
ON THE SPIEGELUNGSSATZ FOR THE 4–RANK

ÉTIENNE FOUVRY AND JÜRGEN KLÜNERS

Abstract. Let d be a non square positive integer. We give the value of the
natural probability that the narrow ideal class groups of the quadratic fields

Q(
√

d) and Q(
√
−d) have the same value for their 4–ranks.

1. Introduction

1.1. Conventions and notations. Throughout this work, the letter D is reserved
to denote a fundamental discriminant, i.e the discriminant of a quadratic extension
of Q. Let K = Q(

√
D), N be the norm function on K and let OK be the ring

of integers of K. On the set of non zero ideals of OK we say that two ideals I
and J are equivalent in the narrow sense, if there is an element a ∈ OK , such that
I = (a)J and N (a) > 0. By the multiplication of the ideal classes, we obtain the
(narrow) class group of K, that we denote by CD. This is a finite abelian group.

We extend this definition of CD in the following way: if d is a non square integer,
not necessarily a fundamental discriminant, we also denote by Cd the class group
of the quadratic field Q(

√
d). When d is a non zero perfect square, we define Cd to

be the trivial group.
We reserve the letter p to prime numbers and, for n ≥ 1, the number of distinct

primes divisors of n is denoted by ω(n). The Möbius function of n is µ(n).
If A is a finite multiplicative abelian group and p a prime number, the p–rank

is, by definition rkp(A) := dimFp(A/Ap). More generally, if k is an integer ≥ 1, we
define the pk–rank of A, by rkpk(A) := dimFp(Ap

k−1
/Ap

k

).

1.2. Scholz’ Theorem. The original Spiegelungssatz concerned the 3–rank of CD
and was proved by Scholz [13] in the form of the double inequality

(1) rk3(Cd) ≤ rk3(C−3d) ≤ rk3(Cd) + 1,

for any non square d ≥ 1. With the above convention, it is straightforward to
extend (1) to any d ≥ 1.

Hence, when d ≥ 1 is given, the integer rk3(C−3d) can only take two values:
either rk3(Cd) or rk3(Cd)+1. Each of these possibilities is well described in algebraic
terms. But the natural question is to know the frequency of each of these events.
Dutarte [6] further pushing the probabilistic model leading to the heuristics of
Cohen–Lenstra [3], proposed a value of the second frequency. More precisely, he
was led to conjecture
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Conjecture 1. ([6, Formula(3) p. 8]) For every integer a ≥ 0 we have

(2) lim
X→+∞

]
{
D ; 0 ≤ D ≤ X, rk3(CD) = a and rk3(C−3D) = a+ 1

}
]
{
D ; 0 ≤ D ≤ X, rk3(CD) = a

} = 3−(a+1).

The equality (2) can be seen as a conditional probability under the following
convention: Let A be a subset of the set D+ of positive fundamental discriminants
D, we define the probability of the event D ∈ A as being equal to the following
limit (if it exists)

(3) Prob(A) := lim
X→+∞

( ∑
0<D<X
D∈A

1
)/( ∑

0<D<X

1
)
.

This probability also is the natural density of A, considered as a subset of D+.
With this definition, Conjecture 1 is only a statement concerning the existence and
the value of a conditional probability. In other words, Dutarte thinks that for any
a ≥ 0 we have the equality

(4) Prob
(

rk3(C−3D) = a+ 1 and rk3(CD) = a
∣∣ rk3(CD) = a

)
= 3−a−1.

Now we appeal to the following consequence of the heuristics of Cohen and Lenstra
[3, (C 9) p. 57]

Prob
(
rk3(CD) = a

)
= 3−a(a+1) η∞(3) η−2

a (3) (1− 3−(a+1))−1,

where the function ηk(t) is defined in (8) below. Summing the equality (4) over all
a ≥ 0 we have

Prob
(
rk3(C−3D) = rk3(CD) + 1

)
=
∞∑
a=0

Prob
(
rk3(C−3D)− 1 = rk3(CD) = a

)
= η∞(3)

∞∑
a=0

3−(a+1)2 η−2
a (3) (1− 3−(a+1))−1(5)

= 0. 283530 · · ·
But the equality (5) is conjectural for the moment, even if it has been tested on a
computer (see [6, §4.2]). As far as we know, the only result around the conjectural
value (5) is due to Belabas [1, Theorem 2.1] & [2], who proved the following equality

(6)

∑
0<D<X

rk3(C−3D)=rk3(CD)+1

3rk3(CD)

∑
0<D<X

3rk3(CD)
=

1
4

+O
(
exp(−1

5
(logX log logX)

1
2 )
)
,

as X tends to +∞. The equality (6) can be seen as a weighted version of (5).
These weights are chosen in order to easily apply the seminal work of Davenport &
Heilbronn [4] concerning the average behavior of the 3–part of CD.

1.3. Damey–Payan’s Theorem and the contribution of Gerth. We owe to
Damey and Payan [5, Théorème II.9 & II.10] to have proved that a phenomenon
similar to the 3–rank also holds for the 4–rank, that is

Theorem A. (”Spiegelungssatz for the 4–rank”) For every d ≥ 1 we have

(7) rk4(Cd) ≤ rk4(C−d) ≤ rk4(Cd) + 1.
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Note the equality Q(
√
−d) = Q(

√
−4d). We shall say that the fields Q(

√
d) and

Q(
√
−d) are associated.

As for the 3–rank, the natural question is to evaluate the frequency of each of
the events ”rk4(C−d) = rk4(Cd)” and ”rk4(C−d) = rk4(Cd) + 1”. The only paper
concerning this question is due to Gerth [11]. In order to present his results we
introduce several notations. For k ∈ N ∪ {∞} let ηk be the function defined for
t > 1 by

(8) ηk(t) :=
k∏
j=1

(
1− t−j

)
.

For x ≥ 1 and a, t ≥ 0 integers we introduce the two sets

At;x :=
{
m ; m squarefree ≤ x, exactly t primes ramify in Q(

√
−m)/Q

}
,

and
A=
t,a;x :=

{
m ; m ∈ At,x, rk4(C−m) = rk4(Cm) = a

}
.

With these conventions, Gerth proved

Theorem B. ([11, p.2551]) For every integer a ≥ 0, we have

lim
t→∞

lim
x→∞

] A=
t,a;x

] At;x
= 2−a 2−a

2
η∞(2)ηa(2)−2.(9)

In this statement, Gerth has chosen to list all the imaginary quadratic fields in
the form Q(

√
−m) with m squarefree. Gerth could have adopted the other point

of view of writing these imaginary fields in the form Q(
√
D) with D a negative

fundamental discriminant. This is the point of view that we prefer to adopt in
the present paper. Also remember that D = −m or D = −4m according to the
cases m ≡ 3 mod 4 or m ≡ 1 or 2 mod 4, and that exactly ω(|D|) primes ramify in
Q(
√
D).

More precisely, here is the variant of Theorem B that we have in mind and that
could have been equally proved by Gerth in [11]:

Theorem C. For any integer a ≥ 0 we have

lim
t→∞

lim
X→∞

]
{
D ; 0 < −D < X, ω(|D|) = t, rk4(CD) = rk4(C−D) = a

}
]
{
D ; 0 < −D < X, ω(|D|) = t

}
= 2−a 2−a

2
η∞(2)ηa(2)−2.

Theorems B & C appeal several commentaries. By mixing Theorem C with the
central result of [10, Formula (1.5)], we get

Corollary A. ([11, p.2551]) For every integer a ≥ 0

lim
t→∞

lim
X→∞

] {D ; 0 < −D ≤ X, ω(|D|) = t, rk4(CD) = rk4(C−D) = a}
] {D ; 0 < −D ≤ X, ω(|D|) = t, rk4(CD) = a}

= 2−a.

This corollary, roughly speaking, asserts that for an imaginary quadratic field
with 4–rank equal to a, the probability (in the special sense introduced by Gerth)
that its associated field has the same 4–rank is equal to 2−a. But the meaning of
this probability cannot be reduced to the natural probability introduced in (3).

The second remark is when we sum the equality contained in Theorem C over
all a ≥ 0 we obtain
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Corollary B. (see [11, Theorem 1])

lim
t→∞

lim
X→∞

] {D ; 0 < −D ≤ X, ω(−D) = t, rk4(CD) = rk4(C−D)}
] {D ; 0 < −D ≤ X, ω(|D|) = t}

=
∞∑
a=0

2−a 2−a
2
η∞(2)ηa(2)−2 = 0. 610321 · · · .

This Corollary shows that certainly the behavior of the 4–ranks differs from the
3–rank as long as the Spiegelungssatz is concerned.

The third remark is that Gerth could have equally stated Theorem B by first
considering the value a of rk4(Cm) (instead of rk4(C−m)). Then the value of the
second part of the equalities contained in Theorems B, C and Corollary A would
have been modified. Of course, the numerical constant appearing in Corollary B
would have been unchanged.

The purpose of this paper is to prove the statements of Theorem C and Corollar-
ies A & B, but in the context of the more natural space of probability, as defined in
(3), but naturally transposed to the set of negative discriminants. This is far from
being a simple transposition of the original proofs of Gerth, since he writes [11,
p.2547]: However, computing these limits appears to be very difficult. The limits
mentioned by Gerth are those which will appear in Theorem 1 below.

1.4. Statement of the results. The central result of our paper is

Theorem 1. For every integer r ≥ 0 we have
(10)

lim
X→∞

]
{
D ; 0 < −D < X, rk4(CD) = rk4(C−D) = r

}
]
{
D ; 0 < −D < X

} = 2−r 2−r
2
η∞(2)ηr(2)−2,

and

(11) lim
X→∞

]
{
D ; 0 < −D < X, rk4(CD) = rk4(C−D) + 1 = r

}
]
{
D ; 0 < −D < X

}
= (1− 2−r) 2−r

2
η∞(2)ηr(2)−2.

Similar statements remain true if, in the above expressions, we restrict to the neg-
ative fundamental D congruent to 1 mod 4, to 0 mod 8 or to 4 mod 8.

Summing (10) or (11), we obtain

Corollary 1. We have the equalities
(12)

lim
X→∞

]
{
D ; 0 < −D < X, rk4(CD) = rk4(C−D)

}
]
{
D ; 0 < −D < X

} =
∞∑
r=0

2−r 2−r
2
η∞(2)ηr(2)−2,

and

(13) lim
X→∞

]
{
D ; 0 < −D < X, rk4(CD) = rk4(C−D) + 1

}
]
{
D ; 0 < −D < X

}
=
∞∑
r=0

(1− 2−r) 2−r
2
η∞(2)ηr(2)−2.
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Similar statements remain true if, in the above expressions, we restrict to the neg-
ative fundamental D congruent to 1 mod 4, to 0 mod 8 or to 4 mod 8.

It is important to notice that the values appearing on the right sides of the
equations (10), (11), (12) & (13) coincide with the values appearing in Theorem C
and Corollary B, but the probabilistic models are not the same at all. However,
these coincidences confirm an intuition of Gerth (see [11, p.2547]) expressed as:
Although the limits we compute are not guaranteed to equal the above limits, our
results do provide some insight into this question.

2. The theory of moments

A classical tool of analytic number theory in the study of the distribution of the
values of an arithmetic function is the theory of moments of this function. Hence,
as in [7, p.470], we introduce the quantities

(14) S−(X, k, a, q) :=
∑

0<−D<X
D≡a mod q

2k rk4(CD),

where X ≥ 2 is a number and a, k ≥ 0, and q ≥ 1 are integers. In the present
paper, we only deal with the cases

(15) (a, q) ∈
{

(1, 4), (0, 8), (4, 8)
}
,

which corresponds to the classical partition of the set of fundamental discrimi-
nants, into three subsets, according to the highest power of 2 dividing D. The
sum S−(X, k, a, q) is the moment of order k of the function 2rk4(CD) on the set of
negative discriminants congruent to a mod q. It is more efficient to work with the
powers of 2rk4(CD) than with the powers of rk4(CD) itself, since algebra furnishes a
flexible formula for 2rk4(CD) (see (26) below).

It is natural to compare this moment to the corresponding counting function

D−(X, a, q) := S−(X, 0, a, q),

which is the cardinality of the set of negative fundamental discriminants D, congru-
ent to a mod q, of absolute value less than X. These cardinalities are well known
since we have

(16) D−(X, 1, 4), 4 · D−(X, 0, 8) & 4 · D−(X, 4, 8) =
2
π2
X +O(

√
X),

uniformly for X ≥ 2. The equalities (16) are only variations on the classical formula∑
n≤X

µ2(n) =
6
π2
X +O(

√
X),

which counts the number of squarefree numbers up to X. We recall a notation
introduced in [7, p.461]: N(k, 2) denotes the total number of vector subspaces (of
any dimension) of Fk2 .

One of the central results of [7] is

Theorem D. (see [7, Thm. 6, 8 & 10]) Let (a, q) satisfying (15). Then for any
integer k ≥ 0 and for any ε > 0 we have the equality

S−(X, k, a, q) = N(k, 2) · D−(X, a, q) +Ok,ε

(
X(logX)−2−k+ε

)
uniformly for X ≥ 2.
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From Theorem D we deduced the following

Corollary C. (see [7, Theorem 3]) Let (a, q) satisfying (15). For every r ≥ 0 we
have

lim
X→∞

]
{
D ; 0 < −D < X, D ≡ a mod q, rk4(CD) = r

}
D−(X, a, q)

= 2−r
2
η∞(2)ηr(2)−2.

In order to trap the values of the pair of variables (rk4(CD), rk4(C−D)), we
introduce the mixed moment

(17) S−mix(X, k, a, q) :=
∑

0<−D<X
D≡a mod q

2k rk4(CD) · 2rk4(C−D).

Generally speaking, we should have to compute the sums corresponding to the
terms 2k rk4(CD) · 2` rk4(C−D), for all the integer exponents (k, `). But the functions
2rk4(CD) and 2rk4(C−D) are highly constrained by Theorem A. Hence it is sufficient
to compute the mixed moments for the exponents (k, 1) only (see (18) below). This
remark avoids a huge amount of work, particularly in the combinatorial aspect.
Such a situation already appeared in [9], where we studied the values of the pair
of functions (rk4(CD), rk4(ClD)), where ClD is the ordinary class group of the field
Q(
√
D), with D > 0, divisible by no prime ≡ 3 mod 4.

Theorem 1 will be deduced from

Theorem 2. Let (a, q) satisfying (15). Then for any integer k ≥ 0 and for any
ε > 0 we have the equality

S−mix(X, k, a, q) =
N(k + 1, 2) + N(k, 2)

2
· D−(X, a, q) +Ok,ε

(
X(logX)−2−k+ε

)
uniformly for X ≥ 2.

Theorems D & 2 imply that asymptotically the ratio

S−mix(X, k, a, q)/S−(X, k + 1, a, q)

has a limit strictly less than 1 as X tends to infinity. This means that frequently,
the event rk4(C−D) = rk4(CD)− 1 happens. The theory of moments, via Theorem
2 is strong enough to deduce the frequency of such an event.

2.1. From Theorem 2 to Theorem 1. The structure of the proof is the same
as the proof of [9, Theorem 2, see §2.2]. We shall restrict to the case (a, q) = (1, 4).
The other cases (a, q) = (0, 8) and (a, q) = (4, 8) of (15) are exactly similar. To
obtain the equalities (10) & (11), it suffices to sum the equalities corresponding to
these three cases.

For r, s integers ≥ 0 and for X ≥ 5 define the densities

δ(r, s,X) :=
]
{
D ; 0 < −D < X, D ≡ 1 mod 4, rk4(CD) = r, rk4(C−D) = s

}
D−(X, 1, 4)

.

Theorem A (Damey–Payan’s Theorem) is equivalent to the following equality

(18) δ(r, s,X) = 0 for X > 5 and for s < r − 1 or s > r.

Corollary C and (18) imply the equality

(19) lim
X→∞

(
δ(r, r,X) + δ(r, r − 1, X)

)
= 2−r

2
η∞(2)ηr(2)−2.

From Theorem 2 we deduce Theorem 1 as follows.
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Proof. Dividing by D−(X, 1, 4), we write Theorem 2 in the weaker form

lim
X→∞

∞∑
r=0

(
δ(r, r,X)2(k+1)r + δ(r, r − 1, X)2(k+1)r−1

)
=

N(k + 1, 2) + N(k, 2)
2

,

for k = 0, 1, . . . . In an equivalent form we write this equality as

(20)
∞∑
r=0

ξ(r,X) 2(k+1)r =
(
N(k + 1, 2) + N(k, 2)

)
+ ok(1),

for any k ≥ 0 and X →∞. We have introduced

ξ(r,X) := 2δ(r, r,X) + δ(r, r − 1, X).

The function ξ(r,X) takes its values between 0 and 2. Applying positivity to (20)
we obtain

ξ(r,X) 2(k+1)r = Ok(1),

which leads to

(21) 0 ≤ ξ(r,X) = Ok
(
2−(k+1)r

)
,

uniformly for X ≥ 5 and r ≥ 0. By an infinite diagonal process, we build an infinite
sequence of integers M and a sequence (ξr)r≥0 of real numbers in [0, 2] such that

lim
m→∞
m∈M

ξ(r,m) = ξr,

for all r ≥ 0. The relation (21) allows us to apply Lebesgue’s dominated convergence
theorem to (20), in order to deduce the equalities

(22)
∞∑
r=0

ξr 2(k+1)r = N(k + 1, 2) + N(k, 2) for any k ≥ 0.

The equations (22) appear to be an infinite linear system in the positive unknowns
ξr. The study of this system is divided in several steps.

Lemma 1. The infinite linear system has at most one solution (ξr)r≥0 in positive
ξr.

Proof. The system (22) is equivalent to the following system

(23)
∞∑
r=0

ξ′r 2k r = Ck (k ≥ 0),

with the new unknowns ξ′r = 2rξr and Ck = N(k+1, 2)+N(k, 2). The system (23)
has the shape of the system studied in [8, §4.2]. By the explicit formula for N(k, 2)
(e.g. see [8, Lemma 1]), we see that Ck satisfies

Ck � 2
(k+1)2

4 + 2
k2
4 � 2

k2
2 .

We are exactly in the conditions of the application of [8, Prop. 3], the proof of
which is based on Jensen’s formula. Hence (23) has at most one solution in positive
ξ′r. From this we deduce that the system (22) has at most one solution in positive
ξr. �

The second step is
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Lemma 2. The values

ξr = (1 + 2−r) 2−r
2
η∞(2) η−2

r (2) (r ≥ 0)

are a solution of the infinite linear system (22).

Proof. By a proof based on formulas around the theory of partitions, we know [8,
Prop.2] that the real numbers

yr = 2−r
2
η∞(2)η−2

r (2) (r ≥ 0),

satisfy the linear equations
∞∑
r=0

yr 2k r = N(k, 2),

for any integer k ≥ 0. (This result was used to deduce Corollary C from Theorem
D, see [7]). Applying this result twice, with a change of variable k + 1 7→ k and
using linearity, we see that yr + 2−ryr is solution of (22). �

Now putting Lemmas 1 & 2 together, we deduce that the system (22) has only
one solution in positive (ξr) given by Lemma 2. This also implies that, for each r,
the sequence ξ(r,X) has only one limit point when X → ∞. In other words, we
know that

(24) lim
X→∞

(
2δ(r, r,X) + δ(r, r − 1, X)

)
= (1 + 2−r) 2−r

2
η∞(2)ηr(2)−2.

Putting together the relations (19) and (24), we deduce that each of the quantities
δ(r, r,X) and δ(r, r−1, X) have limits whenX tends to∞. These limits respectively
have values 2−r 2−r

2
η∞(2)ηr(2)−2 and (1− 2−r) 2−r

2
η∞(2)ηr(2)−2. This is exactly

what is claimed in Theorem 1. �

2.2. Possible extensions. Due to its flexibility, the method presented in this
paper may have several extensions. The first one is to rather count the positive
discriminants when summing the moments, that is to evaluate

(25) S+(X, k, a, q) :=
∑

0<D<X
D≡a mod q

2k rk4(CD) · 2rk4(C−D), for (a, q) satisfying (15).

This possibility was already mentioned at the end of §1.3. We could even restrict
the summation in (25) to special discriminants D, which means that no prime p ≡
3 mod 4 dividesD (see [9], for a study of the distribution law of the function rk4(CD)
on that set of discriminants with applications to the real quadratic fields, with a
fundamental unit with norm −1). The interest of these two possible extensions will
rely on the combinatorial question, which would lead to constant certainly different
from the constant (N (k + 1, 2) + N (k, 2))/2, appearing in Theorem 2.

3. Strategy of the proof of Theorem 2

Almost all of the tools required for the proof of this theorem are already in [7],
since the problem has many similarities with one of the problems solved in that
paper, namely to prove Theorem D.
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The starting point is a formula for 2rk4(CD) in terms of sums of product of Jacobi
symbols over divisors of D. When D < 0 is ≡ 1 mod 4, we have

(26) 2rk4(CD) =
1

2 · 2ω(−D)

∑
−D=D0D1D2D3

(
D2

D0

)(
D1

D3

)(
D3

D0

)(
D0

D3

)
.

(see [7, Formula (20)]). Of course there are similar formulas where D is positive or
even, they are more complicated, because of the influence of the integers −1 and 2
(see [7, Formulas (77), (107), (111), (119) & (129)]).

In order to study the moment of order k of 2rk4(CD), it is necessary to raise
(26) to the k–th power. Then the number of variables becomes 4k. To skirt round
this technical difficulty, we exploit an idea introduced by Heath–Brown in [12]:
take the indices in F2k

2 and use polynomials of degree two over F2 to detect which
Jacobi symbols appear and which do not appear in the expansion of 2k rk4(CD). This
idea was already exploited in [7]. Then we arrive at Lemmata 4, 14 or 19 below,
according to the congruence of D mod 8.

We multiply the expression by 2rk4(C−D) in terms of a quadruple sum, to finally
arrive at an expression of S−mix(X, k, a, q) as a sum of dimension 4k+1, over variables
Dw, with w ∈ F2(k+1)

2 (see Lemma 6, 16 & 21). We concentrate more on the
case D ≡ 1 mod 4. Then the Dw are odd squarefree variables which satisfy the
inequality

∏
w∈F2(k+1)

2
Dw ≤ X. The Jacobi symbols appear in this expression

of S−mix(X, k, a, q) in the form
(
Dw

Dw′

)Φk+1(w;w′)

, where Φk+1 is some polynomial

defined over F2. This expression has much to do with S−(X, k + 1, 1, 4) defined in
(14) and thoroughly studied in [7, §5]. In particular, analytic methods will take
advantage of the oscillations of the character

(
Dw

Dw′

)
, provided Dw and Dw′ satisfy

some inequalities. But the question is to be sure that we effectively meet such a
character, in other words, such a study has a meaning only if the indices w and w′

satisfy the equality Φk+1(w; w′)+Φk+1(w′; w) = 1. In that case, we follow an idea
introduced in [12] and we say that these indices are linked (see the definition given
in (31)). Then a combinatorial study proves that the main term can only come
from the contribution from sets of indices {w} such that exactly 2k+1 of these form
a vector space (or a translate of vector space) of unlinked indices called U , and such
that Dw = 1 if w /∈ U . Gluing back the variables we arrive at Lemmata 7 & 13,
where it remains to evaluate the coefficient of the main term. It is at that point
that the proof of Theorem 2 really differs from the proof of Theorem D (for the
parameter k + 1), as done in [7]. Actually, some new cancellations appear in the
coefficient of the main term. Their rôle is to testify that, oftenly, rk4(C−D) is less
than rk4(CD). As we said before, the analytic part of the present paper is almost
the same as in [7]. It is useless to write it again. We ask the reader to refer to this
paper, we have even chosen the same notations as far as possible.

3.1. Conventions. Before embarking the proof, we make the following conven-
tions, which will apply for §4, 5 & 6, and we recall some easy facts. We have tried
to follow the notations of [7], which were much inspired by [12]. We frequently
introduced a subscript mod under some symbols to mean that we have modified the
definition of this symbol by comparison with [7].

First of all, some conventions in set theory:
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• If S and T are two sets, we put S∆T := (S ∪ T ) \ (S ∩ T ).
• If S is a set, we denote by P(S), Podd(S) and Peven(S) the set of all subsets of
S, the set of all subsets of S with odd cardinality and the set of all subsets of S
with even cardinality, respectively.
• Let ` ≥ 1 be an integer. If A is a subset of F`2, we denote by σ(A) the sum of its
elements. Hence σ(A) belongs to F`2. Note the equality σ(A∆B) = σ(A) + σ(B)
for all A and B ⊂ F`2.

Here are our definitions and conventions for geometry in characteristic 2:

• k ≥ 0, will be an integer,
• u = (u1, u2, . . . , u2k) and v = (v1, v2, . . . , v2k) will be elements of F2k

2 ,
• α = (α1, α2) and β = (β1, β2) will be elements of F2

2. Hence (u,α) and (v,β)
will be viewed as elements of F2(k+1)

2 .
• w = (w1, . . . , w2k+2), w′ = (w′1, . . . , w

′
2k+2) and σ = (σ1, . . . , σ2k+2) will be

elements of F2(k+1)
2 . In that vector space, an important point of our study will be

ρ = (0, 1, · · · , 0, 1).
• C := {~e1, . . . , ~e2k+2} is the canonical base of F2(k+1)

2 .

• For 0 ≤ ` ≤ k, define the new vectors ~b2`+1 = ~e2`+1 + ~e2`+2 and ~b2`+2 = ~e2`+2

to introduce another basis of F2(k+1)
2 defined by B := {~b1, . . . ,~b2k+2}. Let X (resp.

Y ) the subspace generated by the vectors ~b1,~b3, . . . ,~b2k+1 (resp. ~b2,~b4, . . . ,~b2k+2).
The decomposition in direct sum F2(k+1)

2 = X ⊕Y defines the projection πX (resp.
πY ) on X, parallel to Y (resp. on Y , parallel to X).
• We modify the ~bj as follows: we put ~b′j = ~bj for 1 ≤ j ≤ 2k, ~b′2k+1 = ~b2k+2

and ~b′2k+2 = ~b2k+1. Then we define the modified basis Bmod = {~b′1, . . . ,~b′2k+2},
the subspaces Xmod and Ymod are respectively generated by ~b′1,~b

′
3, . . . ,

~b′2k+1 and
~b′2,

~b′4, . . . ,
~b′2k+2. Then we define the projections πXmod and πYmod as before.

• H is the hyperplane of F2(k+1)
2 defined by the equation w2k+1 +w2k+2 = 0 (in the

basis C).
• Φk is the polynomial in 4k variables over F2 defined by (see [7, Formula (27)]):

Φk(u; v) = (u1 + v1)(u1 + v2) + · · ·+ (u2k−1 + v2k−1)(u2k−1 + v2k).

Similarly, we have

Φk+1((u,α); (v,β)) = (u1 + v1)(u1 + v2) + · · ·+ (u2k−1 + v2k−1)(u2k−1 + v2k)

+ (α1 + β1)(α1 + β2).

• For E ⊂ {1, . . . , k} and u ∈ F2k
2 , we put

VE(u) =
∑
`∈E

(u2`−1 + u2` + 1).

By extension, for (u,α) ∈ F2(k+1)
2 , we also put

VE((u,α)) =
∑
`∈E

(u2`−1 + u2` + 1).

• A is the polynomial over F2(k+1)
2 defined by

A((u,α)) = α1α2,
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or equivalently by
A(w) = w2k+1w2k+2.

• B is the polynomial over F2(k+1)
2 defined by

B((u,α)) = (α1 + 1)(α2 + 1),

or equivalently by
B(w) = (w2k+1 + 1)(w2k+2 + 1).

• λk is the second degree polynomial over F2k
2 defined by (see [7, Formula (79)])

λk(u) = u1u2 + · · ·+ u2k−1u2k.

• λk+1 is similarly defined, but on F2(k+1)
2 .

• For w and w′ ∈ F2(k+1)
2 , we define the bilinear form L (see [7, Formula (60)])

(27) L(w,w′) =
k∑
j=0

w2j+1(w′2j+1 + w′2j+2),

and its modification Lmod

(28) Lmod(w,w′) =
k−1∑
j=0

w2j+1(w′2j+1 + w′2j+2) + (w2k+1 + w2k+2)w′2k+1.

Let Λ be the linear form (see [7, p. 484])

Λ(w) =
k∑
j=0

w2j+1.

We will use the following relations between these functions

(29) Φk+1(w; w′) = L(w + w′,w′) + Λ(w + w′),

and

(30) Lmod(w,w′) = L(w,w′) +A(w) +A(w′) +A(w + w′).

• w and w′ are said to be unlinked if and only if they satisfy

Φk+1(w; w′) + Φk+1(w′; w) = 0.

Otherwise, w and w′ are said to be linked.
• U ⊂ F2(k+1)

2 is said to be an unlinked subset (for Φk+1), if for any w and w′ ∈ U ,
we have

(31) Φk+1(w; w′) + Φk+1(w′; w) = 0.

By (29) this condition is equivalent to

(32) L(w + w′,w + w′) = 0.

and also equivalent to

(33) Lmod(w + w′,w + w′) = 0.

Any translate of an unlinked subset is also unlinked. We say that U is maximal
unlinked when it is maximal for the inclusion. In that case, its cardinality is 2k+1

and U is the translate of some unlinked vector subspace U0 of dimension k+ 1 (For
the proof, see [7, Lemma 18]).
• A vector subspace V of F2(k+1)

2 is said to be good for L (resp. for Lmod), if it
has dimension k + 1 and if the restriction to V × V of the bilinear form L (resp.
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Lmod) is identically equal to zero. A direct consequence of (31), (32) & (33) is the
following implication:

(34) V is a good vector subspace for L or Lmod ⇒ V is maximal unlinked.

Finally, some facts concerning counting of vector subspaces in characteristic p:
• n(k, `, p) is the number of vector subspaces of Fkp of dimension `. We recall some
identities (see [7, Lemma 3])

(35)
k∑
`=0

p` n(k, `, p) = N(k + 1, p)−N(k, p) (k ≥ 0),

and

(36) N(k + 1, p) = 2 N(k, p) + (pk − 1) N(k − 1, p) (k ≥ 1).

3.2. Counting good vector subspaces. As in [7], the factor N(k, 2) appearing
in the formula of Theorem 2 has its origin in the counting of some good vector
subspaces. The following lemma gathers all that we shall require in this counting
process. It is only an extension of [7, Lemma 26].

Lemma 3. Let k ≥ 0.
(i) There is a one–to–one correspondence between vector subspaces U0 of F2(k+1)

2 ,
good for L, and vector subspaces of X. More precisely, if F is a vector subspace
of X, there is only one good vector subspace U0 of L such that πX(U0) = F . It is
given by

(37) U0 = F ⊕ F⊥,

where F⊥ := {~y ∈ Y ; L(~x, ~y) = 0 for all ~x ∈ F}.
(ii) A similar statement holds for vector subspaces F ′ of Y .
(iii) Similar statements are also true for the subspaces U0 good for Lmod, with the
modification that we replace the vector subspaces X and Y by Xmod and Ymod,
respectively.
(iv) In F2(k+1)

2 there are N(k + 1, 2) vector subspaces good for L and N(k + 1, 2)
vector subspaces good for Lmod.

Proof. (i) Let F = πX(U0). Decompose each element w and w′ ∈ U0 in the form
w = wX + wY and w′ = w′X + w′Y according to the direct sum F2(k+1)

2 = X ⊕Y .
Since U0 is good for L, we obtain the equalities L(wX ,w′Y ) = L(w′X ,wY ) = 0, this
is an easy consequence of the fact that, in B, L(w,w′) = x1x

′
2 + · · ·+x2k+1x

′
2k+2, if

(xi) and (x′i) are the coordinates of w and w′ in this basis. This expression shows
also that dimF⊥ = k + 1− dimF . Hence, since wX belongs to F , wY belongs to
the vector subspace F⊥ of dimension at most k + 1 − dimF . Since we impose to
U0 to have its dimension equal to k + 1, necessarily we have πY (U0) = F⊥. This
gives (37).

(ii) This item is evident.
(iii) It is sufficient to notice that, Lmod(w,w′) = x1x

′
2 + · · ·+x2k+1x

′
2k+2, if (xi)

and (x′i) are now the coordinates of w and w′ in the basis Bmod.
(iv) This is a direct consequence of the bijection with the vector subspaces of X

or of Xmod which are both of dimension k + 1. �
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4. Proof of Theorem 2. The case of odd negative D

4.1. Beginning of the proof. In this section we deal with the sum
S−mix(X, k, 1, 4) introduced in (17). If D is a negative fundamental discriminant
≡ 1 mod 4, then −4D is the fundamental discriminant of the associated field
Q(
√
−D). To transform the first term 2k rk4(CD), we appeal to

Lemma 4. For any k ≥ 0 and for every odd negative fundamental discriminant D
we have the equality

2k rk4(CD) =
1

2k · 2k ω(−D)

∑
(Du)

u∈F2k2

∏
u

∏
v

(
Du

Dv

)Φk(u;v)

,

where the sum is over all the 22k–tuples (Du) such that

(38)
∏

u∈F2k
2

Du = −D.

Proof. See [7, Formula (25)]. �

To deal with the other factor 2rk4(C−D) = 2rk4(C−4D), we use the following formula

Lemma 5. For any positive fundamental discriminant D congruent to 4 mod 8,
we have the equality

(39)

2rk4(CD) =
1

2 · 2ω(D/4)

∑
(Dα)

[∏
α

∏
β

(
Dα

Dβ

)(α1+β1)(α1+β2)]
·
[∏

α

(
−1
Dα

)α1α2 ]

×
[
1 +

∏
α

(
2
Dα

)α1+α2+1 ]
,

where the first sum, is over the 4–tuples (Dα)α∈F2
2

such that

(40)
∏
α

Dα = D/4.

Proof. See [7, Formula (129)]. �

We apply Lemma 4 for D ≡ 1 mod 4 and D < 0 and Lemma 5 to the value −4D.
We are led to simultaneously solve (38) and (40), in other words∏

u∈F2k
2

Du =
∏

α∈F2
2

Dα = −D.

Let Du,α = g.c.d.(Du, Dα). Then we have Du =
∏

αDu,α and Dα =
∏

uDu,α.
Using the multiplicative properties of the Jacobi symbols we deduce the following
equality which is true for any negative D ≡ 1 mod 4:

(41)

2k rk4(CD)·2rk4(C−D) =
1

2k+1 · 2(k+1)ω(−D)

∑
(Du,α)

[∏
u,α

∏
v,β

(
Du,α

Dv,β

)Φk+1

(
(u,α);(v,β)

)]

×

[∏
u,α

(
−1
Du,α

)A((u,α))
]
×

[
1 +

∏
u,α

(
2

Du,α

)(A+B)((u,α))
]
,
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where the sum is over all the 4k+1–tuples (Du,α) satisfying∏
u,α

Du,α = −D.

Summing (41) over the set of D ≡ 1 mod 4 satisfying 0 < −D < X, and replacing
the variables of summation (u, α) and (v, β) by w and w′ (∈ F2(k+1)

2 ), resp., we
get:

Lemma 6. For every k ≥ 0 and every X ≥ 2 we have the equality

(42) S−mix(X, k, 1, 4) =

1
2k+1

∑
(Dw)

[∏
w

2−(k+1)ω(Dw)

]
×

[∏
w

∏
w′

(
Dw

Dw′

)Φk+1

(
w;w′

)]

×

[∏
w

(
−1
Dw

)A(w)
]
×

[
1 +

∏
w

(
2
Dw

)(A+B)(w)
]

where the sum is over all the 4k+1–tuples (Dw) of coprime, squarefree and positive
integers satisfying ∏

w

Dw ≤ X and
∏
w

Dw ≡ 3 mod 4.

Note that in (42), the Dw are not necessarily fundamental discriminants. We
decompose S−mix(X, k, 1, 4) into two terms

(43) S−mix(X, k, 1, 4) = Σ1(X) + Σ2(X),

where Σ1(X) and Σ2(X), resp. correspond to the contributions of the terms 1 and∏
w

(
2
Dw

)(A+B)(w)

contained in the term

[
1 +

∏
w

(
2
Dw

)(A+B)(w)
]

appearing in

the right part of (42).

4.2. Study of Σ1(X). The beginning of the proof is the same as in [7, Lemma 28
& Prop. 6]. We introduce the following notation: for ν = 0 or 1 mod 2 and U a
maximal unlinked subset in F2(k+1)

2 , let

(44) γ+(U , ν) :=
∑
(hw)

[∏
w∈U

(−1)A(w)·hw−1
2

]
×
[ ∏

w∈U
w′∈U

(−1)Φk+1

(
w;w′

)
·hw−1

2 ·
h
w′−1

2

]
.

In (44) the sum is over (hw)w∈U ∈ {±1 mod 4}2k+1
, satisfying

(45)
∏
w∈U

hw ≡ (−1)ν mod 4.

We follow the proof leading to [7, Prop. 6]. The only differences are the sub-
stitutions k 7→ k + 1, λk 7→ A and ν = 0 7→ ν = 1 in (45). Finally, we arrive
at



ON THE SPIEGELUNGSSATZ FOR THE 4–RANK 15

Lemma 7. For every k ≥ 0 and every ε > 0 we have uniformly for X ≥ 2 the
equality

Σ1(X) =
22−(k+1)−2k+1

π2
·
(∑
U
γ+(U , 1)

)
·X +Oε

(
X(logX)−2−k−1+ε

)
,

where the sum is over all the maximal unlinked subsets U ⊂ F2(k+1)
2 .

Using (16), we write Lemma 7 in the equivalent form

(46) Σ1(X) = 2−k−2k+1
· Γ1 · D−(X, 1, 4) +Oε

(
X(logX)−2−k−1+ε

)
,

with

(47) Γ1 =
∑
U
γ+(U , 1).

4.2.1. Study of the main coefficient Γ1. Preliminary steps. We are now concerned
by the study of Γ1. Let U be a maximal unlinked subset of F2(k+1)

2 , let
(
hw

)
w∈U

be a family of congruence classes satisfying (45) for ν = 1. Let S be the subset of
U consisting of the indices w ∈ U such that hw ≡ 3 mod 4. By (45), we know that
S has odd cardinality. Inverting the summations, we can write (44) in the form

γ+(U , 1) =
∑
S⊂U
]S odd

(−1)e
+
mod(S),

where

(48) e+
mod(S) =

∑
w∈S

A(w) +
∑
w∈S
w′∈S

Φk+1

(
w; w′

)
,

where the double sum is made over unordered pairs of elements of S.
The study of γ+(U , 1) will mimic the study made in [7, §6.1]. Later on, we shall

require results on γ+(U , 0). It is natural to generalize our study by considering for
ν = 0 or 1 mod 2 the equality

(49) γ+(U , ν) =
∑
S⊂U

] S≡ν mod 2

(−1)e
+
mod(S), for ν = 0 or 1.

Note that our function e+
mod(S) slightly differs from the function e+(S) defined in

[7, Formula (83)]. Hence the way of treating it is very similar. For S and T ⊂ U ,
we define

(50) e+
mod(S, T ) := e+

mod(S) + e+
mod(T ) + e+

mod(S∆T ),

and define

(51) e(S) :=
∑
w∈S
w′∈S

Φk+1

(
w; w′

) (
= e+

mod(S) +
∑
w∈S

A(w)
)
.

The function e(S) exactly coincides with the function introduced in [7, Formula
(57)], but in dimension k + 1. Also let

(52) e(S, T ) := e(S) + e(T ) + e(S∆T ),

which also coincides with the function e(S, T ) introduced in [7, Formula (62)]. This
quantity satisfies the equality

(53) e(S, T ) = e+
mod(S, T ),
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which is an easy consequence of the equality∑
w∈S

A(w) +
∑
w∈T

A(w) +
∑

w∈S∆T

A(w) = 0.

Squaring (49), inverting summation and following the proof of [7, Formula (89)],
we get the equality

(54)
[
γ+(U , ν)

]2 = 22k+1−1
∑
T∈T

(−1)e
+
mod(T )+ν

(
Λ(σ(T ))+L(σ(T ),c)

)
,

where
– ν ∈ {0, 1 mod 2},
– L,Λ and σ are defined in §3.1,
– T is the set of subsets T ⊂ U of even cardinality such that

L(σ(T ), σ(S0)) = 0,

for every subset S0 of U with even cardinality, (note that T contains the subsets T
of even cardinality satisfying σ(T ) = 0),
– c is any point of F2(k+1)

2 , such that U = c + U0, where U0 is a vector subspace.
Note that (T ,∆) is a commutative group.

Now we recall some facts taken from [7].

Lemma 8. Let U be a maximal unlinked subset of F2(k+1)
2 . For all subsets S and

T of U , we have the equalities

(55) e(S, T ) = e+
mod(S, T )

= L
(
σ(S), σ(T )

)
+ ] S ·

(∑
w∈T

L(w,w)
)

+ ] T · Λ
(
σ(S)

)
+ ] S · Λ

(
σ(T )

)
.

If ] S is even and if c is a point of U , we have the equality

(56) e({c, c + σ(S)}) = L(σ(S), c) + Λ(σ(S)).

Proof. Combine (53) and [7, Lemma 21 & Formula (61)] to obtain the first equality.
The second one is [7, Formula (72)]. �

Lemma 8 implies that e+
mod(T, T ′) = 0 for every T and T ′ ∈ T . This equality

combined with (52) implies the equality e+
mod(T∆T ′) = e+

mod(T ) + e+
mod(T ′) (for all

T and T ′ ∈ T ), from which we deduce the fact that the application

T 7→ (−1)e
+
mod(T )+ν

(
Λ(σ(T ))+L(σ(T ),c)

)
,

is a multiplicative character on (T ,∆). From this property and from (54) we easily
deduce

Lemma 9. Let ν ∈ {0, 1 mod 2} and let U a maximal unlinked subset of F2(k+1)
2 ,

such that γ+(U , ν) 6= 0. Then we have

e+
mod(T ) = 0,

for every subset T of U , satisfying ] T even and σ(T ) = 0.

Lemma 9 appears to be the analogue of Lemma 29 of [7]. Now we prove an
analogue of Lemma 30 of [7].
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Lemma 10. Let ν ∈ {0, 1 mod 2} and let U a maximal unlinked subset of F2(k+1)
2 ,

such that γ+(U , ν) 6= 0. Then for any S ⊂ U we have the equality

e+
mod(S) = A

(
σ(S)

)
+
(
1 + ] S

)(
Lmod(σ(S), c) + Λ(σ(S))

)
.

In that expression c is any point such that U = c+U0, where U0 is a vector subspace
of F2(k+1)

2 and Lmod is defined in (28).

Proof. It mimics the proof of [7, Lemma 30]. We discuss on the parity of ] S.

• If ] S is odd, we have σ(S) ∈ U . By Lemma 9 applied to the subset T of U defined
by T := S∆ {σ(S)} (which satisfies ] T ≡ 0 mod 2 and σ(T ) = 0), we obtain

(57) e+
mod(T ) = 0.

By the definition of T , by equations (57) and (50) we have

(58) 0 = e+
mod(S) + e+

mod({σ(S)}) + e+
mod(S, {σ(S)}).

The equality (55) of Lemma 8 gives the equality e+
mod(S, {σ(S)}) = 0. The definition

(48) produces e+({σ(S)}) = A(σ(S)). Inserting these two equalities into (58), we
obtain the proof of Lemma 10 in the case 2 - ] S.

• If ] S is even and σ(S) = 0, Lemma 9 gives Lemma 10 in that case.

• Now suppose ] S even and σ(S) 6= 0. Then σ(S) belongs to U0. We consider
T = S∆ {c, c + σ(S)}. Then T is a subset of U satisfying ] T even and σ(T ) = 0.
By Lemma 9 we also have (57). By the choice of T and by (50), we deduce from
(57) the equality

(59) 0 = e+
mod(S) + e+

mod({c, c + σ(S)}) + e+
mod(S, {c, c + σ(S)}).

By (56) of Lemma 8 and by (51) we have

(60) e+
mod({c, c + σ(S)}) = A(c) +A(c + σ(S)) + L(σ(S), c) + Λ(σ(S)).

By (55) of Lemma 8 we obtain

(61) e+
mod(S, {c, c + σ(S)}) = L(σ(S), σ(S)) = 0,

since σ(S) and 0 both belong to the maximal unlinked subset U0 (see (32)).
By (59), (60) & (61), we have

e+
mod(S) = A(c) +A(c + σ(S)) + L(σ(S), c) + Λ(σ(S))

To finish the proof of Lemma 10, it remains to check the equality

A
(
σ(S)

)
+ Lmod(σ(S), c) + Λ(σ(S))

= A(c) +A(c + σ(S)) + L(σ(S), c) + Λ(σ(S)).

This directly follows from (30). �

Now we prove an analogue of Lemma 31 of [7].

Lemma 11. Let ν ∈ {0, 1 mod 2}. Let U be a maximal unlinked subset of F2(k+1)
2 ,

written in the form U = c +U0, such that γ+(U , ν) 6= 0. Then U0 is good for Lmod.
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Proof. Let σ and τ be two non zero elements of U0. Then S := {c, c + σ} and
T := {c, c + τ} are two subsets of U with even cardinalities. By Lemma 10, we get
the three equalities

e+
mod(S) = A(σ) + Lmod(σ, c) + Λ(σ),

e+
mod(T ) = A(τ) + Lmod(τ, c) + Λ(τ),

e+
mod(S∆T ) = A(σ + τ) + Lmod(σ + τ, c) + Λ(σ + τ).

We sum these three equalities, use linearity and the definition (50), to arrive at the
equality

(62) e+
mod(S, T ) = A(σ) +A(τ) +A(σ + τ).

By (55) of Lemma 8, we know that e+(S, T ) = L(σ, τ). Combining this with (62)
we get the equality

A(σ) +A(τ) +A(σ + τ) + L(σ, τ) = 0.

Thanks to (30), we recognize Lmod(σ, τ) in the right part of the above equality.
This proves that the restriction to U0 ×U0 of Lmod is identically equal to zero. �

From Lemma 11 we deduce an analogue of [7, Lemma 32]. It is an extension of
Lemma 10.

Lemma 12. Let U = c + U0 be a maximal unlinked subset of F2(k+1)
2 such that U0

is good for Lmod. Then for every S ⊂ U we have

(63) e+
mod(S) = A

(
σ(S)

)
+
(
1 + ] S

)(
Lmod(σ(S), c) + Λ(σ(S)

)
.

Proof. We prove it by induction on ] S.
• If S = ∅, then σ(S) = 0 and the result is trivial by (48).
• If S consists of exactly one element, say w, the Definition (48) gives the equality
e+

mod(S) = A(w) which proves (63) in that case.
• Suppose now that S = {w,w′}. By Definition (48), and by the relations (29) &
(30), we have in that case

e+
mod(S) = A(w) +A(w′) + Φk+1(w; w′)

= A(w) +A(w′) + L(w + w′,w′) + Λ(w + w′)

= A(w + w′) + Lmod(w,w′) + L(w′,w′) + Λ(w + w′).(64)

By (30) we have

(65) L(w′,w′) = Lmod(w′,w′).

Since w + w′ and c + w′ belong to U0, which is good for Lmod, we have

(66) Lmod(w + w′, c + w′) = 0.

Putting together (64), (65) & (66) and using linearity, we obtain the equality

e+
mod(S) = A(w + w′) + Lmod(w + w′, c) + Λ(w + w′),

which is exactly (63) in that case.
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• Now suppose that S contains at least three elements. Let T be a subset of S
with exactly two elements. Let S′ = S∆T. By the hypothesis of the induction,
concerning (63), applied to S′ and T , we have the two equalities

e+
mod(S′) = A(σ(S′)) + (1 + ] S′)

(
Lmod(σ(S′), c) + Λ(σ(S′))

)
,(67)

e+
mod(T ) = A(σ(T )) +

(
Lmod(σ(T ), c) + Λ(σ(T ))

)
.(68)

By (55) of Lemma 8 we write

(69) e+
mod(T, S′) = L(σ(T ), σ(S′)) + ] S′ · Λ(σ(T )).

Combining (67), (68) & (69) with (50) then using linearity and (30), we can write

(70) e+
mod(S) = A(σ(S)) + (1 + ] S)Λ(σ(S)) + Ω(S),

where

Ω(S) = (1 + ] S)
(
Lmod(σ(S′), c)

)
+ Lmod(σ(T ), c) + Lmod(σ(T ), σ(S′)).

Now we appeal to the fact that U0 is good to modify Ω(S) as follows:

– If ] S is even, then σ(T ) and σ(S′) both belong to U0. Hence Lmod(σ(T ), σ(S′)) =
0, and, by linearity we deduce the equality

(71) Ω(S) = (1 + ] S)Lmod(σ(S), c).

Combining this with (70) we obtain (63) in that case.

– If ] S is odd, then σ(T ) and c+σ(S′) both belong to U0. Hence Lmod(σ(T ), c+
σ(S′)) = 0. This implies the equality Ω(S) = 0, which means that Ω(S) also satisfies
(71). We recover (63) again. �

4.2.2. Study of the main coefficient Γ1. The final step. We are now in position to
compute the coefficient Γ1 defined in (47). Of course, in (47), we can restrict the
summation to U , such that γ+(U , 1) is non zero. This was the purpose of Lemma
11 which, combined with (34), implies the equality

(72) Γ1 =
∑

U ; U0 good
for Lmod

γ+(U , 1) =
1

2k+1

∑
U0 good

for Lmod

∑
c∈F2(k+1)

2

γ+(c + U0, 1).

Now we use (49) and Lemma 12 in order to write

(73) γ+(c + U0, 1) =
∑

S⊂c+U0
] S odd

(−1)A(σ(S)).

Note that in the expression (−1)A(σ(S)), S only appears by the sum of its terms. The
application S 7→ σ(S) is a surjective morphism from (Peven(U0),∆) onto (U0,+).
Hence, for every σ ∈ U0, the equation

(74) σ(S) = σ,

has 22k+1/
(2 · 2k+1) solutions in S ∈ Peven(U0). Considering the application S 7→

S∆ {0}, we deduce that the equation (74) has the same number of solutions S ∈
Podd(U0). Using now the translation by c, we see that the equation σ(S) = c + σ
has the same number of solutions in S ∈ Podd(c +U0). This allows us to transform
(73) into

(75) γ+(c + U0, 1) = 22k+1−k−2
∑

σ∈U0

(−1)A(c+σ).
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Putting this expression into (72) and inverting summations we obtain

(76) Γ1 = 22k+1−2k−3
∑
U0 good

for Lmod

∑
σ∈U0

∑
c∈F2(k+1)

2

(−1)A(c+σ).

Let σ = (σ1, . . . , σ2k+2) and c = (c1, . . . , c2k+2). First write the equality (−1)A(c+σ) =
(−1)(c2k+1+σ2k+1)(c2k+2+σ2k+2), and check that, for any (σ2k+1, σ2k+2) ∈ F2

2, the fol-
lowing equality holds ∑

(c2k+1,c2k+2)∈F2
2

(−1)(c2k+1+σ2k+1)(c2k+2+σ2k+2) = 2.

Using this remark we transform (76) into

(77) Γ1 = 22k+1−2k−3 · 2k+1 · 22k · 2 ·
∑
U0 good
forLmod

1 = 22k+1+k−1
∑
U0 good
forLmod

1.

Now we appeal to Lemma 3 (iv) in order to transform (77) into

(78) Γ1 = 22k+1+k−1 N(k + 1, 2).

4.3. Study of Σ2(X). This second sum is defined in (43) and the study has many
similarities with Σ1(X). But a new phenomenon appears: the oscillations of the

symbol
(

2
Dw

)(A+B)(w)

, if the associated exponent, i.e. (A + B)(w), is non zero.
To be more precise, if the congruence modulo 4 of Dw is fixed (Dw ≡ +1 mod 4

or Dw ≡ −1 mod 4, say), the symbol
(

2
Dw

)
= (−1)

D2
w−1
8 takes the values +1 and

−1 with equal frequencies, and then gives birth to an error term. This idea was
exploited in the proof of [7, Proposition 7]. By the same technique, we arrive at
the following analogue of Lemma 7:

Lemma 13. For every k ≥ 0 and for every ε > 0 we have uniformly for X ≥ 2 the
equality

Σ2(X) =
22−(k+1)−2k+1

π2
·
(∑
U
γ+(U , 1)

)
·X +Oε

(
X(logX)−2−k−1+ε

)
,

where the sum is over all the maximal unlinked subsets U ⊂ F2(k+1)
2 , such that the

function (A+B) is identically zero on it. The function γ+ is defined in (44).

The analogue of (46) is the equality

(79) Σ2(X) = 2−k−2k+1
· Γ2 · D−(X, 1, 4) +Oε

(
X(logX)−2−k−1+ε

)
with

(80) Γ2 =
∑
U
γ+(U , 1),

where now the sum is over all the maximal unlinked subsets U on which the affine
function A + B is zero identically. By Lemma 11 we restrict the sum to the U of
the form U = c + U0, with U0 good for Lmod. By the easy equality

(A+B)(w) = w2k+1 + w2k+2 + 1,

which is true for any w ∈ F2(k+1)
2 , we see that U = c +U0 (with U0 good for Lmod)

participates to the summation in (80) if and only if U0 is included in the vector
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hyperplane H (defined in §3.1) and if c satisfies c2k+1 + c2k+2 = 1. Also note the
implication

(81) (A+B)(w) = 0⇒ A(w) = 0.

If U is as above, every subset S of it, with odd cardinality satisfies σ(S) ∈ U . Hence,
by Lemma 12 and by (81) we have the equality

e+
mod(S) = 0.

After all these considerations we transform (80) into

(82) Γ2 = 2−k−1
∑

U0 good for Lmod
U0⊂H

∑
c

(A+B)(c)=0

∑
S⊂c+U0
] S odd

1

= 22k+1+k−1 ] {U0 ; U0 good for Lmod ⊂ H}.
Lemma 3 implies the equality

(83) ] {U0 ; U0 good for Lmod ⊂ H} = N(k, 2),

as follows. Let (x1, . . . , x2k+2) be the coordinates of a general point of F2(k+1)
2 in

the basis Bmod introduced in §3.1. The hyperplane H has the equation x2k+1 = 0.
We remark that Ymod ⊂ H. By Lemma 3 we know that a good subspace U0 for
Lmod is characterized by πXmod(U0), hence the equality

] {U0 ; U0 good for Lmod ⊂ H} = ] {F ′; F ′ vector subspace of H ∩Xmod},
which directly leads to (83), since dim(H ∩Xmod) = k. Inserting the equality (83)
into (82) we obtain the equality

(84) Γ2 = 22k+1+k−1N(k, 2).

4.4. End of the proof. It suffices to put together (43), (46), (78), (79) & (84) to
finish the proof of Theorem 2, in the case (a, q) = (1, 4).

5. Proof of Theorem 2. The case of negative D divisible by 8

In that section we are concerned with negative fundamental D, which are divisi-
ble by 8. The goal is to evaluate the sum S−mix(X, k, 0, 8) defined in (17). Note that
−D is also a fundamental discriminant and that −D/8 is squarefree and congruent
to ±1 mod 4. Here also, we shall highly benefit from the combinatorics elaborated
in [7]. In order to replace Lemma 4 we use

Lemma 14. For any k ≥ 0 and for every negative fundamental discriminant D
divisible by 8 we have the equality

2k rk4(CD) =
1

2k ω(−D/8)

∑
(Du)

u∈F2k2

[∏
u

∏
v

(
Du

Dv

)Φk(u;v)]
·
[∏

u

(
2
Du

)λk(u)]
,

where the sum is over all the 22k–tuples (Du) such that

(85)
∏

u∈F2k
2

Du = −D/8.

Proof. See [7, Formulas (107) & (108)]. �

We replace Lemma 5 by
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Lemma 15. For any positive fundamental discriminant D divisible by 8 we have
the equality

(86)

2rk4(CD) =
1

2 · 2ω(D/8)

∑
(Dα)

[∏
α

∏
β

(
Dα

Dβ

)(α1+β1)(α1+β2)]
·
[∏

α

(
2
Dα

)α1α2 ]

×
[∏

α

(
−1
Dα

)α1α2

+
∏
α

(
−1
Dα

)(α1+1)(α2+1) ]
,

where the first sum is over the 4–tuples (Dα)α∈F2
2

such that

(87)
∏
α

Dα = D/8.

Proof. See [7, Formula (112)]. �

As we did in §4.1, we parametrize the solutions of the system of the equations
(85) & (87), sum over all the D ≡ 0 mod 8, satisfying 0 < −D < X to arrive at the
following lemma (compare with Lemma 6 above):

Lemma 16. For every k ≥ 0 and for every X ≥ 2 we have the equality

(88) S−mix(X, k, 0, 8) =

1
2

∑
(Dw)

[∏
w

2−(k+1)ω(Dw)

]
×

[∏
w

∏
w′

(
Dw

Dw′

)Φk+1

(
w;w′

)]

×

[∏
w

(
2
Dw

)λk+1(w)
]
×

[∏
w

(
−1
Dw

)A(w)

+
∏
w

(
−1
Dw

)B(w)
]
,

where the sum is over all the 4k+1–tuples (Dw) of coprime, squarefree and positive
integers satisfying ∏

w

Dw ≤ X/8 and
∏
w

Dw ≡ ±1 mod 4

and where the indices w and w′ belong to F2(k+1)
2 .

We split S−mix(X, k, 0, 8) into

(89) S−mix(X, k, 0, 8) = Σ3(X) + Σ4(X),

where Σ3(X) and Σ4(X) correspond to the contribution of the first and of the
second term inside the symbol [· · ·+ · · · ] appearing in (88), respectively.

5.1. Study of Σ3(X). Recall the definition (44). The analogue of Lemma 7 is

Lemma 17. For every k ≥ 0 and every ε > 0 we have uniformly for X ≥ 2 the
equality

Σ3(X) =
21−2k+1

π2
·
(∑
U
{γ+(U , 0) + γ+(U , 1)}

)
· X

8
+Oε

(
X(logX)−2−k−1+ε

)
,

where the sum is over all the maximal unlinked subsets U ⊂ F2(k+1)
2 such that λk+1

is identically equal to zero on U .



ON THE SPIEGELUNGSSATZ FOR THE 4–RANK 23

Proof. See the proof of [7, Proposition 7]. We point out that, as in Lemma 13, the

condition λk+1 ≡ 0 on U is to avoid oscillations of the character
(

2
Dw

)λk+1(w)

. �

Again using (16), we write Lemma 17 in the equivalent form

(90) Σ3(X) = 2−2k+1−1 ·
(

Γ(0)
3 + Γ(1)

3

)
· D−(X, 0, 8) +Oε

(
X(logX)−2−k−1+ε

)
,

with
Γ(ν)

3 =
∑
U

γ+(U , ν), for ν = 0 or 1,

where the summation over U is the same as in Lemma 17.

5.1.1. Study of Γ(1)
3 . It is very similar to the study of Γ1 made in §4.2.2. We use

(75) to write an analogue of (76):

(91) Γ(1)
3 = 22k+1−2k−3

∑
U0 good
for Lmod

∑
σ∈U0

∑
c∈F2(k+1)

2

(−1)A(c+σ),

where c satisfies the extra condition

(92) λk+1 ≡ 0 on c + U0.

We use the following result of linear algebra, where ρ is defined in §3.1.

Lemma 18. Let U0 be a vector subspace of F2(k+1)
2 which has the property to be

good for Lmod. Let c be a point of F2(k+1)
2 . Then the condition (92) is satisfied if

and only if
c + U0 = ρ + U0.

Proof. The proof is similar to the proof of [7, Lemma 36], with the difference
that it is concerned with subspaces which are good for the bilinear form L. The
transcription to Lmod is standard. �

Coming back to (91) we deduce from Lemma 18 the equality

(93) Γ(1)
3 = 22k+1−k−2

∑
U0 good
for Lmod

∑
σ∈U0

(−1)A(ρ+σ).

Note the direct consequence of the definition of A

A(ρ + σ) = σ2k+1(σ2k+2 + 1),

for σ = (σ1, . . . , σ2k+2).

5.1.2. Study of Γ(0)
3 . Now we use Lemma 12 with ] S even. Hence for any S with

even cardinality, included in ρ + U0, with U0 good, we have

e+
mod(S) = A(σ(S)) + Lmod(σ(S),ρ) + Λ(σ(S)) = σ2k+1(S)(σ2k+2(S) + 1)

by writing
σ(S) = (σ1(S), . . . , σ2k+2(S)).

By summing as above according to the value of σ = σ(S) (see the proof of (75))
we arrive at the equality

Γ(1)
3 = 22k+1−k−2

∑
U0 good

∑
σ∈U0

(−1)σ2k+1(σ2k+2+1).
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This combined with (93) gives

(94) Γ(0)
3 + Γ(1)

3 = 22k+1−k−1
∑
U0 good

∑
σ∈U0

(−1)σ2k+1(σ2k+2+1).

5.2. Study of Σ4(X). Similarly to (90) we have the equality

(95) Σ4(X) = 2−2k+1
·
(

Γ(0)
4 + Γ(1)

4

)
· D−(X, 0, 8) +Oε

(
X(logX)−2−k−1+ε

)
with

(96) Γ(ν)
4 =

∑
U

γ̃(U , ν), for ν = 0 or 1,

where the summation is over all the maximal unlinked subsets U , such that λk+1,
defined in §3.1, is identically equal to zero on U . We have put

(97) γ̃(U , ν) =
∑
S⊂U

] S≡ν mod 2

(−1)ẽ(S),

where the function ẽ slightly differs from e+
mod (defined in (48)), since it is equal to

ẽ(S) :=
∑
w∈S

B(w) +
∑
w∈S
w′∈S

Φk+1

(
w; w′

)
= e+

mod(S) + σ2k+1(S) + σ2k+2(S) + ] S.(98)

In the first line of (98), the second sum is over unordered pairs of elements of S. A
variant of Lemma 11 adapted to the function ẽ(S) gives

γ̃(U , ν) 6= 0 for ν = 0 or 1⇒ U0 good for Lmod.

Hence, in (96) we can restrict the sum to the U of the form c + U0, with U0 good
(for Lmod). By Lemma 18, we restrict this summation to the U of the form ρ +U0,
with U0 good. After these considerations, we apply Lemma 12 to simplify (98) into

(99) ẽ(S) = (σ2k+1(S) + 1)(σ2k+2(S) + ] S),

for any subset S of U as above. Summing over the values of σ = σ(S) (σ ∈ U0,
] S ≡ 0 mod 2), as we did for (75), we obtain for such a U the equality

γ̃(U , 0) =
∑
S⊂U

] S≡0 mod 2

(−1)(σ2k+1(S)+1)σ2k+2(S)

= 22k+1−k−2
∑

σ∈U0

(−1)(σ2k+1+1)σ2k+2 .(100)

Similarly, summing over the values of ρ + σ = σ(S) (σ ∈ U0, ] S ≡ 1 mod 2) we
also obtain

γ̃(U , 1) =
∑
S⊂U

] S≡1 mod 2

(−1)(σ2k+1(S)+1)(σ2k+2(S)+1)

= 22k+1−k−2
∑

σ∈U0

(−1)(σ2k+1+1)σ2k+2 .(101)

By (96), (100) & (101) we write

(102) Γ(0)
4 + Γ(1)

4 = 22k+1−k−1
∑
U0 good
for Lmod

∑
σ∈U0

(−1)(σ2k+1+1)σ2k+2 .
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Gathering (94) and (102) we have

(103) Γ(0)
3 + Γ(1)

3 + Γ(0)
4 + Γ(1)

4

= 22k+1−k−1
∑
U0 good
for Lmod

∑
σ∈U0

[
(−1)σ2k+1(σ2k+2+1) + (−1)(σ2k+1+1)σ2k+2

]
.

Now we easily remark

(−1)σ2k+1(σ2k+2+1) + (−1)(σ2k+1+1)σ2k+2 =

{
0, if σ2k+1 + σ2k+2 = 1,
2, if σ2k+1 + σ2k+2 = 0.

Hence, if the U0 (good for Lmod) is included in the hyperplane H (defined in
§3.1) we have

(104)
∑

σ∈U0

[
(−1)σ2k+1(σ2k+2+1) + (−1)(σ2k+1+1)σ2k+2

]
= 2k+2.

By (83) we know that there are exactly N(k, 2) such U0.
In the other direction, if U0 is not included in H we have ]

(
U0 ∩ H) = 2k and

also the equality

(105)
∑

σ∈U0

[
(−1)σ2k+1(σ2k+2+1) + (−1)(σ2k+1+1)σ2k+2

]
= 2k+1.

Combining Lemma 3 with (83) we know that there are exactly N(k+1, 2)−N(k, 2)
subspaces U0 which are good for Lmod and not included in H. Putting together
(103), (104) & (105) we have

Γ(0)
3 + Γ(1)

3 + Γ(0)
4 + Γ(1)

4 = 22k+1−k−1
{

2k+2N(k, 2) + 2k+1
(
N(k + 1, 2)−N(k, 2)

)}
= 22k+1+1 · N(k + 1, 2) + N(k, 2)

2
.(106)

5.3. End of the proof. Put together (89), (90), (95) & (106), to exhibit the
asymptotic expansion of S−mix(X, k, 0, 8) announced in Theorem 2.

6. The case of even negative D not divisible by 8

In this last section we deal with negative fundamental discriminantsD, which
are ≡ 4 mod 8 in order to evaluate the sum S−mix(X, k, 4, 8). Note that the integer
−D/4 now is squarefree and congruent to 1 mod 4, hence it is the discriminant of
the associated field to Q(

√
D).

6.1. Reduction of the proof. We have

Lemma 19. For any k ≥ 0 and for every negative fundamental discriminant D,
congruent to 4 modulo 8, we have the equality

2k rk4(CD) =
1

2k · 2k ω(−D/4)

∑
E⊂{1,...,k}

UE

where

UE =
∑

(Du)
u∈F2k2

[∏
u

∏
v

(
Du

Dv

)Φk(u;v)]
·
[∏

u

(
2
Du

)VE(u)]
,
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where the sum is over all the 22k–tuples (Du) such that

(107)
∏

u∈F2k
2

Du = −D/4.

Proof. See [7, Formula (120) & Lemma 41], with a slight change of notation con-
cerning the affine function VE defined in §3.1. �

We also use

Lemma 20. For any positive fundamental discriminant D ≡ 1 mod 4 we have the
equality

(108)

2rk4(CD) =
1

2 · 2ω(D)

∑
(Dα)

[∏
α

∏
β

(
Dα

Dβ

)(α1+β1)(α1+β2)]
·
[∏

α

(
−1
Dα

)α1α2 ]
,

where the first sum is over the 4–tuples (Dα)α∈F2
2

such that

(109)
∏
α

Dα = D.

Proof. See [7, Formula (78)]. �

As we did before, we parametrize the solutions of the simultaneous equations
(107) & (109), then sum over all D satisfying 0 < −D < X and D ≡ 4 mod 8 to
arrive at

Lemma 21. For every X ≥ 2 we have the equality

(110) S−mix(X, k, 4, 8) =
1

2k+1

∑
E⊂{1,...,k}

TE(X)

with

(111) TE(X) :=
∑
(Dw)

[∏
w

2−(k+1)ω(Dw)

]
×

[∏
w

∏
w′

(
Dw

Dw′

)Φk+1

(
w;w′

)]

×

[∏
w

(
2
Dw

)VE(w)
]
×

[∏
w

(
−1
Dw

)A(w)
]
,

where the sum is over all the 4k+1–tuples (Dw) of coprime, squarefree and positive
integers satisfying ∏

w

Dw ≤ X/4 and
∏
w

Dw ≡ 1 mod 4.

Using symmetries we write (110) in the form

(112) S−mix(X, k, 4, 8) =
1

2k+1

k∑
`=0

(
k

`

)
T{1,...,`}(X)

The same analysis as for Lemma 7 leads to
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Lemma 22. For every k ≥ 0, for every ε > 0 and for every E ⊂ {1, . . . , k} we
have uniformly for X ≥ 2 the equality

TE(X) =
22−2k+1

π2
·
(∑
U
γ+(U , 0)

)
· X

4
+Oε

(
X(logX)−2−k−1+ε

)
,

where the sum is over all the maximal unlinked subsets U ⊂ F2(k+1)
2 such that VE

is identically equal to zero on U .

Recall that γ+(U , 0) is defined in (49). As before, we appeal to Lemma 11 in
order to restrict the summation to the U = c + U0, such that U0 is good for Lmod.
With the help of (16), we write Lemma 22 in the following equivalent manner

(113) TE(X) = TE · D−(X, 4, 8) +Oε
(
X(logX)−2−k−1+ε

)
with

(114) TE = 21−2k+1
·
(∑
U
γ+(U , 0)

)
and the same conditions of summation for U as in Lemma 22. Considering (112)
& (113) we see that the proof of Theorem 2 in the case (a, q) = (4, 8) is reduced to
prove the equality

(115)
1

2k+1

k∑
k0=0

(
k

k0

)
T{1,...,k0} =

N(k + 1, 2) + N(k, 2)
2

for every 0 ≤ k0 ≤ k.

6.2. Transformation of the fundamental sum. By Lemma 12, we have the
equality

e+
mod(S) = A(σ(S)) + Lmod(σ(S), c) + Λ(σ(S)),

for every S, with an even cardinality, included in U = c + U0, such that U0 is good
for Lmod. For such an S, the sum σ(S) belongs to U0, then, summing over the
values of σ = σ(S), as we did for (75), we obtain

(116) γ+(U , 0) = 22k+1−k−2
∑

σ∈U0

(−1)J(σ,c),

with

J(σ, c) := A(σ) + Lmod(σ, c) + Λ(σ)

= σ1(c1 + c2 + 1) + · · ·+ σ2k−1(c2k−1 + c2k + 1)

+ c2k+1(σ2k+1 + σ2k+2) + σ2k+1(1 + σ2k+2).

Inserting (116) into (114), and inverting summations, we have the equality

(117) TE = 2−2k−2
∑
U0 good
for Lgood

∑
σ∈U0

∑
c

(−1)J(σ,c),

where the sum is over all the c such that

(118) VE ≡ 0 on c + U0.
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6.3. The case E = ∅. In that case, the condition (118) is empty. Summing over c
first, we see that the sum

∑
c(−1)J(σ,c) is equal to 22(k+1) if and only if

(119) σ1 = σ3 = · · · = σ2k−1 = σ2k+1 + σ2k+2 = 0.

Otherwise, this sum is equal to zero. Now we work in the basis Bmod defined in
§3.1. Let (xi) be the coordinates in Bmod of σ. Then (119) is equivalent to

(120) x1 = x3 = · · · = x2k−1 = x2k+1 = 0.

So we have the equality

(121) T∅ =
∑
U0 good
for Lmod

] {σ ∈ U0 ; x1 = x3 = · · · = x2k+1 = 0}.

Now we apply Lemma 3. In the decomposition U0 = πXmod(U0) ⊕ πYmod(U0), only
the elements of F ′ := πYmod(U0) satisfy the condition (120). Their number is 2dimF ′ .
Since F ′ characterizes U0, by summing over ` := dimF ′, we obtain the equality

(122) T∅ =
k+1∑
`=0

2` · n(k + 1, `, 2).

6.4. The case ] E = 1. We continue to investigate all the TE participating to (110).
The second step concerns the case when E has only one element. Hence we are led
to study the quantity T{1}. The condition (118) is simply{

c1 + c2 + 1 = 0
w1 + w2 = 0 for all w ∈ U0.

It is easy to see that the sum
∑

c(−1)J(σ,c), appearing in (117) is equal to 22k+1 if
and only if we have

(123) σ3 = σ5 = · · · = σ2k−1 = 0 and σ2k+1 + σ2k+2 = 0.

Otherwise this sum is equal to 0. Now we use the coordinates xi in the basis Bmod.
With the above observations we have the equalities

T{1} =
1
2

∑
U0

] {σ ∈ U0 ; x3 = · · · = x2k−1 = x2k+1 = 0},(124)

=
1
2

∑
U0

] {σ ∈ U0 ; x1 = x3 = · · · = x2k−1 = x2k+1 = 0}

+
1
2

∑
U0

] {σ ∈ U0 ; x1 = 1 and x3 = · · · = x2k−1 = x2k+1 = 0},

where the sum is over all the subspaces U0 of F2(k+1)
2 , which are good for Lmod and

which are contained in the hyperplane H1 with equation x2 = 0. Now we go back
to Lemma 3, particularly to the decomposition

(125) U0 = πXmod(U0)⊕ πYmod(U0) := F ⊕ F ′.

It is easy to see that U0 ⊂ H1 if and only if F ′ ⊂ H1. Since F and F ′ are
perpendicular, relatively to Lmod, this last statement is equivalent to ~b′1 ∈ F . We
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deduce that the translation by ~b′1 is an involution of U0, so we can simplify (124)
into

(126) T{1} =
∑
U0

] {σ ∈ U0 ; x1 = x3 = · · · = x2k−1 = x2k+1 = 0}.

In order to conclude the above discussion, we sum over ` = dimF ′, where F ′ is a
vector subspace of H1 ∩ Ymod (which is of dimension k) to finally transform (126)
into

(127) T{1} =
k∑
`=0

2` · n(k, `, 2).

6.5. The case ] E ≥ 2. Now we are considering the case E = {1, . . . , k0}, where k0

now satisfies 2 ≤ k0 ≤ k. This case has much to do with the case ] E = {1}. Now
the constraint (118) becomes

(128)



k0∑
`=1

(c2`−1 + c2` + 1) = 0

k0∑
`=1

(w2`−1 + w2`) = 0 for all w ∈ U0.

Under that constraint J(σ, c) is now

J(σ, c) = (σ1 + σ2k0−1)(c1 + c2 + 1) + · · ·+ (σ2k0−3 + σ2k0−1)(c2k0−3 + c2k0−2 + 1)

+ σ2k0+1(c2k0+1 + c2k0+2 + 1) + · · ·+ σ2k−1(c2k−1 + c2k + 1)

+ c2k+1(σ2k+1 + σ2k+2) + σ2k+1(1 + σ2k+2).

Now it is easy to see that the sum
∑

c(−1)J(σ,c), appearing in (117) is equal to
22k+1 if and only if we have

(129) σ1 = σ3 = · · · = σ2k0−1, σ2k0+1 = · · · = σ2k−1 = 0 and σ2k+1 + σ2k+2 = 0.

Otherwise it is zero. Now we use the coordinates xi in the basis Bmod. With the
above observations we have the equalities

T{1,...,k0} =
1
2

∑
U0

] {σ ∈ U0 ; x1 = · · · = x2k0−1, x2k0+1 = · · · = x2k−1 = x2k+1 = 0},

(130)

=
1
2

∑
U0

] {σ ∈ U0 ; x1 = x3 = · · · = x2k−1 = x2k+1 = 0}

+
1
2

∑
U0

] {σ ∈ U0 ; x1 = · · · = x2k0−1 = 1, x2k0+1 = · · · = x2k+1 = 0},

where the sum is over all the subspaces U0 of F2(k+1)
2 , which are good for Lmod and

which are contained in the hyperplane Hk0 with equation x2 + x4 + · · ·x2k0 = 0.
One more time, we use the decomposition (125). It is easy to see that U0 ⊂ Hk0
if and only if F ′ ⊂ Hk0 . Since F and F ′ are perpendicular, this last statement
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is equivalent to ~b′1 + ~b′3 + · · · + ~b′2k0−1 ∈ F . The translation by this vector is an
involution of U0, so we can simplify (130) into

(131) T{1,...,k0} =
∑
U0

] {σ ∈ U0 ; x1 = x3 = · · · = x2k−1 = x2k+1 = 0}.

We recognize an expression already met in (126). Hence by (127), we also have

(132) T{1,...,k0} =
k∑
`=0

2` · n(k, `, 2) (k0 ≥ 2).

6.6. The final step. We put together (122), (127) & (132) in order to write the
equality

(133)
k∑

k0=0

(
k

k0

)
T{1,...,k0} =

k+1∑
`=0

2` · n(k + 1, `, 2) + (2k − 1)
k∑
`=0

2` · n(k, `, 2).

Using (35) we deduce from (133) the equality
(134)
k∑

k0=0

(
k

k0

)
T{1,...,k0} =

(
N(k+ 2, 2)−N (k+ 1, 2)

)
+ (2k−1)

(
N(k+ 1, 2)−N (k, 2)

)
.

Now we appeal to (36) to replace N (k+ 2, 2) by 2 N(k+ 1, 2) + (2k+1 − 1) N(k, 2)
in (134). This finally gives the equality

k∑
k0=0

(
k

k0

)
T{1,...,k0} = 2k N(k + 1, 2) + 2k N(k, 2).

This proves (115). The proof of Theorem 2 is now complete in the case (a, q) =
(4, 8), which was the final case to consider.
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[13] A. Scholz, Über die Beziehung der Klassenzahlen quadratischer Körper zueinander. J. für
reine Angew. Math., 166 : 201–203, 1932.
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