar’s algorithm, we suggest to evaluate
the invariant in the étale [Bo, V 6.3 Def. 1] algebra K[T ]/p(T ) and then split the
result into components. Here, K denotes the field in which the roots are given.
This gives us a vector of values of invariant polynomials with integral coefficients.

For simplicity, we write all invariants as polynomials with coefficients in cyclo-
tomic extensions of Z. It is a formal process to convert them to polynomials with
coefficients in Z[T ]/p(T ).

5. The trace construction

Recall 5.1 (Induced representations). Let U ⊂ G be finite groups and ϕ : U →
Gl(V ) be a representation. Then, there is a representation ϕG called the induced
representation of ϕ. If χ is the character of ϕ then we denote by χG the character
of ϕG. Induced representations and characters have the following properties.

i) The dimension of ϕG is the product of the dimension of ϕ and the index [G : U ].

ii) If ϕ : U → {1} is the trivial representation then the induced representation is
just the permutation representation of the action of G on the cosets G/U .

iii) Let ϕ be a representation of U and ψ be a representation of G. Denote the
characters by χ and ρ. The identity

⟨χG | ρ⟩ = ⟨χ | ρU ⟩

is called Frobenius reciprocity. Here, ρU is the character of the representation ψ
restricted to U .

Proposition 5.2. Let G,U0 ⊂ G0 be finite groups. We define U := G ∩ U0 and
assume that G is maximal in G0. In addition, we assume [G0 : G] = [U0 : U ].
Further, let ϕ be a representation of U0 such that ϕU contains trivial components,
but ϕ does not contain a trivial component.

Then, the induced representation ϕG0 does not contain trivial components, but
its restriction (ϕG0)G = (ϕU )

G contains trivial components. (I.e., the induced
representation gives us a relative invariant.)

Proof. Denote the character of ϕ by χ and the trivial character by χ0. Using
Frobenius reciprocity, we compute

⟨χ0 | χG0⟩ = ⟨χ0 | χ⟩ = 0

as ϕ does not contain trivial components. Doing the same with (χG0)G = (χU )
G

instead of χG0 , we see that (ϕG0)G contains as many trivial components as ϕU . �

Remark 5.3 (The trace construction). Let f0 ∈ C[X1, . . . , Xn] be a polynomial
such that the group U0 ⊂ Sn acts on span(f0) by a non-trivial 1-dimensional rep-
resentation, but the restriction to the subgroup U ⊂ U0 is trivial.
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Let G,G0 be groups containing U,U0 such that G ∩ U0 = U , G maximal in G0,
and [G0 : G] = [U0 : U ]. Assume that the vector space

V := span{fσ0 | σ ∈ G/U} = span{fσ0 | σ ∈ G0/U0}

is of dimension [G : U ].
Then, the action of G0 on V is the induced representation ϕG0 in explicit form.

The polynomial

f :=
∑

σ∈G/U

fσ0

is a relative invariant for G ⊂ G0. We say that f is obtained from f0 by the trace
construction. Up to a scalar, this is the Reynolds operator studied in invariant
theory [Stu, Chap. 2.1].

Remarks 5.4. i) It can easily be checked that V has the expected dimension. For
this, one computes the rank of the matrix (fσi

0 (Pj)). Here, the Pj are randomly
chosen points.

ii) To prove that the dimension is strictly less is far more expensive. It requires to
present all fσ0 as linear combinations of monomials. If one wants to attack this by
evaluation then a huge number of points has to be used.

iii) If the assumption on the dimension of V can not be verified then one can mod-
ify f0 in several ways. First, some (but not all) powers of f0 will give representa-
tions with the same properties. Further, we can multiply f0 with any U0-invariant
function. If, for example, U0 stabilizes {X1, . . . , Xk} ⊂ {X1, . . . , Xn} then any
symmetric function of X1, . . . , Xk can be used.

iv) If we are only interested in an invariant and not in the entire induced represen-
tation then f can be used as long as it is not an invariant for G0. This is the case
as long as f ̸= 0.

v) In an extremal situation V is 1-dimensional and f is still a relative invariant. In
this case, f is a scalar multiple of f0. Thus, f0 itself is a cheap relative invariant.
An example for this is s1(d1, . . . , dm) in [Ge, Satz 6.8].

Example 5.5. Let G := An, U = An−1, G0 = Sn, and U0 = Sn−1. Then, the
polynomial

∆n−1(X1, . . . , Xn−1) :=
∏

1≤i≤j<n

(Xi −Xj)

gives us an initial representation. At a first glace, the trace construction would lead
to the sum

f :=
n∑

i=1

(−1)(n−1)(n−i)∆n−1(X1, . . . , X̂i, . . . , Xn) .

But this is not a relative invariant for An ⊂ Sn. Note that the polynomials

∆n−1(X1, . . . , X̂i, . . . , Xn) are linearly dependent. Replacing ∆n−1 by ∆3
n−1 or

∆n−1X
n
n will work. Note that ∆2

n−1 is not suitable.
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Example 5.6 (Cf. [Fi2]). Denote by G0 ⊂ S128 the group generated by

(1, 17, 9, 86, 84, 116, 85, 27, 12, 88, 102, 33, 96, 79, 60, 26, 109, 99, 41, 45, 68, 100,

94, 40, 31, 13, 121, 105, 54, 117, 61, 112, 22, 6, 14, 65, 67, 35, 66, 124, 11, 63, 49,

118, 55, 72, 91, 125, 42, 52, 110, 106, 83, 51, 57, 111, 120, 10, 30, 46, 97, 34, 90, 39)

(2, 78, 62, 44, 59, 101, 119, 108, 36, 71, 29, 123, 58, 38, 24, 25, 56, 15, 7, 23, 69, 81,

74, 103, 5, 98, 4, 104, 87, 3, 75, 37, 21, 73, 89, 107, 92, 50, 32, 43, 115, 80, 122, 28,

93, 113, 127, 126, 95, 8, 16, 128, 82, 70, 77, 48, 18, 53, 19, 47, 64, 20, 76, 114),

(1, 106, 28, 82, 55, 125, 37, 18, 120, 46, 44, 87, 84, 40, 108, 56, 42, 65, 104, 59,

54, 39, 126, 36, 12, 118, 128, 58, 68, 124, 48, 21, 22, 45, 123, 69, 96, 26, 114, 5,

31, 105, 107, 64, 67, 111, 43, 95, 109, 86, 47, 92, 97, 112, 25, 115, 11, 33, 23, 93,

83, 27, 103, 2)(3, 122, 30, 35, 38, 4, 49, 51, 20, 29, 121, 116, 113, 19, 102, 100)

(6, 98, 75, 90, 13, 15, 74, 66, 99, 80, 24, 91, 88, 78, 32, 57, 17, 53, 76, 61, 10, 8,

77, 85, 52, 71, 127, 60, 63, 73, 119, 94)(7, 110, 72, 70, 16, 41, 79, 81)

(9, 34, 101, 89)(14, 117, 50, 62),

(1, 77, 123, 72, 54, 89, 25, 88, 31, 24, 44, 100, 68, 19, 103, 52, 42, 119, 104, 117,

55, 7, 37, 13, 12, 76, 128, 35, 67, 29, 43, 6, 22, 74, 28, 79, 97, 62, 126, 63, 120,

127, 107, 51, 83, 4, 48, 99, 109, 32, 47, 34, 96, 16, 114, 10, 11, 75, 23, 116, 84,

122, 108, 17)(2, 98, 33, 30, 18, 73, 45, 41, 21, 53, 118, 121, 5, 78, 106, 110)

(3, 26, 61, 59, 38, 39, 91, 82)(8, 65, 9, 95, 80, 46, 49, 36)(14, 56, 71, 105, 102,

115, 15, 86)(20, 125, 90, 92, 113, 112, 60, 69)(27, 66, 93, 101, 111, 94, 87, 70)

(40, 57, 64, 81, 124, 85, 58, 50)

of order 19342813113834066795298816 = 284. G0 is not a wreath product and not
a direct product of subgroups. The group is not primitive, it has block systems of
sizes 2, 4, 8, 16, 32, and 64. Further, G0 has 7 maximal subgroups, all of index 2.
One can check that 4 of them are transitive and have no further block structure.
Invariants for these 4 subgroups can not be constructed by [Ge, Satz 6.14], as the
difference between G0 and the subgroups vanishes, when we pass to a permutation
representation on a block system. Thus, we get 4 interesting subgroups without
obvious invariants. We denote them by Gi (i = 1, . . . , 4).

Following our general strategy, we need a subgroup of small index that does not
act transitively. We pick the kernel of the action on the 8 blocks of length 16. We
denote the kernel in Gj by Uj . Surprisingly, all the Ui for i ≥ 1 coincide. Thus, we
have one group of order 279 and one of order 278. Restricting the action of U0 to
one orbit, we get the group H generated by

(1, 96, 31, 68, 42, 97, 11, 84, 22, 55, 120, 83, 109, 54, 12, 67),

(1, 12, 109, 31, 22, 11, 42, 120)(55, 96)(67, 83, 84, 68)

with support {1, 11, 12, 22, 31, 42, 54, 55, 67, 68, 83, 84, 96, 97, 109, 120} of order 4096.
The groups U0 and U1 are subdirect products of H8.

The abelian quotient of H is (Z/4Z)2. Thus, we have maps from U0, U1 to
(Z/4Z)16. It turns out that the images are isomorphic to (Z/4Z)6 × (Z/2Z)3 and
(Z/4Z)6 × (Z/2Z)2. This shows that we can use tensor products of 1-dimensional
representations of H to construct a representation of U0 that is trivial on U1.

Analyzing permutation characters, we get that the H-actions on the orbits of
X1X11 and X1X42X54X55 contain 1-dimensional representations that generate the
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abelian quotient of H. As H is sufficiently small, we can take

f1 :=
∑

σ∈H/ Stab({1,11})

χ1(σ)(X1X11)
σ

f2 :=
∑

σ∈H/ Stab({1,42,54,55})

χ2(σ)(X1X42X54X55)
σ

as polynomials, on which H acts via these representations. Here, χ1, χ2 denote
characters of the representations.

Using a transversal of the block-stabilizer in G0, we can translate these two
polynomials and get analogous representations for the action on the 8 other orbits
of U0.

All products of these polynomials are representations of U0. We take four factors
fσ1 and two factors fτ2 . The factors fσ1 correspond to the U0-orbits of 2, 3, 4, and
23. The factors fτ2 correspond to the U0-orbits of 1 and 3.

The idea behind this is as follows. First, one computes the images of U0, U1

in {±1,±ζ4}16 ∼= (Z/4Z)16. (The maps are given by the 16 representations cor-
responding to the translations of f1 and f2.) Then, we search for a linear form
(Z/4Z)16 → Z/4Z with a minimal number of non-zero coefficients, the kernel of
which contains the image of U1 but not the image of U0.

The constructed product gives us a non-trivial representation of U0 with ker-
nel U1. Let us call this polynomial f0. It has degree 16 and its evaluation needs
709 multiplications.

Now we try to induce invariants for the 4 interesting maximal subgroupsGi ofG0.
It turns out that the Gi-orbit of f0 does not contain 32 = [G1 : U1] = [G0 : U0]
linear independent polynomials. Thus, the naive construction degenerates.

Multiplying f0 with the block-sum ∑
i∈{4,7,16,19,24,29,32,62,74,75,76,77,89,119,122,127}

Xi

gives us a degree 17 polynomial such that the Gi-orbits consist of 32 linear inde-
pendent polynomials each. Each sum of such an orbit of 32 polynomials gives us a
relative invariant of degree 17. The evaluation costs are 22720 multiplications.

Remark 5.7. It is possible to reduce the number of multiplications by finding
better presentations of f1, f2. For example

f1 = ζ4(X67 −X68 +X84 −X83)(X54 −X55 +X97 −X96)

+ (X12 +X11 −X120 −X31)(X22 +X1 −X109 −X42)

f2 = ((X42 −X109)(X1 −X22)− ζ4(X31 −X120)(X11 −X12))

· ((X55 −X96)(X54 −X97) + ζ4(X68 −X83)(X67 −X84))

gives a representation of the fi involving only 3 respectively 7 multiplications.
Thus, the costs for the entire invariant are reduced to 32 · (1 + 4 · 3 + 2 · 7) = 864
multiplications.

It is not surprising that such a simplification is in principle possible. To explain
this, note that H has a block system with two blocks of size 8. Thus, every repre-
sentation of H is a component of a representation induced from one of the block
stabilizer. Further, every representation of the block stabilizer is contained in a
tensor product of representations of the two groups that act on the orbits. Now,
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one can continue recursively by using block systems of the groups that act on one
orbits. However it is not clear, why this is so efficient.

6. A general strategy

6.1. Example 5.6 suggests the following strategy for the construction of invariants.

Algorithm 6.2. Let transitive subgroups U ⊂ G ⊂ Sn, U maximal in G, be given.

i) Compute all block systems of G and all transitive maximal subgroups of G.

ii) For each block system, compute its stabilizer S in G.

iii) Embed S and S ∩ U into the direct product P of the groups that act on the
orbits of S.

iv) Compute the images of S and S ∩ U in the abelian quotient P/[P, P ].

v) If the images differ then construct a 1-dimensional representation of P that is
trivial on S∩U , but not on S. This representation is automatically a tensor product
of 1-dimensional representations of the factors of P .

vi) Try to find nice presentations of each factor by recursively expressing it as a
component of an induced representation of a tensor product of representations of
smaller subgroups. (Compare Remark 5.7.)

vii) Use the trace-construction to get a relative invariant for U ⊂ G.

Remark 6.3. In the case that several relative invariants were found, one can
optimize the computations by taking the cheapest one.

Experiment 6.4. It is hard to do a fair comparison between this and other meth-
ods. Let us try the following. We start with all transitive subgroups G ⊂ Sn for
n = 24 (27, 30). These groups have been classified in [Hul].

Using the algorithm of [CH1], we computed for each G a list of all conjugacy
classes of transitive, maximal subgroups. Then, we asked magma for special in-
variants. It turned out that, for 24274 (1894, 5468) out of 25000 (2392, 5712)
possibilities for G, special invariants for all maximal subgroups were found.

The remaining 726 (498, 244) possibilities for G give rise to 5234 (4848, 1144)
pairs U ⊂ G of groups. For 2191 (2148, 462) of them, no special invariant was
found.

Then, we checked whether Algorithm 6.2 could construct an invariant. This
worked for 2140 (2012, 298) pairs of groups. Surprisingly, Algorithm 6.2 failed only
in cases when the subgroup U was not normal. Table 1 gives an overview of the
distribution of the indices of the subgroups we treated and the ones that remain.

[G : U ]
n 2 3 4 5 8 9 16 25 27 64 81 ≥ 100

24 total 1020 20 922 15 2 80 82 32 18
rem. 7 2 10 32

27 total 2020 123 5
rem. 110 24 2

30 total 99 99 18 2 40 26 6 109 63
rem. 32 10 2 26 57 37

Table 1. Frequency of [G : U ] for pairs without special invariants
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The costs for the invariants are proportional to the number of summands used
in the trace construction. Table 2 give an overview.

Number of summands
n 2 – 9 12 – 20 24 – 42 48 – 96 108 – 192 216 – 432 ≥ 576

24 440 312 480 513 193 52 150
27 1097 393 145 249 105 19 4
30 10 39 3 60 32 46 108

Table 2. Distribution of the costs of the new invariants

Summarizing, we get cheap replacements for generic invariants in a large number
of cases with small index. When we work in S24 or S30, special invariants for most
pairs of subgroups are known.

Remark 6.5. We restricted to n = 24 (27, 30) for two reasons. First, invariants
for n ≤ 23 were optimized by [Ge]. Further, a database of all transitive groups for
larger n is not yet available. Note that for n = 32 such a database would consist of
2 801 324 groups [CH2].

Example 6.6. Let us inspect an example of a pair of groups without a known
special invariant such that Algorithm 6.2 does not work. As it worked for all normal
subgroups there is no example with index 2. Thus we pick one with index 3. We
take G as the transitive group nr. 5421 of degree 30. As an abstract group, G is
(A3 ≀ S10) o ±1. The group has only one block system. It has 10 blocks of size 3.
The block-stabilizer in G is

{(σ1, . . . , σ10) ∈ S10
3 | sgn(σ1) = · · · = sgn(σ10)} .

Let U be the subgroup(
{(σ1, . . . , σ10) ∈ A10

3 | σ1 · · ·σ10 = id}o S10

)
o±1

of G. An inspection of the Molien series shows that there is no relative invariant of
degree less than 10. magma needs 50 hours and 9 GB of memory to find a generic
invariant with 456275848 multiplications for this pair of groups. An evaluation of
the invariant in [1, . . . , 1] results in 2976069600. This evaluation needs 31 seconds
of CPU-time.

Algorithm 6.2 does not work as there is no 3-torsion in the inspected quotients
P/[P, P ].

Remark 6.7. There are several possibilities to extend Algorithm 6.2.

i) One could use higher-dimensional representations of the factors of P . But in
the case of more than two factors, this will result in a large tensor product. Thus,
one needs a strategy to extract a subrepresentation of S as soon as possible. This
modification can no longer use the abelian quotient P/[P, P ] for simplification.

ii) One could replace step 2 by any other strategy of selecting intransitive subgroups.

iii) The relative invariant for S ∩ U ⊂ S constructed in step 5 may have a larger
stabilizer than S∩U inG. In this case, we can start the trace-construction with S∩U
replaced by the stabilizer. This will lead to a final invariant with less summands.
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iv) As Algorithm 6.2 works well for normal subgroups, one could attack non-normal
index 3 subgroups by computing an index 2 subgroupG1 ⊂ G such that U∩G1 ⊂ G1

is normal. Then one could try to derive a relative invariant f for U ⊂ G from a
relative invariant f1 of U ∩G1 ⊂ G1 with the Reynoulds operator. Thus, one takes
f := f1 + fσ1 with an arbitrary σ ∈ U \G1.

Example 6.8. i) Using these generalizations, we can inspect the groups of Exam-
ple 6.6 once more. We set f(u, v, w) := u + ζ3v + ζ23w. Then we can write down
the relative invariant

f(x1, x2, x3)f(x4, x6, x5)f(x7, x8, x9)f(x10, x11, x12)f(x13, x14, x15)

f(x16, x18, x17)f(x19, x20, x21)f(x22, x24, x23)f(x25, x27, x26)f(x28, x30, x29)

+ f(x1, x3, x2)f(x5, x6, x4)f(x7, x9, x8)f(x11, x10, x12)f(x15, x14, x13)

f(x17, x18, x16)f(x19, x21, x20)f(x22, x23, x24)f(x26, x27, x25)f(x30, x28, x29)

of minimal degree for U ⊂ G.

The invariant is constructed as follows. First, we pass to the subgroup G1 :=
A3 ≀ S10. Now U ∩ G1 ⊂ G1 is normal. Then, we pick the intransitive subgroup
S := A10

3 . The first product in the invariant for U ∩ S ⊂ S. When we apply the
trace construction, we observe that the product is not changed by the action of S10.
Thus, the first product is in fact an invariant for U ∩ G1 ⊂ G1. We get the final
result by applying the Reynolds operator to this.

ii) An example that uses an other kind of intransitive subgroup is the following.
Denote by M24 ⊂ A24 the Mathieu group of order 244823040. When we apply
Algorithm 6.2 to these groups, we do not get anything useful.

Let us use the intransitive subgroup S ⊂ M24 of index 759 instead of a block
stabilizer. S has orbits of size 8 and 16. We denote the orbit of length 8 by O8.
Then we can form the relative invariant

∑
g∈M24/S

∑
i∈Og

8

Xi

6

for M24 ⊂ A24. It uses 6071 additions and 759 powers. Note that M24 is 5-
transitive, so there is no chance to construct a relative invariant of degree ≤ 5.

This strategy primarily applies to subgroups of huge index. This is the typical
situation for primitive groups in An or Sn [DM].
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[GK] Geißler, K. and Klüners, J.: Galois group computation for rational polynomials, Algorith-
mic methods in Galois theory. J. Symbolic Comput. 30 (2000), no. 6, 653–674.

[Gi] Girstmair, K.: On invariant polynomials and their application in field theory,
Math. Comp. 48 (1987), no. 178, 781–797.

[Hul] Hulpke, A.: Constructing transitive permutation groups, J. Symbolic Comput. 39 (2005),
no. 1, 1–30.

[Hup] Huppert, B.: Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967.
[JL] James, G. and Liebeck, M.: Representations and characters of groups, Cambridge Univer-

sity Press, Cambridge, 1993.
[Sta] Stauduhar, R. P.: The determination of Galois groups, Math. Comp. 27 (1973), 981–996.
[Stu] Sturmfels, B.: Algorithms in Invariant Theory, Springer-Verlag, Wien, New York, 1993.

Universität Bayreuth, Mathematisches Institut, Universitätsstraße 30, D-95447 Bayreuth,
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