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We describe methods for the computation of Galois groups of univariate polynomials
over the rationals which we have implemented up to degree 15. These methods are based
on Stauduhar’s algorithm. All computations are done in unramified p-adic extensions.
For imprimitive groups we give an improvement using subfields. In the primitive case we
use known subgroups of the Galois group together with a combination of Stauduhar’s
method and the absolute resolvent method.

1. Introduction

Let f € Z[x] be a monic irreducible polynomial. Algorithms for the computation
of the Galois group Gal(f) of f are an important tool of constructive number theory.
Deterministic exponential time algorithms were already used more than 100 years ago (see
(Tschebotarew and Schwerdtfeger, 1950)). Nevertheless until today no general polynomial
time algorithm is known. In this paper we restrict ourselves to the case of univariate,
irreducible polynomials over Q. By applying suitable transformations we assume that we
have monic polynomials with integer coefficients.

All practical algorithms use the classification of transitive groups, which is known up
to degree 31 (Hulpke, 1996). These algorithms can be divided into the absolute resolvent
method (Soicher, 1981; Soicher and McKay, 1985; Mattman and McKay, 1997) and the
method of Stauduhar (Stauduhar, 1973). From the coefficients of the given polynomial it
is possible to compute so-called absolute resolvents (Casperson and McKay, 1994). The
factorization of these resolvents gives lots of information about the Galois group which
may be enough to identify it. In general the degrees of these resolvents can be huge
compared to the degree of the given polynomial. Therefore for higher degrees (say larger
than 11) it is very expensive to compute these factorizations. Another disadvantage
of this approach is that we only get the name of the Galois group, but no explicit
action on the roots. To know these actions is an important ingredient of the algorithms
presented in Kliiners and Malle (2000). There are implementations of this method in
MAPLE (Mattman and McKay, 1997) and GAP (Schonert et al., 1997).

The Stauduhar method uses so-called relative resolvents which are computed using ap-
proximations of the roots of the given polynomial. It computes the Galois group including
the action on the roots. We give a detailed description of this method in the next section.
There are implementations of this method in PaRI (Eichenlaub and Olivier, 1995) (up to
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degree 11) and KANT (Geifiler, 1997) (up to degree 15) which use complex approximations
of the roots. The disadvantage of complex approximations is that we need a very high
precision to get proven results. This makes this approach inefficient. Yokoyama (1997)
suggests using p-adic approximations. There 1s an implementation of this method in the
computer algebra system ASIR up to degree 8.

In this paper we describe Stauduhar’s method using p-adic approximations. Looking
at degrees 12 to 15 it turns out that the ordinary method is not efficient enough to
compute the Galois group. The goal was to solve this defect in order to treat higher degree
polynomials within reasonable time. One important improvement is the use of subfields
of a stem field of f, that is the field extension of ) which we get by adjoining a root of
f to Q. Kliners and Pohst (1997), Kliners (1998) give efficient algorithms to compute
subfields. Using this information we obtain that the Galois group is a subgroup of the
intersection of suitable wreath products which can be computed easily. This intersection
is a good starting point for our algorithm. In the case of primitive groups this method
gives no improvement. Here we present a combination of the method of Stauduhar and
the absolute resolvent method to compute the Galois group. As mentioned before we
use p-adic approximations of the roots. The Frobenius automorphism of the underlying
p-adic field already determines a subgroup of the Galois group, which can be used to
speed up the computations dramatically.

The algorithms presented in this paper are implemented in the computer algebra sys-
tem KANT (Daberkow et al., 1997). We give examples for all transitive groups of degree
12 to 15. In most examples the computing time is only a few seconds.

We remark that in the case that the stem field is normal or even abelian there are
efficient algorithms to compute the automorphism group (Acciaro and Kliiners, 1999;
Kliiners, 1997). Since the factorization of polynomials over number fields is in polynomial
time (Lenstra et al., 1982; Landau, 1985) the computation of the automorphism group
of a normal field is possible in polynomial time. Landau and Miller (1985) show how
to decide the question of solvability in polynomial time. To our knowledge there do not
exist efficient implementations of these polynomial time algorithms.

2. The method of Stauduhar

The main purpose of this section is to recall the essential components of the method
of Stauduhar and to introduce some notation. In general, Stauduhar’s method (see
Stauduhar (1973)) is based on so-called resolvents, that is, polynomials whose split-
ting fields are subfields of the splitting field of the given polynomial f € Z[z], whose
Galois group we would like to calculate. The resolvents used in Stauduhar’s algorithm
are defined as follows:

Consider the fields L := Q(zy,...,z,) of rational functions and M := Q(sy,...,s,)
of elementary symmetric functions in z1,..., 2, and let H < G < S, be permutation
groups acting on {xi,...,2,} by permuting the indices. We denote by L the fixed
field of L under H. Since L/M is a Galois extension, L¥ /L% is finite and separable.
By the theorem of primitive elements, there exists a primitive element 7 € L¥ with
L = LE(F). It is always possible to choose F integral over QJsy,...,s,]. Since the

unique factorization domain Q[ay, ..., z,] is integrally closed in its quotient field, it
follows that F' is an element of Q[zy, ..., z,]. By multiplication with a scalar in Z, F is
even an element of Z[zy, ..., 2z,]. The primitive element property of F' is equivalent to

the fact that Stabg(F) = {c € G | ¢F = F } = H. The minimal polynomial of F' over
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LY is given by ngG//H(X —oI"), where G//H denotes a full system of representatives
of left cosets (by left cosets we mean cosets of the form ¢ H ). The minimal polynomial
is called a generic relative resolvent. The following definition and the next theorem will
show the importance for the method of Stauduhar of the last two properties.

We introduce the general definition of G- relative H-invariant resolvent polynomials,
these are specialized generic relative resolvents.

DEFINITION 2.1. Let f € Z[z] be a polynomial with roots ay,...,a, € Q and H < G
be permutation groups acting on {z1,...,x,}. We call F € Zlay, ..., x,] a G-relative
H-invariant polynomial if and only if

1 oF=F fordloeH,
20F #F foralloc € G\ H.

In this case

Remp(X)= [[ (X-cF(ar,...,an))
o€eG//H

15 called a G-relative H-tnvariant resolvent.

REMARK 2.2. For G = S,, we call the G-relative H-invariant resolvent an absolute
resolvent.

THEOREM 2.3. Let f € Z[z] be a monic, irreducible polynomial of degree n. Moreover,
let H <G < S, such that Gal(f) < G and let 0 € G. The polynomial F € Z[xq,. .., xy]
1s assumed to be a G-relative H-invariant polynomial. The roots of f are again denoted
by aq,...,on € Q. Then:

1 R(G,H,F)(X): H (X—UF(O[l,...,Ozn))EZ[X].
o€eG//H

2 If Gal(f) is contained in cHo™!, then (o F)(ay,...,a,) € Z.

3 If on the other hand (cF)(ay,...,apn) € Z and (6 F)(ay, ..., o) is a simple root
of Ria,m ), then Gal(f) < ocHo~'. In this case the roots of f can be rearranged
according to oy = ag(;) such that Gal(f) < H.

The main idea of Stauduhar’s algorithm is the following: Suppose the Galois group
Gal(f) < G with respect to the chosen ordering of the roots of the polynomial f. Initially
we know that for G = S,,. Using 2 and 3 of Theorem 2.3, we can determine whether
Gal(f) < cHo~! for some maximal subgroup H of G and some ¢ € G//H. If Gal(f)
is contained in no maximal subgroup of G, then Gal(f) = G. Otherwise, if Gal(f) <
oHo~! we reorder the roots of f according to the permutation o such that Gal(f) < H
and repeat the procedure. Thus, the algorithm traverses the subgroup lattice of transitive
permutation groups of degree n from the largest group to the actual Galois group.

REMARK 2.4. 1 Tt 1s always possible to make the resolvent having no double integral
roots by applying a suitable Tschirnhausen transformation to the polynomial f (see

(Girstmair, 1983)).



4 K. Geiller and J. Kliiners

2 We have Gal(f) < A, if and only if the discriminant of the polynomial f is a
rational integral square.

3 If H is a maximal transitive subgroup of (¢, then for each G-conjugacy class of H
we need to consider only one representative.

4 Factorization of the polynomial f into distinct monic irreducible polynomials in
F,[x] leads to cycle shapes of Gal(f). For each shape found in this manner, we
eliminate all candidate groups which do not exhibit this shape. So it is possible to
usually quickly determine if the Galois group of the polynomial f is the symmet-
ric or alternating group by finding shapes unique to these groups and using the
discriminant criterion.

According to 2.4.3 we are left with the case that we have representatives of two con-
jugacy classes which are maximal in G but which are not G-conjugate to one another.
We have computed up to degree 15 that two maximal subgroups of G < S,,, which are
conjugate to one another in S, are already conjugate to one another in

Ng, (G):={0 €S, |ocGo™ =G}

the normalizer of G in S,. Degree 16 is the first degree, where this does not hold any
more. For example the group 1674, has two maximal subgroups of transitive group
type 16T4‘|12, which are not conjugate to one another in Ng,, (16T6‘ZO). For two maximal
subgroups Hy, Hs of G, lying in the same Ng, (G)-conjugacy class, the following holds
(see (Eichenlaub and Olivier, 1995)):

THEOREM 2.5. Let Hy = THi7~ ', 7 € Ng, (G) and F be a G-relative Hy-invariant
polynomial. Then TF is a G-relative Ho-invariant polynomial and

R(G7H2,TF)(X) = H (X_TO'F(OQ,...,O[”))
o€G/[H,

is a G-relative Hy-invariant resolvent. In particular, if T € G, then Ria pm, ry(X) =
RiG,m,,rr)(X).

We will close this section giving, for each degree, an overview of the necessary data
which must be computed for this method. Given a list ¥ of representatives for the 5, -
conjugacy classes of transitive subgroups the following tasks have to be completed for all

Ge%:

1 Find all T € ¥ for which there exists a permutation p € S, such that pTp~! is
maximal in G. Then we define T¢ := {(T1, 1), ..., Tk, pr)}-

2 For each T; € T let H; = pﬂ}p{l < G. Then H(G, H;) = {oH;jo7l |0 €
S, and o H;o~! < G} is the set of subgroups of G of the same transitive group type
as H;.

3 Ng, (G) operates by conjugation on $(G, H;). Compute a G-relative H;-invariant
polynomial F;; for each orbit B;; under this action. Since for n < 15 there is
always exactly one orbit, j = 1, and we simply write F; instead of F; ;.

4 Compute coset representatives ¢; € G//H; and 7; € Ns, (G)//G. The permuta-
tions 7;0; constitute a complete system of representatives for Ng, (G)//H;.
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In our current implementation the subgroup lattice, the pis and the T]{s are precom-
puted and stored. The coset representatives o; € G//H; and most of the invariant poly-
nomials are computed during the running time.

2.1. THE COMPUTATION OF (G-RELATIVE H-INVARIANT POLYNOMIALS
It is well known that G-relative H-invariant polynomials always exist:
LEMMA 2.6. For H< G < S, and F(xy,...,2,) = xted-- 2”21 let
Fley, ... ,¢n) = Z oF.

ceH
Then Stabg (F) = H.

In practice it is not very efficient to use this polynomial. Our aim is to find an invariant
of small total degree. Let R := Q[a1, ..., z,]. We can decompose

R= é Ra,
d=0

where R4 denotes the homogeneous components of degree d. Clearly this gives a decom-
position of the invariant ring

oQ
H _ H
R" =P RL.
d=0
R4 is a Q-vector space of dimension (":ﬁ;l)

DEFINITION 2.7. Let S := RH. The Hilbert Series of S is the formal power series

h(S,t) := idim@(Sd) e Z[[]).

d=0

Choosing a G-relative H-invariant polynomial with smallest total degree d among
all invariants has major effects on the efficiency of the program: multiplications are
very expensive, so we can speed up computations extremely by minimizing the number
of multiplications. On the other hand we also gain time during the lifting procedure
(see Theorem 2.17) by using an invariant whose resolvent has smaller absolute value
roots. Since H is a maximal subgroup of (G, d equals the smallest index such that the
corresponding coefficients of h(R ¢) and h(R% ) are different.

ALGORITHM 2.8. (Computation of G-relative H-invariant polynomials)

Input: A permutation group G < S,, (n > 4) and a mazimal transitive subgroup H
of G.
} . -1 }
Output: A homogeneous polynomial F' of minimal degree d < ﬂnz_) with Stabg(F) =
H.

Step 1: Compute the Hilbert series h(RY t) and h(RY,t) and compute the smallest
windex d such that the corresponding coefficients are different.
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Step 2: Compute all homogeneous invariants of H of total degree d.
Step 3: Remove the invariants which are G-relative.
Step 4: Return an invariant with the smallest number of monomaals.

For Steps 1 and 2 we use the algorithms implemented in Magma (Kemper and Steel,
1999). Step 2 is the most expensive one of our algorithm. In the sequel we give three
lemmata (see Eichenlaub (1996)), which are useful for obtaining computationally better
invariant polynomials.

Let us start with a result about wreath products.

LEMMA 2.9. Suppose G < (' < Sy and H < H' < Sp are transitive permutation
groups acting on A = {1,... 1} resp. T := {1,...,m}. Let y; = ZZA:1 zy; and
F; .= F(z1;,...,25) for j = 1,...,m, where F is a G'-relative G-invariant polyno-
mial. Furthermore let E be a H'-relative H-invariant polynomial. Then

Fi+Fot+ -+ Fn+Ey,. Um)

is a G’ \r H'-relative G {1 H -invariant polynomial.

REMARK 2.10. If we have G = (&’ in the last lemma, then E(y1, ..., ym) yieldsa G'ip H'-
relative Gl H-invariant polynomial. Analogously Fy + - - -+ F,,, is sufficient for H = H'.

We come to a statement about subgroups of index 2. Essentially we construct new
invariants for other subgroups of GG of index 2 from known G-relative H-invariant poly-
nomials F' with [G : H] = 2. Thereby we try to change the known invariant polynomials
F, such that the corresponding resolvent is of the form X? — F?(ay, ..., a,), where the
af s, (1 < i< n) again denote the roots of the polynomial f.

LEMMA 2.11. Let G be a permutation group with subgroups H1 and Hy of index 2. Let
F;, (i = 1,2) be G-relative H;-invariant polynomials with o; F; = —F;, (0; € G\H;). Then
H1 + H2 = (H1 N Hz) U ((G\Hl) N (G\Hz)) S G and F1F2 15 a G-relative H1 + Hz-
mvariant polynomaial.

REMARK 2.12. The condition ¢;F; = —F;, (0; € G\ H;) is no restriction. It can always
be obtained by replacing F; by F} = F; — 0, F;, 0 € G\ ;.

The last lemma deals with wreath products of the form G' = S;1.S,,. We classify
subgroups of (G by consideration of stabilizers of symmetric polynomials: Define

dii= J[ @ix—w), (<k<m) and D= ] (wi—w)
1<i<i<l 1<i<j<m

with ¥} s as in Lemma 2.9 and denote by si, (1 <k < m) the k’s elementary symmetric
function. Then we have the following

LEMMA 2.13. The group Sir Sy with T := {1,...,m} has at least three subgroups
of index 2: The stabilizers of spm(di,...,dm), D(y1,...,ym) (that is S;ir Am), and
D(y1, .., Ym)sm(di, ..., dm). Furthermore S;ir Sy, has a subgroup of indexr 2™~ and
a subgroup of index 2™, (A; v Sp), which are the stabilizers of sa(dy, ..., dp) resp.
Sl(dl, ceey dm)
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DEFINITION 2.14. Let G be a transitive permutation group acting on a finite set Q. A
subset ) £ A C Q is called a block, if ANA® € {0, A} for all 0 € G. The orbit of a block
A under G s called a block system. A group is called primitive, if it only has blocks of
size 1 or |Q]. Otherwise it is called imprimitive.

Finally we give an example with combines the three lemmata to show the effect on the
performance.

ExAMPLE 2.15. Consider the group pair G = 12756y and H = 12T455. In this exam-
ple all '-groups result from the groups in Conway et al. (1996) by conjugation with
(2,10,12,7)(3,4,11,6, 8). Using algorithm 2.8 we obtain an invariant which needs 11-1152
multiplications for this descent. By testing several subgroups of index two, we get Thsy =
Th4y + Toks. Both groups Th, = So 1 Fa(6) and Theo = So Fa(6) : 2 = S5 1 (S31.52)
are wreath products, that means we can use Theorem 2.9. Remark 2.10 shows, that it
is sufficient to find an S5 Ss-relative Fsg(6)-invariant polynomial. Theorem 2.13 gives
Stabg,s, (Ds2) = F36(6) for n = 6. The groups Tagp and Ty both have a block system
B = {{1,7},{2,8},{3,9},{4,10},{5,11},{6,12}} according to the generators used in
Conway et al. (1996). Thus, we get y; = (2; + zj46), dj = (5 — 2j46), j=1,...,6 and

Dsy = H (yi —y;) Z d;d;.

1<i<j<6 1<i<j<6

Now we are left with the task to construct a Tsgg-relative Té;’6—invariant polynomial.
Since TZ/;'6 is an even permutation group, the polynomial s = dydsdsdadsds 1s stabilized
by all permutations from TZ/;'6 and permutations from T260\T2/§'6 will change the sign of
sg. Both polynomials, Dsy and sg satisfy the assumptions of Theorem 2.11. Thus, we
obtain as a Thgg-relative Ty -invariant polynomial

D5236a

whose evaluation needs less than 40 multiplications.

We have not said anything yet about the decision step of Stauduhar’s algorithm. There
are several possibilities for performing this step. Stauduhar proposed using high-precision
approximations to the roots of f. Since the resolvent has integer coefficients he approx-
imated the roots to sufficient precision so that the resulting error in the absolute value
of the coefficient of R g p(X) is less than % The required precision using numerical
approximations can be very large and therefore leads to bad performances. Another ap-
proach is to use p-adic approximations of the roots of the polynomial f as suggested by
Yokoyama (1997). We decided to use p-adic approximations, because the advantages are
guaranteed results combined with competitive times.

2.2. THE p-ADIC METHOD

In this section we will describe the p-adic decision step in the algorithm of Stauduhar
for irreducible monic polynomials f € Z[z]. Let p denote a prime integer such that f is
square-free modulo p. Denote the ring of p-adic integers by Z,, the field of fractions of Z,
by Qp, and an algebraic closure of Q, by @,. In order to compute approximations of the
roots aq,...,ay € @p, we use the following lemma. The proof of it is straightforward.
Kliners (1998) describes the p-adic arithmetic in much more detail.
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LEMMA 2.16. Let | € Z be minimal such that f(t) mod p has n (distinct) roots in Fp.
Let g(t) € Z[t] be monic of degree | such that [ is generated by a root of g(t) mod p
over F,. Then g(t) is irreducible over Q. Furthermore, let Ny := Qp(w) and N := Q(w)
with g(w) = 0. N, is the unique unramified extension of Q, of degree | and is also the
splitting field of f(t) over Qp. The prime p is inert in N/Q, poxy = p, and the p-adic
completion of N equals N,.

Let v, be the discrete valuation of N,/Q,. For all 3 € N, and k € Z there is an
approximation S*) € N such that vp (ﬁ — ﬁ(k)) > k holds. Using Newton lifting we are

able to compute approximations oz(lk), ce ozglk) € Nofay,...,an € Np. For y € Z denote
by |y]p+ the unique representative of y mod p* in [—(p* — 1)/2, p*/2]. We have chosen
the symmetric residue system to get small numbers modulo p¥. Denote by 3, € Ny the
root of R(g m,ry(X) belonging to 0 € G//H.

Darmon and Ford (1989) used the following theorem to verify the Galois groups of
polynomials having the Mathieu groups M;; and M;; as Galois groups.

THEOREM 2.17. Let M € R be an upper bound for the absolute values of the complex

roots of Ria mr)(X). Let k € 7 be such that PP > MG If g, € N, is a root of
Ria . r)(X) subject to

18 ez,

21185 | | < M,

3 8% 2 8% mod p* for all & € G//H with & # o.
Then B, = Lﬁc(,k)ka € Z 1s a simple root of Rig u,ry(X).

ProOF. 1 3, is a root of Rg g p(X). Thus,

RG,H,F(ﬁgk)) = ngHyF(ﬁg) mOdpk
~ RG,H,F(ﬁgk)) = 0 modpk.

Since the left side is an element in Z and p = poy it follows:
& RG,H,F(ﬁék)) = 0 mod pF.

2 Because | Lﬁé’“)ka | < M, we may assume without loss of generality that | ﬁé’“) | < M.
From |oF(ay,...,an) | < M (for complex «;) it follows that

|Remr(BS))] = I |85—oF(ar,....ap)]
o€eG//H
< I @M
o€eG//H
S (QM)[GH]

Since p* |RG7H7F(ﬁy€)) and pF > (2M)[FH] we have RGVHVF(ﬁék)) = 0. Thus, ﬁgk) = fs.
From assumption (iii) we get that G, is a simple root of Rg g p(X). U

Some remarks are in order here.
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REMARK 2.18. In our implementation we first lift the approximations up to the heuristic
bound p*’ with k' = min {31log,(2M),[G : H]log,(2M) }. Approximations ﬁé’“') modp ¢
F, cannot correspond to an integer root if { > 1, since this implies that 5, € Q,. In a
second loop we lift the remaining roots up to the bound k. If the absolute value of the
representative of ﬁ&” mod p’ is bigger than M for j > k, than either ﬁ&” 1s not an element
of Z or | Lﬁc(rj)ka | > M. Therefore 5, can also be removed from the candidate list.

2.3. MAIN PROBLEMS

The main problem of the relative resolvent method is that for growing n the first
descent from S,, resp. A, becomes very large. For example, in degrees n = 13,14 and 15
we have the following indices of maximal transitive subgroups in S, and A,:

[Sis : 13Ts] = 39916800  [Ays : 13T57] = 554400
[Aps : 13T5H] = 39916800

[514 : 14T61] = 1716 [A14 : 14T;§] = 3432
[Si4: 14T57] = 135135 [Ay4 : 14T55] = 270270
[S14 : 14T50] = 39916800 [A14 : 14755] = 39916800

[Si5: 15Th09] = 126126 [Ay5 : 15T55] = 126126
[Si5 : 15T03] = 1401400  [Ays : 15755] = 1401400
[A1s 1 15T5] = 32432400
These indices increase exponentially in n, e.g. for n even we have
n! n!

W and [S, 1 (S21.52)] =

For p prime we have PSLy(p) < Apyi1, where [A,1; : PSLay(p)] =
2,3,11,23 we get that PSLy(p) is a maximal subgroup of A,44.

One problem which occurs is that the coset computation takes a lot of time, and the
inclusion test, too. Another problem is the verification of the result. To verify the Galois
group we must lift the approximations to a bound % such that

P> (2 M)A

[Sn: (Sz152)] =

w|§
—

5t
(p—2)!. For p #

And there the index comes in. Both points seem to be extremely time consuming for
large degrees n, thus our goal is to give improvements especially on these two points.

3. Extension of the relative resolvent method using subfields

In this section we develop an extension of the relative resolvent method. Previous
investigations have shown that the first descent from S, resp. A,, is particularly time
consuming. Thus it would be desirable to skip this first step by means of computing
suitable additional information. Using this information, we would like to change the
starting point of the algorithm in the subgroup lattice, to get as close as possible to the
actual Galois group. In order for the method to work, we must be guaranteed that the
Galois group Gal(f) < G chosen as the starting point. That means the Galois group
considered as a permutation group must be a subgroup of G with respect to the chosen
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ordering of the roots of f. Such an extension can be realized for imprimitive transitive
permutation groups. By Krasner’s and Kaloujnine’s theorem (see (Meldrum, 1995)) a
transitive, imprimitive permutation group with a block system, which consists of m blocks
of length [, can be embedded in a wreath product of the form S;1.5,,. If the imprimitive
permutation group has different block systems, then it lies in the intersection of these
wreath products.

How do we arrive at this information for a given polynomial f? Let o be a root of f.
In the computer algebra system KANT there is a fast algorithm for computing subfields
of algebraic number fields @ («) (Kliiners and Pohst, 1997; Kliiners, 1998). The subfields
of Q(a) of degree m are in bijection with the blocks B of length [ := I of Gal(f) which
contain «. Each subfield can be represented by a pair of polynomials (g, h) € Z[z] x Q[],
where g is the minimal polynomial of a primitive element § of a subfield and h(«) = 3. We
call h the embedding polynomial. To specialize this fact with respect to the application
we have in mind, we use the following

THEOREM 3.1. Let By = Q(f), E2 = Q(«) be algebraic number fields with Q@ C Ey C Es
and g, [ € Z[x] be the minimal polynomials of 8 and «, respectively. Let h € Q[x] be the
embedding polynomial with h(«) = 3. Denote the conjugates of o and 5 in some algebraic
closure with oy, ..., ap and B1, ..., Bm, respectively. Defining B; = {a;|h(a;) = 5} it
follows:

1 Bi,..., By form a block system of Gal(f). Furthermore, n = | B;|m.
2 Gal(g) is isomorphic to the permutation representation of Gal(f) with respect to
By, ..., By under the mapping 6 : 3; — B;.

PrROOF. (1} Let ¢ € G and v € B; with o(5;) = SBi. Then the following equivalences
hold:
YEB: & h(y)=5
& o(h(v) = h(e() = Br
< o(y) € By.

From the above equivalence and the transitivity of GG it follows n = | B; | mfor 1 < i < m.
(2) Gal(g) is equivalent to the permutation representation of GG according to the B;
under the mapping 0 : 3; — B; because Q(3;) = Q(ay, ..., a,)S2Pean (B O

Because of Theorem 3.1 2 one knows, that the operation of the Galois group of f on the
blocks B; of length {;1 < ¢ < m, is equivalent to the operation of the Galois group of
the minimal polynomial of the subfield on their roots. It follows that one can embed the
Galois group in S; 1 Gal(g).

ALGORITHM 3.2. (Galois group computation using subfields)

Input: Monie, irreducible polynomial f of degree n with rational integer coefficients,
roots ay, ..., a, given in some p-adic completion.

Output:  Permutation group T € T and root ordering such that Gal(f) <T.

Step 1: (Initialization) Compute roots of f and choose an arbitrary root ordering.

Step 2: (Discriminant?) If disc(f) is a square in 7, then G+ A,, else G + S,.
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Step 3: (Subfields) Compute minimal polynomials ¢1,...,gs of all subfields of Q(a),
(a a root of f), and embedding polynomials hy, ... hs by using the subfield
algorithm.

Step 4: (Primitivity?) If s = 0, then Gal(f) is a primitive permutation group. Output
of T «+ G and root ordering a1, . .., a, and terminate. Otherwise set i <+ 1.

Step 5: (Roots in blocks) Set m; < deg(g;) and l; < n/m;. The Galois group has a
block system B; = {B1, ..., Bm,} with blocks of length l;. Compute the root
partitioning of f with respect to the blocks By, ..., Bm, using the embedding
polynomial h; (Theorem 3.1).

Step 6: (Wreath product) Let K; = S;, 1.Spm, and determine the permutation o € S,
which maps the block system of K; onto the block system B;.

Step 7: (Congugate wreath product) Set K; + oK;o~1. Now Gal(f) < K;.
Step &: (Next g;?) If i < s, then i < i+ 1 and repeat from step 5.

Step 9: (Intersection) Set G «— G N () K;).
- i=1

Step 10:  (Identification) Identify G with T € T and determine permutation o such
that G = oTo™ 1.

Step 11:  (Adjust root ordering) Set a; < ag(;). Now Gal(f) < T'. Output of T' and
root ordering ay, . .., ay,.

REMARK 3.3. 1 TIf we compute the Galois group Gal(g;) acting on f1,...,8m, in
step b of the above algorithm, we can use the isomorphism 6 of Theorem 3.1 to
improve the above algorithm. After reordering the B; according to § we can use
K; = 51, 1Gal(g;) in step 6. The group T may become smaller, but we need some
computing time to compute Gal(g;).

2 A similar improvement can be done if we are able to compute the relative Galois
group G of mg over Q(f), where my denotes the minimal polynomial of o over
@(5). In this case we can use K; = G'1.Sn,.

4. Short coset systems

The previous section gave an improvement of Stauduhar’s method for imprimitive
groups. The primitive groups remain. In the sequel we give independent solutions for the
problems of large coset representative systems and high lifting bounds. In general, these
methods apply to both, imprimitive and primitive groups. For large degrees (> 11) the
best results are obtained by combining the techniques of section 4 and section 5.

Let us start by introducing short coset systems. Let f € Z[z] be monic and irreducible,
ai,...,an € Q be the roots of f and set E := Q(ay,...,a,). We look at Gal(f) as a
permutation group on the roots of f and assume that we know a group G < S, such that
Gal(f) < G holds. For a maximal transitive subgroup H of G the method of Stauduhar
needs to check whether Gal(f) < cHo~! for some 0 € G//H.

Improvement: If we additionally know a permutation group K < Gal(f), we can restrict
to those o € G//H with K < s Ho™ 1.
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DEFINITION 4.1. Let H < G < S, and K be a subgroup of the Galois group of f, viewed
as a permutation group with respect to the chosen ordering of the roots of f. Then we
call the set

(G/H)k ={ocH €G/H|K <oHo '}
short cosets. We denote by (G//H)k a full system of representatives of (G/H)g.

Explicit permutation subgroups K < Gal(f) can be obtained as follows:

Complex case: For aq,...,a, € C we may take the cyclic subgroup K generated by
the complex conjugation. Complex conjugation is an automorphism of any subfield of
the complex numbers and induces an element in Gal(f) of cycle type (272,171), where
r1 denotes the number of real zeros and r; is the number of complex conjugate pairs of
roots of f.

p-adic case: For aq,...,a, € Qp we may take the cyclic subgroup K generated by the
Frobenius automorphism. Assuming p 1 disc(f), all a; are different modulo p. Therefore
the Frobenius automorphism 7 can be computed using the congruence 7(a;) = ol mod p.
The Frobenius automorphism is an element of cycle type (deg(f1),...,deg(f;)), where
f=fi1--fr mod p is the factorization of f modulo p.

Even if the group K is of small order, this shortens the set of coset representatives
extremely as the following example shows:

EXAMPLE 4.2. Let H be the group PSLy(p) which is maximal in G := Apyq for p #
2,3,11,23.T¢t has index [G : H] = (p— 2)!. Let K be generated by an element of order p.
Then we get |(G//H)g| = 1.

Here we see another advantage of the p-adic computation. If we have chosen a prime
number p for which we cannot reduce the coset system, we are able to take another prime
number. In the complex case there is no such possibility for totally real polynomials.

THEOREM 4.3. Let f € Z[x] be an irreducible monic polynomial and denote by E the
splitting field of f over Q. Let Gal(f) < G be a permutation groups acting on {oq, ..., an}
and H be a marimal subgroup of G. Furthermore let F(xq,...,2,) be a G-relative H-
invariant polynomial. If |(G//H)k| > 2 and if the shortened resolvent

[I &-cF(ay,...,an) € E[X]
c€(G//H)x

has a simple root a € Z, then we must have Gal(f) ; G.

ProOOF. Supposing Gal(f) = G we get that v := F(ay,...,a,) is an element of E#
since Stabg(F) = {o € G | oF = F} = H. Therefore we have for the characteristic
polynomial iy (X) of v in EH/Q:

(X)) = [I (X—=cF(ai,...,a))
ceG//H

Ria,m.r(X).

On the other hand we have
f4(X) = (my (X)) for some k € N,
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where my(X) denotes the minimal polynomial of v over Q. Since (X — a) | py(X) =
(m4(X))* in Z[X] it follows that p(X) = (X — a)l%H] which is a contradiction to the
fact that there is a root b # a of R ry(X). Thus Gal(f) ; G. O

REMARK 4.4. 1 In Theorem 4.3 it is enough to consider 1,09 € (G//H) with o1 #
oz and o1 F(ay,...,an) € Z and o1 F (a1, ..., an) # 0aF (o1, ..., an).
2 In the situation of Theorem 4.3 it does not follow that Gal(f) < H.

AppricATION 4.5. Consider all mazimal subgroups of the group G with short coset sys-
tems. If there is only one possible descent left, this descent is proven. Especially for
primitive groups of degree 11 < n < 15 in the most cases there is only one group which
1s marimal in S, resp. A,.

In the following we assume that K = (r) < Gal(f). A straight forward, but quite
impracticable and time consuming method to compute a short coset system would be
to first compute all coset representatives o € GG//H and then filter out the ones for
which 7 € ¢ Ho~! hold. We are looking for other possibilities to make the program more
efficient. The next algorithm is a big improvement to the straight forward method for
large indices. For this we have to use some basic group theory. For a permutation group
(i and a permutation 7 denote by Cg(r) := {0 € G| o7 = 70 } the centralizer of 7 in G.

ALGORITHM 4.6. (Computation of a short coset system)

Input: K <H<LGLS, with K ={(r).

Output: (G//H)k.

Step 1: Compute the set C of H-conjugacy classes of H which have the same cycle
type as T.

Step 2: For each C' € C compute a 0 € G such that o~ 1o € C, if ¢ exists. The set
of these o is denoted by G.

Step 3: For each o € G compute the set Ay := (Ca(1)//Coro-1(T)).
Step 4: Output of {ac |c €G, a € Ay } = (G//H)k.

Proor. Correctness of the algorithm:

1 For o € G we have (1) < 0 Ho~! is equivalent to 0170 € H. Therefore 0 =170 € H
lies in one C' € C.
2 Let 0 € G with o~ l70 € C. For & € G it follows that

lo~lrop <=6 € Cq(r)oH.

Then {c € G |o~reo e H } = Ug Cq(r)oH with G such as in Algorithm 4.6.
vE

GTIrd EC < itexists pe H : 67 76 =p~

3 Since Cg(r) = EL;J4 aCypo-1(7) for every ¢ € G and Cyopgo-1(7)cH = oH we

obtain U Cg(r)eH = U ( U acH). The last union is disjoint, because:
0€g 0EG a€A,

ayoH = ayo H <= aja;' € Cq(r)NoHo™!
— alaz_1 € Copo-1(7)
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which is not possible according to the choice of A,. a

In this section we have solved one of the two main problems, namely that the number
of cosets is too large. In Remark 2.18 we explained that it may happen that we can
detect cosets which do not correspond to integral roots of the resolvent using a small
p-adic precision. The practice shows that in most cases we are left with at most one coset
which may correspond to an integral solution of the resolvent. If [G : H] is large the
remaining problem is to prove that this coset indeed corresponds to an integral solution.
Suppose that we have the additional information that Gal(f) < e Ho~?! for some o. For
instance this can be the case when the polynomial was constructed in a special way.
Then we know that the last remaining coset must correspond to an integral solution of
the resolvent and we do not need to apply the method of the next section.

5. Verification of Stauduhar steps with large index

Up to now, we have solved the problem of large coset representative systems by means
of introducing short coset systems. In order to obtain verifiable results we have to lift
the p-adic approximations of the roots of up to a bound k&, which strongly depends on
the index [G : H]. For running time reasons it would be desirable to avoid the lifting
procedure for the G : H step. Roughly speaking, this can be done in the following way:
First, compute the Galois group with the method of Stauduhar using short coset systems
and a lower lifting bound for the first descent. This yields an unproven result. Secondly,
verify the Galois group by using absolute resolvent methods.

The absolute resolvent method uses mainly resolvents associated to intransitive per-
mutation groups of the form H = S, X Sp_,, (1 < r < n). For this kind of groups there
exist very simple S,-relative S, x S, _,-invariant polynomials F'. For instance, one can
choose

Fley,...;en) =x122-...-2p ot Fley,...,¢p) =21+ 22+ ...+ 2.

Therefore absolute resolvents corresponding to groups of the form above are often called
r-set resolvents. These r-set resolvents are easy to compute, because for the computation
over fields of characteristic zero only the coefficients of the polynomial f are needed (see
Casperson and McKay (1994)). Provided that the absolute resolvent is square-free, it
is well known (see Soicher (1981), Soicher and McKay (1985)) that the degrees of the
irreducible factors of the resolvent in Z[x] correspond to the lengths of the Gal(f)-orbits
of S, //H. For each possible Galois group Gal(f) and each group H the degrees of the
irreducible factors can be tabulated in advance. Such a table is called a partition table.
For small degrees the Galois group can be identified by comparing the irreducible factors
of the absolute resolvent belonging to the group H with the partition table. For higher
degrees n not all possible Galois groups can be distinguished using r-set resolvents and
unfortunately, these resolvents are particularly hard to factor.

Since the method of Stauduhar also provides the action of the group on the roots, we
can work in reverse: instead of factoring the r-set resolvent, we can write down the factors
and then test if the factors divide the r-set resolvent. In our current implementation, we
use this method for degrees n > 9. Instead of taking & as in Theorem 2.17, we have chosen
a heuristic bound for the first step to be k' = min{10 log, (2M), [G : H] log,(2M)}. In
the sequel we describe the verification step.
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ALGORITHM 5.1. (Verification of Stauduhar steps with large index.)
Input: A monic irreducible polynomial f € Z[x], H < Gal(f) < G as permutation

groups on the roots aq,...,a, € Qp of f, ¥ € N such that the orbits of the
r-sets under H and G are different.

Output:  H # Gal(f) or G # Gal(f).

Step 1: S ={AC far,...,an} | 4] =1},
Step 2: Compute an H-orbit O of S which is not a G-orbit.
Step 3: Compute the r-set resolvent polynomial F € Z[x].

fi:= Z Hamodp.

A€O a€cA
Step 5: Compute fo € Z[z] such that f = f1 f» mod p.

Step 6: Check if f1 and fs are coprime modulo p. If not, compute a suitable Tschirn-
hausen transformation for f and go to Step 3.

Step T: Compute a bound M for the size of the coefficients of the factors of F and
k € N such that p* > 2M .

Step 8: Lift ' = f1f mod p to F' = I\ Fy mod p*.

Step 9: Check, if Fy correspond to a true factor of F'. In this case return that Gal(f) #
G. Otherwise return that Gal(f) # H.

In Step 7 of the above algorithm we use well known bounds of factorization algorithms
(see e.g. (von zur Gathen and Gerhard, 1999)). For the transformations in Step 6 we
choose random Ay, ..., Ay, € Z in such a way that Z;zl Aja; is a primitive element and

replace a; by Z;zl Ajay, 1< i< n (see also (Girstmair, 1983)).

EXAMPLE 5.2. 1 Let H = 12T2'|§5 = Mi» and G = 12T3:|60 = Ajs. Looking at the
following table we have to take r = 6 to distinguish H and G. In this case H is a
maximal subgroup of GG. Therefore the output of the algorithm that Gal(f) # G
implies Gal(f) = H.

2 Let H = 15755 and G = 157}5,. From the following table we get that r = 2 suffices
to distinguish H and G. In this case H is not a maximal subgroup. We have the
following situation: 15T2‘|(') < 15T2‘|é < 15Tj’7 < 15T7‘; < 15T1‘|63. The only unproven
step in the algorithm is the step from 15T1‘|(')3 to 15T7‘;. The other steps are proved
using Stauduhar’s method provided the first step was correct. If the algorithm
outputs that Gal(f) # G = 15755, this proves that H = Gal(f). If we only use the
absolute resolvent method we have to use r = 4 to distinguish 1575 and 1575f%.

In the following we give a partition table for the primitive groups of degree 12 to 15
used for the verification step. For the transitive groups of degree 9 to 11 tables can be
found for instance in Eichenlaub (1996). In the following table 1103, 1322 330 means that
there are three factors of degree 110, two factors of degree 132, and one factor of degree

330.
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Degree 12
Gal(f) 2-set  3-set 4-set 5-set 6-set
127351 66 220 495 792 924
1275, 66 220 495 792 924
12755, 66 220 495 792 132,792
12755, 66 220 165, 330 132,660 22,110,792
12758 66 220 165, 330 132,660 110,220, 264, 330
127%, 66 220 165, 330 132,660 110%,1322,330
Degree 13
Gal(f) 2-set  3-set 4-set 5-set 6-set
1375 78 286 715 1287 1716
1375 78 286 715 1287 1716
1375 78 52,234 13,234,468 117,468,702 78,234,468,936
137 78 52,778,156 39,52,782 1563 39,782 1567 26, 52,783 156°
137 392 262,392,782 267,395,785 395, 7814 132,262 39°% 7818
137, 263 263,524 133,266 5210 133,266 5221 2610 5228
1375 392 134 39° 134, 3917 3933 135,394
1375 136 135,268 13152620 13152642 1320 2656
1377 135 1322 135° 1399 13132
Degree 14
Gal(f) 2-set  3-set 4-set 5-set 6-set T-set
14765 91 364 1001 2002 3003 3432
1478 91 364 1001 2002 3003 3432
14755 91 364 182,273, 364,546, 91,182,546, 156,364,
546 1092 10922 728, 10922
1478 91 1822 912,273, 1827 5463 913, 5463, 782,182%
546 1092 3642, 5464




Galois Group Computation for Rational Polynomials 17

Degree 15
Gal(f) 2-set  3-set 4-set, b-set 6-set 7-set
15T194 105 455 1365 3003 5005 6435
157, 105 455 1365 3003 5005 6435
1574, 105 35,420 105,420, 168,315, 105,280, 15,120,420,
840 840, 1680 420, 1680, 840, 25202
2520
1574 105 35,420 105,210, 42,126, 70, 105, 210, 15,120,420,
420, 630 315,420, 4207, 1260, 6302, 840,
840, 1260 2520 12603
15755 45,60 15,20, 30,45, 6,45, 60, 10,15, 603, 15,60, 902,
60,1802 602, 90, 72,902,120, 907,120,1803, 1202, 1807,
1807,360% 1807, 360° 3607, 720 3606, 7203
1575 45,60 15,20, 30,45, 6,362, 45, 10, 15, 605, 15, 60,902,
60,1802 602, 90, 60,902,120, 90%,1807, 1207,180'7,
180,360 1806, 360* 3607 3607

6. The entire algorithm

In this section we give a brief survey about the whole algorithm. One critical point

is the prime p chosen for the p-adic completion. Let f € Z[z] be a monic polynomial
and p be a prime not dividing disc(f). Factorize f = f1--- f, mod p and define d, :=
lem(deg(f1),...,deg(fr)). Let T4, be the set of all transitive subgroups of A, up to
conjugation in S,. Analogously, let Ts_ be the set of all transitive subgroups of S,, not
contained in A, up to conjugation in S,. When we say that a group is contained in
such a set we mean that there is a group in the set which is conjugated (in S,) to our
given group. When we have fixed a prime p 1 disc(f), we have no multiple roots modulo
p. Therefore it is sufficient to compute the roots in the p-adic completion modulo p to
distinguish them. When we need more precision Newton lifting can be used to lift the
roots to the desired precision.

ALGORITHM 6.1. (Computation of Galois groups)

Input: Monie, irreducible polynomial [ of degree n with rational integer coefficients.

Output: The Galois group of f wncluding the action on the roots.

Step 1: (Discriminant?) If disc(f) is a square in 7 set T « T, . Otherwise set
T« %5, (Remark 2.4).

Step 2: (Factorization mod p) Factorize f modulo some primes p { disc(f) (Remark

2.4). Remove all groups from T which do not contain an element of the given
cycle shape.
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Step 3: (Galois group found?) If |T| = 1 then return Gal(f) and an arbitrary ordering
of the roots of f.

Step 4: (Subfields) Compute the subfields of the stem field K of f.
Step b: If there are non-trivial subfields then go to Step 5.1, else go to Step 5.2.

Step 5.1 (Galois group imprimitive) Remove all groups from T which do not have
block systems of the computed shape. Choose a prime p such that d,
1s small. Compute the roots aq, ..., a, mod p. Apply Algorithm 3.2 to
compute G such that Gal(f) < G.

Step 5.2 (Galois group primitive) Remove all imprimitive groups from T. Suppose
that Gal(f) is the smallest group contained in T and find out, if there is
a step H < G with a huge group index. In this case compute the r-set
polynomial F needed for the proof of the critical step (Algorithm 5.1).
Choose a prime p with the following properties:

1 F mod p is square-free.

2 dp 1s small.

3 [Cq(r) : Cr(7)] is small, where T is the corresponding Frobenius
automorphism.

Compute the roots ay,...,a, mod p and set G + S, or G + A, de-
pending on Step 1.

Step 6: (Traverse subgroup lattice) For all mazimal subgroups H of G contained in T
apply the p-adic version of Stauduhar’s algorithm (Section 2.2). If |G : H] >
2000 use an unproven precision (say k = 10log,(2M), compare Theorem
2.17). If Gal(f) < H then set G + H and go to Step 6.

Step T: (Result unproven?) If there was an unproven step, apply Algorithm 5.1 to
prove this step. In this case output G and the roots ay, ..., a,. If the un-
proven step H < G was wrong, then remove H from T, set G + é, and set
ai, ..., an to the ordering before the critical step.

We remark that the ordering of the roots is changed in Steps 5 and 6. It may happen
that the » — set polynomial F' computed in Step 5.2 is not square-free. In this case we
have to apply a suitable Tschirnhausen transformation (see Algorithm 5.1). In Step 5.2
2, 8 we have to find a good compromise between the degree of the corresponding p-adic
field and the number of short cosets. Frobenius automorphisms of large degree usually
give smaller short coset systems.

7. Examples

We tested about 70000 polynomials from degree 3 to 15. The running time of the
algorithm is dependent on the size of the coefficients and the Galois group. Furthermore
it 1s dependent on the number of Tschirnhausen transformations which usually increase
the size of the coefficients. We use the examples from degree 12 to 15 given in Kliners
and Malle (2000). The given running times include all necessary computations to get
a proven result. All computations were done on a 500MHz Intel Pentium IIT processor
running under SuSE Linux 6.1 and are given in seconds.
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Degree 12

Group Time Group Time Group Time Group Time Group Time

1 0.8 45 0.7 89 1.5 133 2.5 177 3.8

2 0.8 46 3.9 90 1.5 134 0.7 178 3.1

3 0.4 47 4.4 91 1.0 135 0.7 179 39.0
4 0.5 48 0.8 92 1.2 136 0.9 180 5.2

5 0.7 49 5.4 93 1.7 137 0.8 181 12.0

6 1.3 50 0.7 94 4.9 138 1.4 182 4.5

7 0.9 51 0.9 95 0.7 139 1.3 183 5.3

8 0.3 52 6.2 96 1.9 140 1.0 184 0.7

9 0.7 53 0.7 97 1.6 141 1.3 185 1.6
10 0.7 54 5.4 98 2.3 142 1.0 186 1.1
11 0.9 55 1.4 99 7.0 143 1.7 187 0.8
12 0.6 56 1.3 100 2.5 144 1.4 188 0.8
13 0.8 57 1.4 101 1.2 145 6.1 189 7.8
14 0.7 58 0.8 102 6.4 146 2.0 190 1.6
15 0.4 59 1.1 103 1.1 147 2.5 191 1.0
16 0.5 60 1.6 104 6.1 148 8.6 192 12.0
17 0.7 61 1.2 105 0.8 149 2.8 193 0.4
18 1.3 62 1.2 106 0.7 150 1.2 194 2.2
19 1.6 63 1.1 107 1.1 151 7.6 195 3.3
20 0.8 64 2.6 108 1.2 152 4.9 196 2.2
21 0.4 65 1.5 109 0.9 153 5.9 197 0.9
22 1.2 66 2.5 110 1.6 154 5.4 198 0.7
23 0.9 67 1.6 111 1.5 155 0.7 199 1.9
24 0.8 68 1.3 112 1.4 156 2.4 200 1.7
25 0.7 69 0.7 113 0.8 157 11.0 201 1.7
26 1.7 70 7.6 114 1.9 158 4.3 202 3.0
27 13.0 71 7.4 115 1.9 159 2.7 203 0.7
28 0.3 72 2.7 116 2.4 160 1.6 204 2.3
29 1.0 73 2.6 117 7.0 161 2.8 205 2.1
30 1.1 74 1.8 118 2.6 162 1.7 206 2.8
31 1.4 75 5.1 119 2.5 163 1.4 207 3.4
32 1.1 76 1.1 120 2.7 164 2.8 208 0.8
33 1.2 77 0.4 121 2.3 165 2.3 209 3.4
34 1.8 78 1.0 122 3.5 166 5.2 210 4.7
35 0.5 79 0.7 123 0.9 167 2.6 211 1.8
36 1.2 80 0.9 124 1.9 168 7.0 212 7.2
37 1.3 81 1.2 125 0.4 169 2.5 213 1.7
38 1.3 82 1.6 126 1.6 170 2.3 214 3.1
39 1.3 83 0.4 127 2.2 171 4.1 215 3.2
40 1.0 84 5.2 128 2.7 172 4.0 216 3.6
41 1.6 85 2.9 129 2.1 173 3.7 217 2.0
42 1.3 86 0.7 130 7.4 174 4.7 218 10.0
43 0.3 87 1.5 131 2.5 175 2.0 219 0.3

44 0.7 88 1.0 132 2.7 176 5.2 220 7.1
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Degree 12

Group Time Group Time Group Time Group Time Group Time

221 1.4 238 1.0 255 1.0 272 16.0 289 0.3
222 1.8 239 2.4 256 1.8 273 0.9 290 0.4
223 7.8 240 0.9 257 1.7 274 0.5 291 1.7
224 1.2 241 0.7 258 1.7 275 1.7 292 0.9
225 4.4 242 4.9 259 14.0 276 1.0 293 0.3
226 0.3 243 3.3 260 0.4 277 1.0 294 0.4
227 0.7 244 4.1 261 0.6 278 3.9 295 337.0
228 5.4 245 6.7 262 1.2 279 3.6 296 1.7
229 2.7 246 26.0 263 1.3 280 1.6 297 0.4
230 0.9 247 8.8 264 1.0 281 0.7 298 2.0
231 1.9 248 1.6 265 1.9 282 1.2 299 1.4
232 5.5 249 3.4 266 0.4 283 1.1 300 0.1
233 2.8 250 1.6 267 0.9 284 1.3 301 0.0
234 5.2 251 2.2 268 1.9 285 0.3

235 0.9 252 2.7 269 1.4 286 1.1

236 0.6 253 2.0 270 2.3 287 0.8

237 2.5 254 4.3 271 1.5 288 3.1

Degree 13

Group Time Group Time Group Time Group Time Group Time

1 8.2 3 2.1 5 1.4 7 2.7 9 0.0
2 6.3 4 140 6 3.6 8 0.2
Degree 14

Group Time Group Time Group Time Group Time Group Time

1 1.5 14 5.4 27 6.7 40 5.5 53 1.1
2 1.1 15 5.1 28 4.8 41 5.2 54 1.7
3 1.9 16 4.0 29 4.7 42 4.7 55 0.8
4 1.4 17 2.8 30 5.9 43 2.2 56 1.0
5 1.4 18 2.8 31 2.7 44 3.5 57 1.1
6 2.3 19 1.6 32 2.2 45 2.0 58 1.3
7 1.4 20 3.4 33 4.2 46 1.1 59 0.5
8 3.9 21 2.1 34 2.0 47 1.2 60 1.6
9 4.1 22 5.4 35 2.0 48 5.5 61 0.4
10 2.0 23 2.8 36 3.2 49 0.5 62 0.0
11 1.8 24 6.7 37 24 50 1.8 63 0.0
12 2.4 25 7.4 38 3.1 51 2.1

13 3.1 26 4.9 39 9.1 52 4.2
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Degree 15

Group Time Group Time Group Time Group Time Group Time
1 1.4 22 0.7 43 4.1 64 7.5 85 5.6
2 1.4 23 1.0 44 4.7 65  45.0 86 3.7
3 1.4 24 1.6 45 3.9 66 26.0 87 9.7
4 1.5 25 4.7 46 3.1 67 11.0 88 1.4
5 3.1 26 3.6 47 15.0 68 5.2 89 0.6
6 1.1 27 5.5 48 7.4 69 1.5 90 1.4
7 1.2 28 3.0 49 6.0 70 2.4 91 1.4
8 1.3 29 0.4 50 3.0 71 2.9 92 1.9
9 5.5 30 3.9 51 3.1 72 9.8 93 1.0
10 5.1 31 6.7 52 7.7 73 4.8 94 1.5
11 1.1 32 5.1 53 1.6 74 11.0 95 1.7
12 4.1 33 4.8 54 4.7 75 5.8 96 1.9
13 3.0 34 2.6 55 4.2 76 1.6 97 2.1
14 5.5 35 4.0 56 4.3 77 1.6 98 1.3
15 3.6 36 3.0 57  20.0 78 2.0 99 0.5
16 1.3 37 43.0 58 28.0 79 4.2 100 1.6
17 14.0 38 8.1 59 5.8 80 2.7 101 1.2
18 4.7 39 8.1 60 5.3 81 5.0 102 0.6
19 5.2 40 9.9 61 2.1 82 5.6 103 0.1
20 7.1 41 5.0 62 1.4 83 1.5 104 0.1

21 7.4 42 5.1 63 2.5 84 4.9

For all primitive groups of degree 14 and 15 (excepting Ay, S14, A1s, S15), and all ex-
amples with more than ten seconds running time we give more details. In the following
table Subfield denotes the running time for Algorithm 3.2, which includes subfield com-
putation and group theoretic computations. For primitive groups we give the running
time needed for the computation of the resolvent including the necessary transforma-
tions. Factor gives the running time for finding the factors of the computed resolvents.
In Stauduhar we give the computing time for the Stauduhar steps. The column “All”
gives the complete running time rounded to seconds. Looking at the primitive groups we
see that the resolvent part is not critical. The worst case is M1 = 12T2'55 since we need
an invariant of degree 924. We remark that the coefficients of the polynomials for 15755
and 1575¢ are huge compared to the other ones.

Group Subfield Resolvent Stauduhar Factor All
12757 0.2 12.8 13
1275 0.7 9.3 10
1277k, 0.0 5.2 10.8 23.0 39
12775, 0.3 11.6 12
127192 0.2 11.8 12
127518 0.0 2.1 2.4 5.2 10
127546 0.6 24.6 26
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Group Subfield Resolvent Stauduhar Factor All

1275k, 0.3 13.5 14
1275, 0.0 3.7 6.4 5.6 16
12755 0.0 130.2 6.6 200.5 337
137} 0.0 0.1 11.8 0.1 12
1475 0.0 0.1 5.6 0.1 6
14750 0.0 0.8 2.8 4.9 9
15775 0.5 13.5 14
1575 0.1 0.1 6.6 0.2 7
1575k 0.1 0.1 2.5 0.2 3
1575 0.4 42.6 43
15755 0.1 3.6 6.1 47 15
1575 0.9 18.7 20
1575, 0.4 27.5 28
15755 2.0 42.9 45
15756 1.8 24.2 26
1574 0.6 10.4 11
1574, 0.0 2.9 2.5 44 10
1577, 0.6 10.4 11

These examples show the efficiency of our algorithm. For the groups 1375, 1375,
14739, and 14735 the index [G : H] is 39916800. Without using short cosets it was
impossible to apply Stauduhar’s method to these cases. One advantage of the p-adic
version of Stauduhar’s method is that the algorithm is in polynomial time in the size of
the coefficients. The example polynomial f for the group 15745 has huge coefficients and
our algorithm needs 45s to compute the Galois group. We applied the same algorithm to
f (including the use of subfields) but using complex approximations. The following table
give the running times and the computed result depending on the used precision:

Precision Result Time

100 82 12
200 82 32
300 82 64
400 65 1118

From this table we see another problem of the complex version of Stauduhar’s algo-
rithm. When we want to get proven results we have to think about estimations for the
used precision. Using a precision which will give proven results the running time will be
worse.
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