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Abstract. For K3 surfaces, we derive some conditions the characteris-
tic polynomial of the Frobenius on the étale cohomology must satisfy.
These conditions may be used to speed up the computation of Picard
numbers and the decision of the sign in the functional equation∗∗. Our in-
vestigations are based on the Artin-Tate formula.

1 Introduction

An algebraic integer such that all its conjugates have absolute value
√
r is

called an r-Weil number. Correspondingly, a possibly reducible monic polynomial
Φ ∈ Z[T ] such that all roots have absolute value

√
r is called an r-Weil polyno-

mial.
Let q be a prime power and r = qk. Then, for every smooth projective vari-

ety V over Fq, the eigenvalues of the Frobenius endomorphism Frob on the étale
cohomology Hk

ét(VFq
,Ql) are r-Weil numbers [3, Lemme 1.7]. Conversely, every

qk-Weil number is an eigenvalue of Frob on Hk
ét(VFq

,Ql) for a suitable smooth
projective variety V over Fq. Actually, this fact is a direct consequence of the
results of T. Honda [9].

In this note, we will study the Weil numbers of K3 surfaces. As the second
Betti number of a K3 surface is b2(V ) = 22 and q is always a root of the
characteristic polynomial, the possible Weil numbers are of degree at most 20.

We will show that not all q2-Weil polynomials Φ ∈ Z[T ] satisfying degΦ = 22
and Φ(q) = 0 occur as characteristic polynomials of Frob on the étale cohomology
ofK3 surfaces. ConcerningK3 surfaces of fixed degree, even more restrictions re-
sult. Our investigations are based on the Artin-Tate formula which we will recall
in section 3.
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An application. The characteristic polynomial of Frob may be computed
by counting points over extensions of the ground field. Indeed, for V a
K3 surface over Fq, the Lefschetz trace formula [13, Ch. VI, §12] yields
tr(Frobe) = #V (Fqe)− q2e − 1.

When we denote the eigenvalues of Frob by r1, . . . , r22, we have
tr(Frobe) = re

1 + · · ·+ re
22 =: σe(r1, . . . , r22). Newton’s identity [20]

sk(r1, . . . , r22) =
1
k

k−1∑

j=0

(−1)k+j+1σk−j(r1, . . . , r22)sj(r1, . . . , r22)

shows that the knowledge of σe(r1, . . . , r22), for e = 1, . . . , k, is sufficient in order
to determine the coefficient (−1)ksk of T 22−k of the characteristic polynomial Φ
of Frob. Further, there is the functional equation

qdeg ΦΦ(T ) = ±T deg ΦΦ(q2/T ) (1)

which, as degΦ = 22, relates the coefficient of T k with that of T 22−k.
Nevertheless, this method is time-consuming. The size of the fields to be

considered grows exponentially. One would like to avoid point counting over
large fields and, nevertheless, determine Φ sufficiently well in order to decide
things such as the sign in (1). Algorithms of this type were presented in [6].
For example, Algorithm 22 of [6] verifies that the geometric Picard rank is 2,
having counted points over Fp, . . . ,Fp9 for p a prime number.

The main result of the present article leads to a more substantial approach
to this problem. In fact, we will show that certain hypothetical characteristic
polynomials are impossible, in general. This leads to an improvement of [6, Al-
gorithm 22]. Sections 7 and 8 will be devoted to examples showing how this
improvement works in practice.

Remark 1. A continuation of this application, which we have in mind, is the
computation of the geometric Picard rank for K3 surfaces over Q. Here, the
general strategy is to use reduction modulo p. One applies the inequality

rkPic(VQ) ≤ rkPic(VFp
)

which is true for every smooth variety V over Q and every prime p of good re-
duction. Then, the number of eigenvalues of Frob which are roots of unity is an
upper bound for the Picard number. More details are given in [6] and [7].

2 The Galois group of a Weil polynomial

For a randomly chosen irreducible polynomial over Q, one expects the Galois
group to be the full symmetric group. In this sense, the irreducible factors of a
Weil polynomial are not very random.

When we consider the operation of Frob on a cohomology group of even
degree, cyclotomic factors do arise. They correspond to the algebraic part of
the cohomology, i.e., to the image of the Picard group and its analogues in
higher codimension. The corresponding Galois group is always abelian.



Concerning the remaining factors, still, there are restrictions on the Ga-
lois group. Note that, for each root of an irreducible r-Weil polynomial not of
degree 1, the complex conjugate is a root, too. This means, the roots come
in pairs. The product of each pair is equal to r. The Galois group therefore acts
on the pairs. For a suitable integer n, it is a subgroup of the semi-direct product
(Z/2Z)noSn ⊂ S2n. Here, each factor (Z/2Z) acts on one pair by complex con-
jugation. The complex conjugation itself belongs to the center of the group.

An experimental result. One could ask for further restrictions on the Ga-
lois group. For that, we computed the characteristic polynomial of Frob for a
few thousand randomly chosen K3 surfaces. In each case, the factorization of
that polynomial had precisely one irreducible factor which was not cyclotomic.
This coincides with Zarhin’s results [18] for ordinary K3 surfaces.

Furthermore, in the vast majority of the examples, the Galois group of the
last factor was actually equal to the semi-direct product (Z/2Z)n o Sn ⊂ S2n.
For example, this was true for 875 out of 1 000 K3 surfaces of degree 2 over F3

and 923 out of 1 000 K3 surfaces of degree 2 over F7.

The resolvent algebra. Let Φ ∈ Q[T ] be a polynomial such that its set of roots
is of the particular form {r1, r′1, . . . , rn, r′n} such that r1r′1 = . . . = rnr

′
n =: r ∈ Q.

Then, the sums r1 + r′1, . . . , rn + r′n are the roots of a polynomial R ∈ Q[T ] of
half the degree. We will call R the resolvent polynomial and A := Q[T ]/R the
resolvent algebra of Φ.

Remarks 2. a) When Φ is an r-Weil polynomial of even degree, the assumption
is satisfied if and only if

√
r is a root of even multiplicity (or no root) of Φ. In this

case, (−√r) has even multiplicity, too.
In fact, this means exactly that Φ fulfills the functional equation (1) with the
plus sign.
b) On the other hand, when one wants to verify that a given polynomial satisfy-
ing the functional equation is, in fact, a Weil polynomial, the resolvent is helpful.
Observe that the roots of the initial polynomial are all of absolute value

√
r if

and only if the roots of the resolvent are all real and in the interval [−2
√
r, 2
√
r].

That property may easily be checked using Sturm’s chain theorem.
This is a fast and exact replacement of [6, Algorithm 23].

3 The Artin-Tate formula

Let us recall the Artin-Tate conjecture in the special case of a K3 surface.

Conjecture 3 (Artin-Tate). Let V be a K3 surface over a finite field Fq. De-
note by ρ the rank and by ∆ the discriminant of the Picard group of V, defined
over Fq. Then,

|∆| =
lim
T→q

Φ(T )
(T−q)ρ

q21−ρ#Br(V )
.



Here, Φ denotes the characteristic polynomial of Frob on H2
ét(VFq

,Ql). Fi-
nally, Br(V ) is the Brauer group of V .

Remarks 4. i) The characteristic polynomial Φ is independent of the choice of
the auxiliary prime l as long as l 6= p for q = pe [3, Théorème 1.6].
ii) For a general non-singular, projective surface, the exponent of q in the nu-
merator is b2(V )− h02(V )− ρ. Here, h02(V ) denotes the Hodge number.
iii) The Artin-Tate conjecture is proven for most K3 surfaces. Most notably, the
Tate conjecture implies the Artin-Tate conjecture [11, Theorem 6.1].
iv) The Tate conjecture claims that all zeroes of Φ of the form qζ for ζ a root
of unity belong to the algebraic part of H2

ét(VFq
,Ql). I.e., it asserts that the

transcendental part never generates a zero of this form.
The evidence for this is overwhelming as far as K3 surfaces are concerned.
The Tate conjecture is proven for elliptic K3 surfaces [1] and ordinary K3 sur-
faces [15]. In characteristic different from 2 and 3, even more particular cases
were successfully treated [16].
v) It is expected that Br(V ) is always a finite group. This is actually equivalent
to the Tate conjecture. In this case, #Br(V ) is automatically a perfect square.
We may therefore compute the square class of ∆ making use of the Artin-
Tate conjecture.

An unconditional version of the Artin-Tate formula.

Notation 5. i) For n a positive integer, we will denote by µn the sheaf of
n-th roots of unity with respect to the fppf topology. When l is a prime number,
we put Hd

fppf(VFq
, Tlµ) := lim←−e Hd

fppf(VFq
, µle).

ii) For l a prime number and M an abelian group, the notation Ml-pow

shall be used for the l-power torsion subgroup of M . Similarly, we will write
Ml-div ⊆Ml-pow for the subgroup of infinitely l-divisible elements.
iii) We will denote by MFrob and MFrob the invariants, respectively coinvariants,
under the operation of Frob on the abelian group M . The coinvariants may have
torsion even when M is torsion-free. Write M ′

Frob for the torsion-free quotient.

Proposition 6. Let V be a K3 surface over a finite field Fq and l be any prime.
Write Φ for the characteristic polynomial of Frob on the étale cohomology of VFq

and ρ for the multiplicity of q as a zero of Φ.
i) Then, the Brauer group Br(V ) is a torsion group. The quotient

Br0(V, l) := Br(V )l-pow/Br(V )l-div

is a finite group of square order.
ii) Further, H2

fppf(VFq
, Tlµ)Frob is a free Zl-module of rank ρ.

iii) Denote by ∆l the discriminant of the bilinear form

H2
fppf(VFq

, Tlµ)Frob ×H2
fppf(VFq

, Tlµ)Frob −→ Zl



defined by Poincaré duality. Then,

νl(∆l) = νl

(
lim

T→q

Φ(T )
(T−q)ρ

q21−ρ#Br0(V,l)

)
.

Proof. i) Finiteness of Br0(V, l) follows immediately from [8, (8.9)]. Fur-
ther, there is a non-degenerate alternating pairing Br0(V, l)×Br0(V, l)→ Ql/Zl

constructed in [19, Lemma 3.4.1]. This ensures that the group order is a per-
fect square.
ii) and iii) We denote the zeroes of Φ by r1, . . . , r22.
First case. l 6= p. Here, H := H2

fppf(VFq
, Tlµ) = H2

ét(VFq
,Zl(1)) is the same as

l-adic étale cohomology. It is a free Zl-module of rank 22. In the present case,
the operation of Frob on H is known to be semi-simple [4, Corollary 1.10].
The eigenvalues are r1/q, . . . , r22/q. Assertion ii) follows immediately from this.

Further, we have νl(∆l) = νl(#coker(HFrob → Hom(HFrob,Zl))), the map
being induced by Poincaré duality. Identifying Hom(H,Zl) with H, the module
Hom(HFrob,Zl) goes over into H ′

Frob. Here, as shown in [19, Proposition 1.4.2],
(HFrob)tors ∼= Br0(V, l). Further, the order of the cokernel of the canonical ho-
momorphism HFrob → HFrob is equal to the l-primary part of

∏
rj 6=q

(1− rj/q).
Altogether, this implies the claim.
Second case. l = p. Here, some modifications are necessary which are described
in [11]. More concretely, the short exact sequence

0→ Pic(VFq
)⊗ZZp → H2

fppf(VFq
, Tpµ)→ lim←−Br(VFq

)pn → 0

immediately shows that H := H2
fppf(VFq

, Tpµ) is a torsion-free Zp-module. Oth-
erwise, its structure is rather different from the previous case. The rank of H is,
in general, less than 22. Eigenvalues of Frob are only those rj/q which are units
in Qp [11, 1.4]. But this is enough to show ii).

Generally, there are unipotent connected quasi-algebraic groups Ud and étale
group schemes Dd

n for d = 2, 3 and n À 0 which provide short exact sequences
0→ Ud(Fq)→ Hd

fppf(VFq
, µpn)→ Dd

n(Fq)→ 0. For varying n, the vector groups
U3(Fq) are connected by identities. Further, D3

n = 0. Hence, if dimU3 = s then
#H3

fppf(VFq
, Tpµ)Frob = qs the operation of Frob being semi-simple. Actually, one

has s = 0 except when V is supersingular.
Poincaré duality is available [12, Theorem 5.2 and Corollary 2.7.c)] only

at the level of torsion coefficients. Thereby, U2(Fq) and U3(Fq) are dual to
each other. One has lim←−U

2(Fq) = 0 and R1lim←−U
2(Fq) = 0 as the connecting ho-

momorphisms are zero. Hence, H2
fppf(VFq

, Tpµ) ∼= lim←−D
2
n(Fq). Further, it turns

out that the homomorphism HFrob → Hom(HFrob,Zp) does not need to be bi-
jective. It has a cokernel exactly of order qs (cf. [11, Lemma 5.2]).

Summarizing, we find that ∆p has the same p-adic valuation as

qs ·
∏

νp(rj/q)=0
rj 6=q

(1− rj/q) .



For iii), it remains to show the following. Up to p-adic units, the product of
the remaining factors, i.e.

∏
νp(rj/q)6=0

(1− rj/q), equals qs−1. This is worked out in [11,
sec. 7]. ¤

Remark 7. The Tate conjecture implies H2
fppf(VFq

, Tlµ)Frob ∼= Pic(VFq
)⊗ZZl.

Further, it is equivalent to Br(V )l-div = 0. Thus, Proposition 6 goes over into the
Artin-Tate formula in its usual form. However, the Tate conjecture is unknown
in general, even for K3 surfaces. For this reason, we prefer to apply the version
of the Artin-Tate formula which holds unconditionally.

4 The rank-1 condition

Let V be a K3 surface of degree d over a finite field Fq. Assume that q is a simple
zero of the characteristic polynomial of Frob. Then, the Tate conjecture is true
for V and the arithmetic Picard rank is equal to 1. The discriminant of Pic(V ) is
equal to d. A comparison with the analytic discriminant computed via the Artin-
Tate formula leads to a non-trivial condition for hypothetical Weil polynomials.

Remarks 8. a) This is a condition for rank-1 surfaces of a given degree d. It is
not a condition for K3 surfaces, in general.
b) The degree of a K3 surface may be any even integer greater than zero. On the
other hand, when the arithmetic Picard rank is 1, the number (−q) is necessarily
among the Frobenius eigenvalues. Hence, the Artin-Tate formula can generate
only even numbers.
c) The Artin-Tate conjecture implies the inequality #Br(V )|∆| ≤ 222−ρq. Thus,
the left hand side is O(q). Observe the following striking consequence. Over the
field Fq, there is no K3 surface of a square-free degree d > 221q and arithmetic
Picard rank 1.

Remark 9. The rank-1 condition may be extended to other situations where
a subgroup of the Picard group is known. For this, one has to compare the
predicted ranks and discriminants with the known ones.

5 The field extension condition

Notation 10. For q a positive integer, let Φ be a q2-Weil polynomial. Then, we
will write

E
(c)
Φ :=

∏

rj 6=q

qc − rc
j

q − rj

/
q(c−1)(21−ρ) .

Here, rj runs over all the zeroes of Φ. Further, ρ is the multiplicity of the zero q.

Observation 11 (Field extension for the characteristic polynomial). Let V be
any smooth, projective variety over Fq and

∏
j(T − rj) the characteristic poly-

nomial of Frob on H2
ét(VFq

,Ql). Then, the corresponding polynomial for VF
qd

is
∏

j(T − rd
j ).



Theorem 12. Let V be a K3 surface over Fq. Further, let c be a positive in-
teger. Then, for Φ the characteristic polynomial of Frob, the expression E

(c)
Φ is

a perfect square in Q.
Proof. If there is an rj 6= q such that rc

j = qc then E(c)
Φ = 0. Otherwise, for every

prime l, H2
fppf(VFq

, Tlµ)Frobqc is a sublattice of finite index in H2
fppf(VFq

, Tlµ)Frobq .
In particular, the discriminants differ by a factor being a perfect square. Divid-
ing the Artin-Tate formulas for VFqc and VFq through each other yields that
νl(E

(c)
Φ ) is even for every l. Finally, it is easy to see that E(c)

Φ > 0. ¤

Remark 13. Assume the Tate conjecture. Then, E(c)
Φ is non-zero if and only if

rkPic(VFq
) = rk Pic(VFqc).

Definition 14. We will call the condition on E
(c)
Φ to be a perfect square, the

field extension condition for the field extension Fqc/Fq.

Explicit computation of the expression E
(c)
Φ . Our goal is now to describe

the square class of E(c)
Φ more explicitly. It will turn out that, for an arbitrary Weil

polynomial, E(c)
Φ may be a non-square. In other words, Theorem 12 provides a

non-trivial condition.

Remark 15. A priori, there are infinitely many conditions, one for each value
of c. The main result of this section is that there is in fact only one condition.
Further, this condition may be checked easily.

Lemma 16. Let f ∈ Q[T ] be a q2-Weil polynomial. Suppose f(q) 6= 0 and
f(−q) 6= 0. Then, for r1, . . . , r2l the zeroes of f ,

2l∏

j=1

qc − rc
j

q − rj ∈
{

(Q∗)2 ∪ {0} for c odd,
f(−q)(Q∗)2 ∪ {0} for c even.

Further, the left hand side is actually in f(−q)(Q∗)2 for c = 2.
Proof. First observe that, for c = 2, the numerators q2 − r2j are all non-zero
according to the assumption. Hence, the additional assertion is clear once we
showed the main one.

For that, let us start with the contribution of one pair of complex conju-
gate roots. Put rj = q(u+ iv). Then, the corresponding factor is

(qc − rc
j)(q

c − rc
j)

(q − rj)(q − rj)
=

(qc − qc(u+ iv)c)(qc − qc(u− iv)c)
(q − q(u+ iv))(q − q(u− iv)

= q2(c−1)
c−1∏

k=1

(1− ζk
c (u+ iv))(1− ζk

c (u− iv)) .

Using (u+ iv)(u− iv) = 1, we get

q2(c−1)
c−1∏

k=1

(1− 2ζk
c u+ ζ2k

c ) .



Next, for k 6= c/2, let us multiply the factors for k and c− k. This yields

(1− 2ζk
c u+ ζ2k

c )(1− 2ζc−k
c u+ ζ2c−2k

c ) = 2 + 4u2 − 8uRe(ζk
c ) + 2 Re(ζ2k

c ) .

As Re(ζ2k
c ) = 2 Re(ζk

c )2 − 1, the latter term is the same as

4u2 − 8uRe(ζk
c ) + 4 Re(ζk

c )2 = (2u− 2 Re(ζk
c ))2 .

Multiplying over all k such that 1 ≤ k < c/2, we find a square in Q(u). Con-
sequently, up to the factor for k = c/2, if present, the contribution of the
pair {rj , rj} is a square in the resolvent algebra A of f .

Multiplying over all l pairs means to form a norm for the extension A/Q.
As the norm of a square is a square, the result is a perfect square in Q. For c odd,
this completes the argument.

For c even, the factors for k = c/2 are still missing. These are the ones
for ζk

c = −1. We find the product
l∏

j=1

(1 + rj/q)(1 + rj/q) = q−2lf(−q) .

The assertion follows. ¤
Proposition 17. Let Φ be a q2-Weil polynomial of even degree. Then,

E
(c)
Φ ∈

{
(Q∗)2 ∪ {0} for c odd,

qΦ(−q)(Q∗)2 ∪ {0} for c even.

For c = 2, we actually have E(c)
Φ ∈ qΦ(−q)(Q∗)2.

Proof. First case: c is odd.
Then, the denominator q(c−1)(21−ρ) is a perfect square. The zeroes (−q) con-
tribute factors qc−1 which are squares, too. Finally, the contribution to E(c)

Φ of
the zeroes not being real is a perfect square according to Lemma 16.
Second case: c is even.
If (−q) is a zero of Φ then E(c)

Φ = 0. This coincides with the claim as Φ(−q) = 0.
Otherwise, write Φ(T ) = (T − q)ρf(T ) where f(q) 6= 0 and f(−q) 6= 0. By as-
sumption, ρ is even. Hence, q(c−1)(21−ρ) is in the square class of q. Further, the
zeroes of Φ differing from q are exactly the zeroes of f . Their contribution is
in f(−q)(Q∗)2 for c = 2 and in f(−q)(Q∗)2 ∪ {0}, in general. As ρ is even,
f(−q)(Q∗)2 is the same class as Φ(−q)(Q∗)2. The assertion follows. ¤
Corollary 18. Let f ∈ Z[T ] be a q2-Weil polynomial.
i) Then, all field extension conditions for Fqc/Fq are satisfied if only if the con-
dition for the quadratic extension Fq2/Fq does hold.
ii) For extensions of odd degree, the field extension condition is always satisfied.
iii) If Fq and Fq2 lead to different Picard ranks then all the field extension con-
ditions are satisfied.

Remark 19. One might want to study the field extension conditions for Fqac/Fqa ,
i.e., for an extended ground field. Our calculations show that this does not lead
to new conditions.



Simplification of the field extension test. Denote by φn the n-th cyclo-
tomic polynomial. Correspondingly, there is the monic polynomial ψn given
by ψn(T ) := qϕ(n)φn(T/q). This is a q2-Weil polynomial.

Lemma 20. Let n > 1 be an integer. Then,

ψn(−q) ∈




(Q∗)2 if n is not a power of 2 ,
2(Q∗)2 for n = 2m,m ≥ 2 ,
{0} for n = 2 .

Proof. It is well known (see, e.g., [14, sec. 3]) that φn(−1) = 1 unless n is
a power of 2. Further, the formula φ2e(t) = t2

e−1
+ 1 shows φ2(−1) = 0 and

φ2e(−1) = 2 for e > 1. Observe, finally, that ϕ(n) is always even for n > 2. ¤

Remark 21. The result used here is a very special case of the value of a cyclo-
tomic polynomial at a root of unity.

Theorem 22. Let Φ ∈ Z[T ] be a q2-Weil polynomial of even degree. Factor-
ize Φ as

Φ(T ) = (T − q)r(T + q)sψn1(T ) · . . . · ψnk
(T )Φ1(T )

such that Φ1 has no root being a root of unity multiplied by q. Denote by M the
number of the powers of 2 among the n1, . . . , nk. Then,

i) if c is odd then E
(c)
Φ ∈ (Q∗)2 ∪ {0}.

ii) If c is even and s > 0 then E
(c)
Φ = 0 for every c.

iii) Finally, if c is even and s = 0 then E
(c)
Φ ∈ 2MqΦ1(−q)(Q∗)2 ∪ {0}. Further-

more, for c = 2, one actually has

E
(2)
Φ ∈ 2MqΦ1(−q)(Q∗)2 .

Proof. i) and ii) are immediate consequences from Proposition 17. For iii),
observe the assumption implies that r is even. In particular, (−2q)r is a per-
fect square. The assertion now follows from Proposition 17 together with Corol-
lary 20. ¤

Remark 23. Suppose Φ ∈ Z[T ] is a q2-Weil polynomial of degree 22. In order
to show that Φ may not be the characteristic polynomial of the Frobenius for a
K3 surface over Fq, it suffices to verify that s = 0 and 2MqΦ1(−q) is a non-square.

Example 24. As an example, we look at K3 surfaces of Picard rank 18 such that
the Picard group is defined over an extension of odd degree. Then, (−q) is not
an eigenvalue of the Frobenius. The transcendental part of the characteristic
polynomial is given by (T 4 + aT 3 + bT 2 + aq2T + q4). Hence, the field extension
condition usually requires that (2q2 − 2aq + b)q is a perfect square. If, however,
the cyclotomic factors contain an odd number of type ψ2n then 2(2q2−2aq+b)q
is required to be a square.



6 The special case of a degree-2 surface – Twisting

When a K3 surface has a non-trivial automorphism, one can hope to get
more conditions by inspecting the corresponding twist. This is the case for
degree-2 surfaces.

The Twist. Let the K3 surface V be given by the equation

w2 = f6(x, y, z) .

Then, for n a non-square in Fq, consider the twist Ṽ of V given by

nw2 = f6(x, y, z) .

Fact 25. Assume that q, r2, . . . , r22 are the eigenvalues of Frob for V . Then, the
eigenvalues for Ṽ are q,−r2, . . . ,−r22.
Proof. For e even, VFqe and ṼFqe are isomorphic. When e is odd, we have

#V (Fqe) + #Ṽ (Fqe) = 2·#P2(Fqe) = 2q2e + 2qe + 2 .

It is easy to check that the Lefschetz trace formula, applied to the eigenval-
ues q,−r2, . . . ,−r22, implies exactly this relation. ¤
Proposition 26. Let V be a K3 surface of degree 2 over Fq. Denote by Φ the
characteristic polynomial of Frob for V and by Φ̃ the corresponding polynomial
for the twist Ṽ .
i) Then, Φ has a simple zero at q if and only if Φ̃ does not have a zero at (−q).
I.e., the rank-1 condition can be applied to the one precisely when the field ex-
tension condition is non-empty for the other one.
ii) The two conditions are equivalent to each other.

Proof. i) immediately follows from Fact 25.
ii) By assumption, we can write Φ(T ) = (T − q)(T + q)2n−1f(T ). Here both,
f(q) and f(−q) are non-zero. Fact 25 shows, the corresponding polyno-
mial for the twist is Φ̃(T ) = (T − q)2nf(−T ). Using these two formulas, one
can make the conditions explicit. The rank-1 condition for Φ simply means
(2q)2n−1f(q) = 2 in Q∗/(Q∗)2 which is equivalent to saying that qf(q) is a
perfect square. This is precisely the field extension condition for Φ̃. ¤

7 Examples

Let us show in detail the data for a few examples. Our goal is to illustrate how
the Artin-Tate conditions work in practice.

Example 27 (A K3 surface of degree 2 over F7). Consider the surface V over F7,
given by

w2 = y6 +3z6 +5xz5 +5x2y4 +x2z4 +3x3y3 +x3z3 +5x4y2 +x4z2 +5x5y+2x6 .

Over F7, . . . ,F79 , there are exactly 66, 2 378, 118 113, 5 768 710, 282 535 041,



13 841 275 877, 678 223 852 225, 33 232 944 372 654, and 1 628 413 551 007 224
points. We claim that rk Pic(VF7

) = 2.
Assuming the characteristic polynomial of the Frobenius has more than two

zeroes of the form 7 times a root of unity, [6, Algorithm 22] leaves us with three
candidates Φ1, Φ2, Φ3.

Φi(t) = t22 − 16 t21 + 140 t20 − 1 029 t19 + 5 831 t18 − 36 015 t17 + 268 912 t16

− 1 882 384 t15 + 11 529 602 t14 − 46 118 408 t13 + ait
12 + bit

11 + cit
10

+ (−1)ji [−110 730 297 608 t9 + 1356 446 145 698 t8 − 10 851 569 165 584 t7

+ 75 960 984 159 088 t6 − 498 493 958 544 015 t5 + 3 954 718 737 782 519 t4

− 34 196 685 556 119 429 t3 + 227 977 903 707 462 860 t2

− 1 276 676 260 761 792 016 t + 3 909 821 048 582 988 049]

for
j1 = 0, (a1, b1, c1) = (161 414 428,−1 129 900 996, 7 909 306 972) ,

j2 = 1, (a2, b2, c2) = ( 80 707 214, 0,−3 954 653 486) ,

j3 = 1, (a3, b3, c3) = (121 060 821, 0,−5 931 980 229) .

Each of the three polynomials leads to an upper bound of 4 for the rank of the
geometric Picard group. All three have roots of absolute value 7, only. Apply-
ing the Artin-Tate formula, we find the following.

Table 1. Hypothetical ranks and discriminants

polynomial field arithmetic #Br(V )|∆|
Picard rank

Φ1
F7 2 58
F49 2 4524

Φ2
F7 1 4
F49 2 1996

Φ3
F7 1 6
F49 2 2997

The polynomial Φ1 is excluded by the field extension condition as the two val-
ues in the rightmost column define different square classes. On the other hand,
the rank-1 condition excludes Φ2 and Φ3 since we have a degree-2 example.
Thus, relative to the Tate conjecture, geometric Picard rank 2 is proven.

Example 28 (continuation). On the same surface, point counting over F710 leads
to a number of 79 792 267 067 823 523. For the characteristic polynomial of the
Frobenius, we find the two candidates Φ4, Φ5,

Φi(t) = t22 − 16 t21 + 140 t20 − 1 029 t19 + 5 831 t18 − 36 015 t17 + 268 912 t16

− 1 882 384 t15 + 11 529 602 t14 − 46 118 408 t13 + 40 353 607 t12 + ait
11

+ (−1)ji [ −1 977 326 743 t10 + 110 730 297 608 t9 − 1 356 446 145 698 t8

+ 10 851 569 165 584 t7 − 75 960 984 159 088 t6 + 498 493 958 544 015 t5

− 3 954 718 737 782 51 9t4 + 34 196 685 556 119 429 t3

− 227 977 903 707 462 860 t2 + 1 276 676 260 761 792 016 t

− 3 909 821 048 582 988 049]



for j4 = 0, a4 = 0, j5 = 1, and a5 = 564 950 498. Φ4 corresponds to the minus
sign in the functional equation, Φ5 to the case of the plus sign. Both candidates,
according to the Tate conjecture, imply geometric Picard rank 2.

To decide which sign is the right one, one would first check the absolute
values of the roots. Unfortunately, both polynomials only have roots of absolute
value 7. The Artin-Tate formula provides the picture given in the table below.

Table 2. Hypothetical ranks and discriminants

polynomial field arithmetic #Br(V )|∆|
Picard rank

Φ4
F7 1 2
F49 2 997

Φ5
F7 2 55
F49 2 4125

Thus, Φ5 is excluded by the field extension condition. The minus sign in the
functional equation is correct.

Example 29 (A K3 surface of degree 8 over F3). Consider the complete inter-
section V of the three quadrics in P5

F3
, given by q1, q2, and q3,

q1 := −xy + xz + xu+ xv + xw − y2 − yz − yv + yw

+ z2 + zu+ zw − u2 − uw + v2 + w2 ,

q2 := −x2 + xy + xz − xv + xw − y2 + yz − yu− yv
+ yw − zu− zw + uw − v2 + vw ,

q3 := xu− yz .

V is smooth and, therefore, a K3 surface. As q3 is of rank 4, V carries an
elliptic fibration. There are precisely 14, 98, 794, 6 710, 59 129, 532 460, 4 784 990,
43 049 510, and 387 374 024 points over F3, . . . ,F39 . From these data, let us check
whether one can prove rk Pic(VF3

) = 2.
Assume that the characteristic polynomial of the Frobenius has more than

two zeroes of the form 3 times a root of unity. Then, [6, Algorithm 22] leaves us
with five polynomials Ψ1, . . . , Ψ5,

Ψi(t) = t22 − 4 t21 + 27 t18 + 81 t17 − 243 t16 + 6 561 t13 + ait
12 + bit

11 + cit
10

+ (−1)ji [531 441 t9 − 14 348 907 t6 + 43 046 721 t5 + 129 140 163 t4

− 13 947 137 604 t + 31 381 059 609]

for j1 = 0, (a1, b1, c1) = (−59 049, 236 196,−531 441) ,

j2 = 0, (a2, b2, c2) = ( 0,−118 098, 0) ,

j3 = 0, (a3, b3, c3) = ( 19 683,−236 196, 177 147) ,

j4 = 1, (a4, b4, c4) = (−59 049, 0, 531 441) ,

j5 = 1, (a5, b5, c5) = (−39 366, 0, 354 294) .

Applying the Artin-Tate formula to these polynomials, we obtain the follow-
ing data.



Table 3. Hypothetical ranks and discriminants

polynomial field arithmetic #Br(V )|∆|
Picard rank

Ψ1
F3 2 24
F9 4 1116

Ψ2
F3 2 27
F9 2 81

Ψ3
F3 2 28
F9 2 112

Ψ4
F3 3 144
F9 4 1152

Ψ5
F3 1 2
F9 2 65

Observe that an elliptic surface of Picard rank 2 automatically has a discrimi-
nant of the form (−n2) for n an integer. We may therefore exclude everything
except for Ψ4. Note that Ψ2 is, in addition, incompatible with the field exten-
sion condition.

Thus, using the numbers of points over the fields up to F39 , we only obtain
that, either the geometric Picard rank is equal to 2, or Ψ4 is the characteristic
polynomial of the Frobenius in which case it is 4.

Example 30 (continuation). The number of points over F310 is 34 871 648 631.
This additional information reproduces Ψ1 and Ψ4 as possible characteristic poly-
nomials of Frob. Consequently, the minus sign holds in the functional equation
and the geometric Picard rank of V is equal to 4.

8 Statistics

We tested the Artin-Tate conditions on samples of K3 surfaces of degrees 2,
4, 6, and 8. The possibilities of computing are limited by the fact that point
counting over large finite fields is slow. In degree 2, decoupling [6, Algorithm 17]
(see also [5]) leads to a substantial speed-up. In higher degrees, one may focus
on elliptic K3 surfaces and exploit the fact that point counting on the elliptic
fibers is fast. The numbers and particularities of the examples treated are listed
in Table 4.

Table 4. Numbers of examples computed

p = 2 p = 3 p = 5 p = 7

d = 2 1000 rand 1000 rand 1000 dec 1000 dec
d = 4 1000 rand 1000 ell
d = 6 1000 rand 1000 ell
d = 8 1000 rand 1000 ell

dec = decoupled, ell = elliptic, rand = random

The remaining parameters of the surfaces were chosen by a random number gen-
erator. We stored the equations and the numbers of points over Fp, . . . ,Fp10 in
a file.



Results I. Point counting until Fp9 . First, we tried to show that the ge-
ometric Picard-rank was equal to 2 only using the numbers of rational points
over Fp, . . . ,Fp9 . I.e., we applied [6, Algorithm 22]. This algorithm produces a
list of hypothetical Weil polynomials for each surface. If one is able to exclude
all of them then, relative to the Tate conjecture, rank 2 is proven. To exclude a
particular polynomial, we first checked whether the roots are of absolute value p.
When a surface was known to be elliptic over Fp, we checked in addition that
the predicted Picard rank over Fp was at least equal to 2.

Then, we applied the Artin-Tate conditions to the polynomials. We checked
the field extension condition and the rank-1 condition. For surfaces known to
be elliptic over Fp, we observed the fact that arithmetic Picard rank 2 forces
the discriminant to be minus a perfect square. The results are summarized in
Table 5.

Table 5. Distribution of the remaining hypothetical characteristic polynomials

Number of polynomials 0 1 2 3 4 5 6

d = 2, p = 2 without 84 479 312 89 21 12 3
with A-T conditions 149 598 218 28 7 0 0

d = 2, p = 3 without 116 480 285 88 24 4 3
with A-T conditions 214 573 193 20 0 0 0

d = 2, p = 5 without 85 581 209 96 25 4 0
with A-T conditions 158 651 169 20 2 0 0

d = 2, p = 7 without 92 534 232 98 37 7 0
with A-T conditions 214 611 154 21 0 0 0

d = 4, p = 2 without 40 532 303 87 29 8 1
with A-T conditions 81 638 249 27 5 0 0

d = 4, p = 3 without 22 669 242 57 9 1 0
with A-T conditions 53 785 161 1 0 0 0

d = 6, p = 2 without 39 549 312 70 22 6 2
with A-T conditions 83 645 257 14 1 0 0

d = 6, p = 3 without 16 713 217 47 7 0 0
with A-T conditions 50 797 148 5 0 0 0

d = 8, p = 2 without 25 657 268 38 8 4 0
with A-T conditions 29 723 239 5 4 0 0

d = 8, p = 3 without 12 720 236 27 4 1 0
with A-T conditions 20 803 175 2 0 0 0

Results II. Point counting until Fp10 . Using data up to Fp10 , one obtains
two hypothetical Weil polynomials for each of the surfaces. The two polynomi-
als correspond to the possible signs in the functional equation (1). One has to
exclude one of them. For this, we first checked the absolute values of the roots.
For surfaces known to be elliptic over Fp, we then tested whether the predicted
arithmetic Picard rank is at least 2. Then, we applied the Artin-Tate conditions.
We checked the field extensions and the rank-1 condition. For elliptic surfaces,
supposed to be of arithmetic Picard rank 2, we tested, in addition, whether the
predicted discriminant was minus a square.

Table 6 shows the number of surfaces with known signs. In the case that the
sign is not known, we computed the numbers of points predicted over further
extensions of Fp. Comparing these numbers for both hypothetical polynomials
indicates whether further point counting would lead to a decision of the sign.
We count how often which fields had to be considered in order to decide the sign.



Table 6. Sign decision in the functional equation

p 2 3 5 7 2 3 2 3 2 3
d 2 2 2 2 4 4 6 6 8 8

Known signs without A-T 768 843 864 869 761 876 790 888 822 897
Known signs using A-T 863 940 940 961 863 943 868 933 867 944
Remaining unknown signs 137 60 60 39 137 57 132 67 133 56
Data up to Fp11 insufficient 84 23 15 12 69 19 77 25 72 21

Data up to Fp12 insufficient 41 11 2 1 39 3 42 11 47 7

Data up to Fp13 insufficient 22 5 1 0 24 2 20 2 24 2

Data up to Fp14 insufficient 13 2 0 0 12 0 13 1 8 0

Data up to Fp15 insufficient 7 0 0 0 8 0 7 0 5 0

Data up to Fp16 insufficient 4 0 0 0 3 0 2 0 4 0

Data up to Fp17 insufficient 4 0 0 0 2 0 2 0 0 0

Data up to Fp18 insufficient 4 0 0 0 0 0 1 0 0 0

Data up to Fp19 insufficient 2 0 0 0 0 0 1 0 0 0

Data up to Fp20 insufficient 0 0 0 0 0 0 0 0 0 0

Using these data, we repeated our attempt to prove that the geometric Pi-
card rank is equal to 2. More precisely, we checked whether only two roots of the
characteristic polynomial are of the form p times a root of unity. The numbers
of surfaces for which we succeeded are listed in Table 7.

Table 7. Numbers of rank-2 cases using Fp10 -data

rank 2 proven rank 2 possible

p = 2, d = 2 without 271 330
with A-T conditions 278 301

p = 3, d = 2 without 397 460
with A-T conditions 409 428

p = 5, d = 2 without 353 425
with A-T conditions 360 382

p = 7, d = 2 without 460 511
with A-T conditions 464 476

p = 2, d = 4 without 132 197
with A-T conditions 138 163

p = 3, d = 4 without 79 114
with A-T conditions 79 81

p = 2, d = 6 without 145 183
with A-T conditions 152 163

p = 3, d = 6 without 74 101
with A-T conditions 74 81

p = 2, d = 8 without 65 93
with A-T conditions 65 74

p = 3, d = 8 without 23 47
with A-T conditions 23 25

Conclusion. The Artin-Tate conditions usually halve the number of cases with
unknown signs. Furthermore, they double the number of cases where geometric
Picard rank 2 may be proven only using data up to Fp9 . Comparing Table 5 with
Table 7, we see, however, that still only about one half of the cases with Picard
rank 2 may be detected when counting until Fp9 .

Remark 31. Let us finally mention that the Artin-Tate conditions came to us as
a big surprise. It is astonishing that the Artin-Tate formula may be incompatible
with itself under field extensions. Thus, it seems not entirely unlikely that there
are even more constraints and one can still do better.
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publication by Luc Illusie, in: Algebraic surfaces (Orsay 1976–78), Lecture Notes
in Math. 868, Springer, Berlin-New York 1981, 58–79

5. A.-S. Elsenhans and J. Jahnel: The Asymptotics of Points of Bounded Height on
Diagonal Cubic and Quartic Threefolds, in Algorithmic number theory (ANTS 7),
317–332, Springer, Berlin 2006

6. Elsenhans, A. S., Jahnel J.: K3 surfaces of Picard rank one and degree two, in:
Algorithmic Number Theory (ANTS 8), 212–225, Springer, Berlin 2008

7. Elsenhans, A. S., Jahnel J.: On the computation of the Picard group for K3 sur-
faces, Preprint 2009

8. Grothendieck, A.: Le groupe de Brauer, III: Exemples et compléments, in:
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