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Abstract. In this note we give a counter example to a conjecture of Malle
which predicts the asymptotic behaviour of the counting functions for field
extensions with given Galois group and bounded discriminant.

1. Introduction

Let G ≤ Sn be a finite transitive permutation group and k be a number field.
We say that a finite extension K/k has Galois group G if the normal closure K̂ of

K/k has Galois group isomorphic to G and K is the fixed field in K̂ under a point
stabilizer of G. By abuse of notation we will write Gal(K/k) = G in this situation.
We let

Z(k, G; x) := #
{

K/k : Gal(K/k) = G, Nk/Q(dK/k) ≤ x
}

be the number of field extensions of k (inside a fixed algebraic closure Q̄) of relative
degree n with Galois group permutation isomorphic to G (as explained above) and
norm of the discriminant dK/k bounded above by x. It is well known that the
number of extensions of k with bounded norm of the discriminant is finite, hence
Z(k, G; x) is finite for all G, k and x ≥ 1.

Gunter Malle [7, 8] has given a precise conjecture about the asymptotic behavior
of the function Z(k, G; x) for x → ∞. In order to state it, we introduce some group
theoretic invariants of permutation groups.

Definition 1.1. Let 1 6= G ≤ Sn be a transitive subgroup acting on Ω = {1, . . . , n}.
(1) For g ∈ G we define the index ind(g) := n− the number of orbits of g on Ω.
(2) ind(G) := min{ind(g) : 1 6= g ∈ G}.
(3) a(G) := ind(G)−1.

Since all elements in a conjugacy class C of G have the same index we can
define ind(C) in a canonical way. The absolute Galois group of k acts on the set of
conjugacy classes of G via the action on the Q̄–characters of G. The orbits under
this action are called k-conjugacy classes.

Definition 1.2. For a number field k and a transitive subgroup 1 6= G ≤ Sn we
define:

b(k, G) := #{C : C k-conjugacy class of minimal index ind(G)}.
Now we can state the conjecture of Malle[8], where f(x) ∼ g(x) is a notation for

limx→∞ f(x)/g(x) = 1.

Conjecture 1.3. (Malle) For all number fields k and all transitive permutation
groups 1 6= G there exists a constant c(k, G) > 0 such that

Z(k, G; x) ∼ c(k, G)xa(G) log(x)b(k,G)−1,
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where a(G) and b(k, G) are given as above.

This conjecture is proved for abelian groups [9]. For all number fields k and all
nilpotent groups G it is shown in [6] that

lim sup
x→∞

log Z(k, G; x)

log x
≤ a(G).

If we furthermore assume that G is in its regular representation, i.e., we count
normal nilpotent number fields, we get:

lim
x→∞

log Z(k, G; x)

log x
= a(G).

For more results see also the survey articles [1, 2]. In the following we use the
notation f(x) = O(g(x)), if lim supx→∞

f(x)/g(x) < ∞. Furthermore we write
f(x) = θ(g(x)), if f(x) = O(g(x)) and g(x) = O(f(x)).

2. The counter example

We present a counter example to Conjecture 1.3 for k = Q and the wreath
product G := C3 ≀ C2 = C2

3 ⋊ C2 ≤ S6 of order 18, where Cn is the cyclic group of
order n.

Theorem 2.1. Conjecture 1.3 does not hold for k = Q and G = C3 ≀ C2.

Proof. In the following we count all field towers L/K/Q such that Gal(L/K) = C3

and Gal(K/Q) = C2. Therefore the Galois group of L/Q is one of the groups
C6, S3(6), G ≤ S6, where S3(6) denotes the group S3 in its degree 6 representation.
Since C6 is abelian we get from [9] that

(1) Z(Q, C6; x) ∼ c(C6)x
1/3.

From the Davenport-Heilbronn theorem [3] we know that

Z(Q, S3(3); x) ∼ c(S3(3))x.

Using the fact that the discriminant of the splitting field of an S3-extension is at
least the square of the discriminant of the S3-extension, we easily get that

Z(Q, S3(6); x) = O(x1/2).

Since extensions with Galois group S3(6) are normal we can use a result in [4,
Prop. 2.8] which states that Z(Q, S3(6); x) = Oǫ(x

3/8+ǫ) for all ǫ > 0. With a
more careful analysis we are able to prove

(2) Z(Q, S3(6); x) = θ(x1/3).

We remark that the results for S3(6) and C6 are as conjectured since a(C6) =
a(S3(6)) = 1/3 and b(Q, C6) = b(Q, S3(6)) = 1.

Now we define the counting function corresponding to field towers L/K/Q as
above:

Z̃(Q, C3 ≀ C2; x) := # {L/Q | ∃K : Gal(L/K) = C3, [K : Q] = 2, |dL| ≤ x} .

We have two conjugacy classes of elements of order 3 in G which have three fixed
points. Considered as Q-conjugacy classes we have only one orbit. In number fields
k containing a primitive third root of unity ζ3 we have two k-conjugacy classes
of this type. Therefore a(G) = 1/2 and b(Q, G) = 1. Since, by (1) and (2), the
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counting functions for S3(6) and C6 have lower asymptotics Conjecture 1.3 implies
that

Z̃(Q, C3 ≀ C2; x) ∼ Z(Q, C3 ≀ C2; x) ∼ c(G)x1/2.

Certainly we get a lower estimate for Z̃(Q, C3 ≀ C2; x) if we only count the number
fields which contain a fixed quadratic subfield K. We choose K = Q(ζ3) and using
dL = d3

KN(dL/K) we get for x large enough:

Z̃(Q, C3 ≀ C2; x) ≥ Z(K, C3; x/27) ∼ c(K, C3)x
1/2 log(x).

For the latter we used the fact that b(K, C3) = 2 and that the conjecture is true
for the abelian group C3. This already gives a contradiction to Conjecture 1.3.

Now we introduce a counting function avoiding Q(ζ3).

Ẑ(Q, C3 ≀C2; x) := # {L/Q | ∃K 6= Q(ζ3) : Gal(L/K) = C3, [K : Q] = 2, |dL| ≤ x} .

Using the averaging results for the 3-ranks of the class group of quadratic fields [3]
we can prove that

Ẑ(Q, C3 ≀ C2; x) ∼ c(C3 ≀ C2)x
1/2 for some constant c(C3 ≀ C2) > 0

as predicted by Malle’s conjecture. This means that the cyclotomic intermediate
extension is the reason for the failure of the conjecture.

We remark that we can produce more counter examples in the same spirit in the
following way. Define G := Cℓ ≀ H and assume that there exists an L/Q such that
Gal(L/Q) = H and K := L ∩ Q(ζℓ) 6= Q. We remark that we have the identity
a(G) = a(Cℓ) = ℓ−1. Now we are in the situation that b(Q, G) = b(Q, Cℓ) = 1 and
b(K, G) = b(K, Cℓ) = (ℓ − 1)/[K : Q] > 1. Analogously as in the proof of Theorem
2.1 there exists c(G) > 0 such that

Z(Q, G; x) > c(G)xa(G) log(x)b(K,G)−1 for x large enough.

The following example shows that this happens infinitely often.

Example 1. Let G = Cℓ ≀ C2 for an odd prime ℓ. Then L = K := Q(
√
±ℓ) ⊆ Q(ζℓ)

has the wanted property.

We remark that for ℓ > 3 we are only able to prove Z(Q, Cℓ ≀C2; x) = O(x3/(2ℓ))
since we do not know good estimates for the ℓ-rank of the class group of quadratic
fields in these cases.

3. Comments about the conjecture

It is interesting to look at the global function field case. Malle’s conjecture can
be easily generalized to this setting and these generalizations are true for abelian
groups [9]. In the function field setting it is natural to consider only extensions
K/Fq(t) such that the normal closure contains no constant field extension. Assum-
ing this and some (unproven) heuristic about the number of points of irreducible
varieties over Fq, Ellenberg and Venkatesh [5] are able to deduce

Z(Fq(t), G; x) = θ(xa(G) log(x)b(Fq(t),G)−1) for gcd(#G, q) = 1.

If we allow constant field extensions we can give the type of counter examples as
in the number field case. E.g. choosing q ≡ 2 mod 3 and G = C3 ≀ C2 works as a
counter example, when we choose Fq2/Fq as the quadratic extension.

Constant field extensions are always contained in extensions generated by suit-
able roots of unity. We could fix the conjecture in the number field case if we
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forbid intermediate extensions which are contained in cyclotomic extensions Q(ζℓ),
where ℓ must be chosen from a set containing all orders of elements of G which
have minimal index. But this is not very natural in the number field case.

The problem in the presented counter examples is that there exist intermediate
extensions K such that b(Q, G) < b(K, G). The following example shows that this
is not sufficient to produce counter examples. E.g. for the group G = (C3 ≀C3)×C2

we get a(G) = 1/4, b(Q, G) = 1, b(Q(ζ3), G) = 2. We can prove that

Z(Q, G; x) = θ(x1/4).

Therefore this group does not contradict Conjecture 1.3. Similar to our original
example it is possible to choose K = Q(ζ3) as an intermediate extension, but this
time it does not change the log-factor.

Since we do not know if there are other type of groups which contradict Conjec-
ture 1.3 we do not give a new formulation of this conjecture.
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