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Abstract

We construct examples of K3 surfaces of geometric Picard rank 1.
Our method is a refinement of that of R. van Luijk [vL]. It is based on an
analysis of the Galois module structure on étale cohomology. This allows to
abandon the original limitation to cases of Picard rank 2 after reduction mod-
ulo p. Furthermore, the use of Galois data enables us to construct examples
which require significantly less computation time.

1 Introduction

1.1. –––– The Picard group of a K3 surface S is a highly interesting invariant.
In general, it is isomorphic to Zn for some n = 1, . . . , 20. The first explicit examples
of K3 surfaces over Q with geometric Picard rank 1 were constructed by R. van
Luijk [vL]. His method is based on reduction modulo p. It works as follows.

i) At a place p of good reduction, the Picard group Pic(SQ) of the surface injects
into the Picard group Pic(SFp

) of its reduction modulo p.

ii) On its part, Pic(SFp
) injects into the étale cohomology group H2

ét(SFp
,Ql(1)).

iii) Only roots of unity can arise as eigenvalues of the Frobenius on the image
of Pic(SFp

) in H2
ét(SFp

,Ql(1)). The number of eigenvalues of this form is there-
fore an upper bound for the Picard rank of SFp

. We can compute the eigenvalues
of Frob by counting the points on S, defined over Fp and some finite extensions.

Doing this for one prime, one obtains an upper bound for rk Pic(SFp
) which is

always even. The Tate conjecture asserts that this bound is actually sharp.
When one wants to prove that the Picard rank over Q is, in fact, equal to 1,

the best which could happen is to find a prime that yields an upper bound of 2.
There is not much hope to do better when working with a single prime.

iv) In this case, the assumption that the surface would have Picard rank 2 over Q
implies that the discriminants of both Picard groups, Pic(SQ) and Pic(SFp

), are in
the same square class. Note here that reduction modulo p respects the intersec-
tion product.
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v) When one combines information from two primes, it may happen that we get
the rank bound 2 at both places but different square classes for the discriminant
do arise. Then, these data are incompatible with Picard rank 2 over Q.

On the other hand, there is a non-trivial divisor known explicitly. Altogether, rank 1
is proven.

1.2. Remark. –––– This method has been applied by several authors in order to
construct K3 surfaces with prescribed Picard rank [vL, Kl, EJ1].

1.3. The refinement. –––– In this note, we will refine van Luijk’s method.
Our idea is the following. We do not look at the ranks, only. We analyze the Galois
module structures on the Picard groups, too. The point here is that a Galois module
typically has submodules by far not of every rank.

As an example, we will construct K3 surfaces of geometric Picard rank 1 such
that the reduction modulo 3 has geometric Picard rank 4 and the reduction modulo 5
has geometric Picard rank 14.

1.4. Remark. –––– This work continues our investigations on Galois module
structures on the Picard group. In [EJ2, EJ3, EJ4], we constructed cubic surfaces S
over Q with prescribed Galois module structure on Pic(S).

2 The Picard group as a Galois module

2.1. –––– Let K be a field and S an algebraic surface defined over K. Denote by
S the Q-vector space Pic(SK)⊗ZQ. On S, there is a natural Gal(K/K)-operation.
The kernel of this representation is a normal subgroup of finite index. It corresponds
to a finite Galois extension L of K. In fact, we have a Gal(L/K)-representation.

The group Gal(K/L) acts trivially on Pic(SK). I.e., Pic(SK) = Pic(SK)Gal(K/L).
Within this, Pic(SL) is, in general, a subgroup of finite index. Equality is true under
the hypothesis that S(L) 6= ∅.

2.2. –––– Now suppose K is a number field and p is a prime ideal of K. We will
denote the residue class field by k. Further, let S be a K3 surface over K with good
reduction at p. There is an injection of Pic(SK) into Pic(Sk). Taking the tensor
product, this yields an inclusion of vector spaces Pic(SK)⊗ZQ →֒ Pic(Sk)⊗ZQ.

Both spaces are equipped with a Galois operation. On Pic(SK)⊗ZQ, we have
a Gal(L/K)-action. On Pic(Sk)⊗ZQ, only Gal(k/k) = 〈Frob〉 operates.

2.3. Lemma. –––– The field extension L/K is unramified at p.

Proof. Let D ∈ Div(SL) be an arbitrary divisor. By good reduction, D extends to
a divisor on a smooth model S over the integer ring OL. In particular, we have the
reduction Dq of D on the special fiber Sq. Here, q is any prime, lying above p.
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OL/q is a finite extension of k. Correspondingly, there is an unramified exten-
sion L′ ⊂ L of K. Good reduction implies that every divisor on Sq lifts to SL′.
Consequently, we have a divisor D′ ∈ Div(SL′) which has the same reduction as D.

As intersection products are respected by reduction, we see that the intersection
number of D′

L − D with any divisor is zero. The standard argument from [BPV,
Proposition VIII.3.6.i)] implies D′

L − D = 0. In other words, D is defined over an
unramified extension. �

2.4. –––– There is a Frobenius lift to L which is unique up to conjugation.
When we choose a particular prime q, lying above p, we fix a concrete Frobenius lift.
Then, Pic(SK)⊗ZQ becomes a Gal(k/k)-submodule of Pic(Sk)⊗ZQ.

2.5. Computability of the Galois representation. –––– The simplest way to
understand the Gal(k/k)-representation on Pic(Sk)⊗ZQ is to use étale cohomology.
Counting the numbers of points, S has over finite extensions of k, we can compute
the characteristic polynomial Φ of the Frobenius on H2

ét(Sk,Ql(1)). This is actually
a polynomial with rational, even integer, coefficients and independent of the choice
of l 6= p [De, Théorème 1.6].

Denote by VTate the largest subspace of H2
ét(Sk,Ql(1)) on which all eigenvalues

of the Frobenius are roots of unity. On the other hand, let Pconj be the subgroup
of Pic(SK) generated by the conjugates of all the divisors we know explicitly.

Then, we have the following chain of Gal(k/k)-modules,

H2
ét(Sk,Ql(1)) ⊇ VTate ⊇ Pic(Sk)⊗ZQl ⊇ Pic(SK)⊗ZQl ⊇ Pconj⊗ZQl .

In an optimal situation, the quotient space VTate/(Pconj⊗ZQl) has only finitely many
Gal(k/k)-submodules. This finiteness condition generalizes the codimension one
condition, applied in van Luijk’s method, step v).

Our main strategy will then be as follows. We inspect the Gal(k/k)-submodules
of VTate/(Pconj⊗ZQl). For all these, except for the null space, we aim to exclude the
possibility that it coincides with (Pic(SK)⊗ZQl)/(Pconj⊗ZQl).

2.6. Remarks. –––– a) A sufficient criterion for a Gal(k/k)-module to have only
finitely many submodules is that the characteristic polynomial of Frob has only
simple roots. This fact, although very standard, is central to our method.

b) Only submodules of the form P ⊗ZQl for P a Gal(k/k)-submodule of Pic(Sk)
are possible candidates for Pic(SK)⊗ZQl. Such submodules automatically lead to
factors of Φ with coefficients in Q.

2.7. Definition. –––– We will call a Gal(k/k)-submodule of H2
ét(Sk,Ql(1)) ad-

missible if it is a Ql-subvector space and the characteristic polynomial of Frob has
rational coefficients.
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2.8. Remark. –––– In some sense, we apply the van der Waerden criterion to the
representations of Gal(Q/Q) on the Picard group and étale cohomology.

2.9. Remark. –––– In the practical computations presented below, we will work
with Ql instead of Ql(1). This is the canonical choice from the point of view of
counting points but not for the image of the Picard group. The relevant zeroes of
the characteristic polynomial of the Frobenius are then those of the form q times a
root of unity.

3 An example

3.1 Formulation

3.1.1. Example. –––– Let S : w2 = f6(x, y, z) be a K3 surface of degree 2 over Q.
Assume the congruences

f6 ≡ y6 + x4y2 − 2x2y4 + 2x5z + 3xz5 + z6 (mod 5)

and

f6 ≡ 2x6 + x4y2 + 2x3y2z + x2y2z2 + x2yz3 + 2x2z4

+ xy4z + xy3z2 + xy2z3 + 2xz5 + 2y6 + y4z2 + y3z3 (mod 3) .

Then, S has geometric Picard rank 1.

3.2 Explicit divisors

3.2.1. Notation. –––– We will write pr : S → P2 for the canonical projection.
On S, there is the ample divisor H := π∗L for L a line on P2.

3.2.2. –––– Let C be any irreducible divisor on S. Then, D := π∗C is a curve
in P2. We denote its degree by d. The projection from C to D is generically 2:1
or 1:1. In the case it is 2:1, we have C = π∗D ∼ dH .

Thus, to generate a Picard group of rank >1, divisors are needed which are
generically 1:1 over their projections. This means, π∗D must be reducible into two
components which we call the splittings of D.

A divisor D has a split pull-back if and only if f6 is a perfect square on (the
normalization of) D. A necessary condition is that the intersection of D with the
ramification locus is a 0-cycle divisible by 2.
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3.3 The Artin-Tate conjecture

3.3.1. –––– The Picard group of a projective variety is equipped with a Z-valued
bilinear form, the intersection form. Therefore, associated to Pic(Sk), we have its dis-
criminant, an integer. The same applies to every subgroup of Pic(Sk).

For a Ql-vector space contained in Pic(Sk)⊗ZQl, the discriminant is determined
only up to a factor being a square in Ql. However, every non-square in Q is a
non-square in Ql for some suitable prime l ≫ 0.

3.3.2. –––– Let us recall the Artin-Tate conjecture in the special case of a K3 sur-
face.

Conjecture (Artin-Tate) . Let Y be a K3 surface over Fq. Denote by ρ the rank

and by ∆ the discriminant of the Picard group of Y , defined over Fq. Then,

lim
T→q

Φ(T )

(T − q)ρ
= q21−ρ#Br(Y )|∆| . (1)

Here, Φ is the characteristic polynomial of the Frobenius on H2
ét
(YFq

,Ql). Fi-

nally, Br(Y ) denotes the Brauer group of Y .

3.3.3. Remarks. –––– a) The Artin-Tate conjecture allows to compute the
square class of the discriminant of the Picard group over a finite field without any
knowledge of explicit generators.

b) Observe that #Br(Y ) is always a perfect square [LLR].

c) The Artin-Tate conjecture is proven for most K3 surfaces. Most notably, the
Tate conjecture implies the Artin-Tate conjecture [Mi2]. We will use the Artin-Tate
conjecture only in situations where the Tate conjecture is true. Thus, our final result
will not depend on unproven statements.

3.4 The modulo 3 information

3.4.1. –––– The sextic curve given by “f6 = 0” has three conjugate conics, each
tangent in six points. Indeed, note that, for

f3 := x3 + 2x2y + x2z + 2xy2 + xyz + xz2 + y3 + y2z + 2yz2 + 2z3,

the term f6 − f 2
3 factors into three quadratic forms over F27. Consequently, we have

three divisors on P2F27
the pull-backs of which split.

3.4.2. –––– Counting the points on S over F3n for n = 1, . . . , 11 yields the
numbers −2,−8, 28, 100, 388, 2 458, 964,−692, 26 650, −20 528, and −464 444 as the
traces of the iterated Frobenius on H2

ét(SF3
,Ql). Taking into account the fact that
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p is a root of the characteristic polynomial Φ, these data determine this polyno-
mial uniquely,

Φ(t) = t22 + 2t21 + 6t20 − 27t18 − 162t17 − 729t16 − 1458t15 − 2187t14 + 19683t12

+ 118098t11 + 177147t10 − 1594323t8 − 9565938t7 − 43046721t6

− 86093442t5 − 129140163t4 + 2324522934t2 + 6973568802t+31381059609 .

The functional equation holds with the plus sign. We factorize and get

Φ(t) = (t − 3)2(t2 + 3t + 9)

(t18 + 5t17 + 21t16 + 90t15 + 297t14 + 891t13 + 2673t12 + 7290t11 + 19683t10

+ 59049t9 + 177147t8 + 590490t7 + 1948617t6 + 5845851t5 + 17537553t4

+ 47829690t3 + 100442349t2 + 215233605t + 387420489) .

3.4.3. –––– From this, we derive an upper bound of 4 for the rank of the Pi-
card group. In the notation of section 2, VTate is aQl-vector space of dimension four.
On the other hand, Pconj is generated by H . As H corresponds to one of the fac-
tors (t − 3), the characteristic polynomial of the Frobenius on VTate/(Pconj⊗ZQl)
is (t − 3)(t2 + 3t + 9). It has only simple roots.

Consequently, for each of the dimensions 1, 2, 3, and 4, there is precisely one
admissible Gal(F3/F3)-submodule in H2

ét(SF3
,Ql) containing the Chern class of H .

3.4.4. –––– Let us compute the corresponding discriminants.

i) In the one-dimensional case, we have discriminant 2.

ii) It turns out that splitting the divisors given by the conics which are six times
tangent yields a rank three submodule M of Pic(SF3

). Its discriminant is

disc M = det





−2 6 0
6 −2 4
0 4 −2



 = 96 .

Hence, in the three-dimensional case, the discriminant is in the square class of 6.

iii) For the case of dimension four, we may suppose that Pic(SF3
) is of rank four.

As Gal(F3/F27) acts trivially on Pic(SF3
), the group Pic(SF27

) is of rank four, already.
This means, the Tate conjecture is true for SF27

.

We may compute the square class of the corresponding discriminant according to
the Artin-Tate conjecture. The result is (−163).

iv) Finally, consider the two-dimensional case. We may suppose that Pic(SF3
) has a

Gal(F3/F3)-submodule N which is of rank two and contains H . The corresponding
characteristic polynomial of the Frobenius is, necessarily, equal to (t − 3)2.

On the other hand, there is the rank three submodule M generated by the split-
tings of the conics which are six times tangent. As the corresponding factors
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are (t − 3)(t2 + 3t + 9), the modules N and M together generate rank 4. The Tate
conjecture is true for SF27

. Consequently, it is true for SF3
, too.

Using the Artin-Tate conjecture, we can compute the square class of the discrimi-
nant. It turns out to be (−489).

3.4.5. Remark. –––– The Tate conjecture predicts Picard rank 2 for SF3
. Let C

be an irreducible divisor linearly independent of H . Then, C is a splitting of a
curve D of degree d ≥ 23. Indeed, H is a genus 2 curve. Hence, H2 = 2. For the
discriminant, we find −489 ≥ 2C2 − d2. As C2 ≥ −2, the assertion follows.

Further, D is highly singular on the ramification locus. In fact, we have
C2 ≤ d2

−489
2

and D2 = d2. Hence, going from D to C lowers the arithmetic genus
by at least d2+489

4
.

3.5 The modulo 5 information

3.5.1. –––– The sextic curve given by “f6 = 0” has six tritangent lines. These are
given by La : t 7→ [1 : t : a] where a is a zero of a6 + 3a5 + 2a. The pull-back of each
of these lines splits on the K3 surface SF5

.

3.5.2. –––– On the other hand, counting points yields the following traces of the
iterated Frobenius on H2

ét(SF5
,Ql),

15, 95,−75, 2 075,−1 250,−14 875, 523 125, 741 875, 853 125, 11 293 750 .

This leads to the characteristic polynomial

Φ(t) = t22 − 15t21 + 65t20 + 175t19 − 3000t18 + 11437t17 + 10630t16 − 385950t15

+ 2445250t14 − 4530625t13 − 38478125t12 + 305656250t11 − 566328125t10

− 4809765625t9 + 38207031250t8 − 101308593750t7 − 143457031250t6

+ 2792236328125t5 − 14189453125000t4 + 16400146484375t3

+ 247955322265625t2 − 1430511474609375t + 2384185791015625

= (t − 5)2(t4 + 5t3 + 25t2 + 125t + 625)

(t8 − 5t7 + 125t5 − 625t4 + 3 125t3 − 78 125t + 390 625)

(t8 − 5t7 − 10t6 + 75t5 − 125t4 + 1 875t3 − 6 250t2 − 78 125t + 390 625) .

Observe here the first two factors correspond to the part of the Picard group gen-
erated by the splittings of the six tritangent lines. They could have been computed
directly from the intersection matrix of these divisors.

3.5.3. Remark. –––– The knowledge of these two factors allows to compute the
characteristic polynomial only from the numbers of points over F5, . . . ,F58 . Count-
ing them takes approximately five minutes when one uses the method described
in [EJ1, Algorithm 15].
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3.5.4. –––– Here, VTate is a vector space of dimension 14. Again, Pconj is generated
by H . The characteristic polynomial of the Frobenius on VTate/(Pconj⊗ZQl) is

(t−5)(t4+5t3+25t2+125t+625)(t8−5t7+125t5−625t4+3 125t3−78 125t+390 625)

having only simple roots. This shows that, in each of the dimensions 1, 2, 5, 6, 9, 10,
13, and 14, there is precisely one admissible Gal(F5/F5)-submodule in H2

ét(SF5
,Ql)

containing the Chern class of H .

3.5.5. –––– For the cases of low rank, let us compute the square classes of the dis-
criminant.

i) In the one-dimensional case, we have discriminant 2.

ii) For the two-dimensional case, recall that we know six tritangent lines of the
ramification locus. One of them, L0, is defined over F5. Splitting π∗L0 yields rank
two alone. For the discriminant, we find

det

(

−2 3
3 −2

)

= −5.

3.5.6. Remark. –––– Using the Artin-Tate conjecture, we may compute condi-
tional values for the square classes of the discriminant for the 6- and 14-dimen-
sional modules. Both are actually equal to (−1).

3.6 The situation over Q
3.6.1. Proof of 3.1.1. –––– Now we can put everything together and show that
the K3 surfaces described in Example 3.1.1 indeed have geometric Picard rank 1.

The Picard group Pic(SQ)⊗ZQl injects as a Galois submodule into the second
étale cohomology groups H2

ét(SF5
,Ql) for p = 3 and 5. The modulo 3 data show

that this module has Ql-dimension 1, 2, 3 or 4. The reduction modulo 5 allows theQl-dimensions 1, 2, 5, 6, 9, 10, 13 and 14. Consequently, the Picard rank is either 1
or 2.

To exclude the possibility of rank 2, we compare the discriminants. The reduc-
tion modulo 3 enforces discriminant (−489) while the reduction modulo 5 yields
discriminant (−5). This is a contradiction, e.g., for l = 17. �
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