
MINIMAL DISCRIMINANTS FOR FIELDS WITH SMALLFROBENIUS GROUPS AS GALOIS GROUPSCLAUS FIEKER AND J�URGEN KL�UNERSAbstrat. We apply lass �eld theory to the omputation of the minimaldisriminants for ertain solvable groups. In partiular we apply our tehniquesto small Frobenius groups and all imprimitive degree 8 groups suh that theorresponding �elds have only a degree 2 and no degree 4 sub�eld.
1. IntrodutionThere is a long tradition in number theory to ompile tables of number �elds math-ing ertain riteria. Commonly one omputes tables of �elds of a given degree or aspei� Galois group that are omplete with respet to some bound on the disrim-inant. So far, most of the tables were build with the help of geometri methodsbased on a theorem of Hunter [6, Thm 9.3.1℄ whih states the existene of primitiveelements that are not too large in omparison to the disriminant.Reently the advent of onstrutive methods in lass �eld theory [6, 9℄ made itfeasible to build large tables with the help of lass �eld theory rather than usingthe geometri methods. Of ourse, this applies mainly to the onstrution of �eldswith solvable Galois group. For example, in [5℄ lass �eld theory is used to omputethe minimal disriminants for all oti �elds ontaining a quarti sub�eld.In this paper we illustrate the use of lass �eld theory to onstrut tables of �eldswhere the Galois group is a small solvable group or a Frobenius group. In partiularwe prove the minimal disriminants for oti �elds having only a degree 2 sub�eldand no degree 4 one. This is done by an analysis of the relative Galois group overthe degree 2 �eld. Sine the only possibilities here are A4 and S4 we are in thesituation of solvable groups.As a further appliation we onstrut the minimal �elds with Galois group isomor-phi to Cp oCl for p 2 f7; 11; 13g and all 1 < l j (p� 1) and two primitive solvablegroups in degree 8. 2. NotationsLet K=k be a �nite �eld extension. By dK=k we denote the relative disriminant ofthe ring of integers ZK of K as an ideal of k. In addition, dK always denotes theabsolute disriminant (so dK=Q = dKZ). We say that K=k has Galois group G, orshort that K is a G-�eld, if the normal losure N of K=k has Galois group G overk. NK=k denotes the norm funtion extended to ideals. Sine the frational idealsof the ring of integers of any number �eld form a group that is freely generated bythe prime ideals, we write rpa or a1=r to denote the unique ideal b suh that br = aif suh an ideal exists.Part of this artile was written during a visit by the seond author to the ComputationalAlgebra Group at the University of Sydney in September, 2001.1



2 CLAUS FIEKER AND J�URGEN KL�UNERS3. Disriminant RelationsLet N=k be a normal extension of number �elds with Galois group G. We denoteby k � Ki � N intermediate �elds of N=k whih are �xed under Hi � G. The aimof this setion is to determine relations between the disriminants of these �elds.Using the notation of [19, VI.3℄ we denote by sG=Hi the permutation haraterassoiated to the permutation representation of G ating on G=Hi. The followingtheorem is an immediate onsequene of Proposition 6 and Corollary 1 in [19, VI.3℄.Theorem 1. For ai 2 Z let rXi=1 aisG=Hi = 0:Then we get rYi=1 daiKi=k = 1:We remark that relations between the permutation haraters give relations betweenthe orresponding Dedekind zeta-funtions [2, 14℄.4. Frobenius groupsIn this setion we show that the so-alled Frobenius groups have non-trivial relationsas in Theorem 1. We denote by E the trivial group of size 1.De�nition 2. Let G = F oH be a �nite group with H \Hg = E for all g 2 G nHand jF j; jH j 6= 1. Then G is alled a Frobenius group with (Frobenius) kernel Fand omplement H. The permutation representation where G ats on G=H is allednatural permutation representation.Example 3. The dihedral groups Dn of size 2n with n odd, S3, and A4 are Frobe-nius groups.Theorem 4. Let G be a Frobenius group with kernel F and omplement H. LetN=k be a normal �eld extension with Gal(N=k) �= G. We denote by K = Fix(H)the �xed �eld of H and with M = Fix(F ) the �xed �eld of F . ThendK=k = dsM=kNM=k(dN=M )1=jHj;where s = jF j�1jHj . N
k

K = Fix(H) M = Fix(F )
Proof. We have the following relation of permutation haraters, e.g. [10, p. 323℄:jH jsG=G + sG=E = jH jsG=H + sG=F :The disriminant relation now follows using Theorem 1 and the fat that dN=k =djF jM=kNM=k(dN=M ). �



MINIMAL DISCRIMINANTS 3Let us desribe how this theorem an be used to onstrut all extension �elds K ofk suh that Nk=Q(dK=k) � B for some bound B, assuming that we are able to dothe same for H-extensions of k and F -extensions of arbitrary number �elds. Forthis appliation it is not neessary for G to be a Frobenius group. We only needto have a disriminant relation between the �elds in the diagram. To make themethod e�etive, F has to be Abelian.Algorithm 5.(1) Compute all �elds M=k with Galois group H suh that Nk=Q(dsM=k) � B.(2) For all these M do(3) Compute all extensions N=M with Galois group F suh that(a) Nk=Q(dsM=kNM=k(dN=M )1=jHj) � B,(b) Gal(N=k) = G.(4) end for MIn this approah we assume that we are able to onstrut �elds M with Galoisgroup H (whih is smaller than G). In our appliations the group F is an abeliangroup. Therefore we an apply lass �eld theory in step 3 of this algorithm (seeSetions 5 and 6).In the following we derive some relations for Frobenius groups using Theorem 4.We use the notation nTm for the m-th transitive group of degree n in the orderingof [7℄. This is the group we get by typing TransitiveGroup(n,m); in Gap [18℄ orMagma [4℄.Corollary 6. Let G be one of the following Frobenius groups and N=k be a normal�eld extension with Galois group G. Using the notation of Theorem 4 we get thefollowing relations:(1) G = A4 = V4 o C3: dK=k = dM=kNM=k(dN=M )1=3:(2) For p 2 P and 1 6= l j (p�1) let G := CpoCl: dK=k = d p�1lM=kNM=k(dN=M )1=l.(3) G = 8T25 = C32 o C7: dK=k = dM=kNM=k(dN=M )1=7.5. Class FieldsIn order to onstrut our �elds we will make use of lass �eld theory. We haveto onstrut C2, C3 and V4-extensions of number �elds with restritions on theabsolute Galois group, the rami�ed primes and the absolute disriminant of theresulting �eld.We reall some of the neessary notations from lass �eld theory. For a ompleteaount of the theoretial side see e.g. [15℄, for the pratial side [6, 9℄. We willrestrit ourselves to the ideal theoreti approah to lass �eld theory whih is bettersuited for pratial omputations than the id�ele-theoreti one.For the remainder of this setion we �x a base �eld M with its ring of integers ZM.Let m := (m0;m1) be a module, i.e. m0 an integral ideal of ZM and m1 a set ofreal plaes of M . An (frational) ideal a of ZM is said to be oprime to m i� it isoprime to m0. For an algebrai number � 2M we de�ne � � 1 mod �m as � � 1mod m0 and v(�) > 0 for all v 2 m1. We say that m divides some other module ni� m0jn0 and m1 � n1.The ray lass group Clm is the fator group Im of ideals oprime to m by thesubgroup Pm of prinipal ideals generated by elements  � 1 mod �m. For mjn wehave a anonial epimorphism from Cln onto Clm.Let Pm � U � Im be arbitrary. The smallest module n suh that Im=U ! In=UPnis injetive is alled the ondutor fU of U . Pn � U 0 � In is equivalent to U i�the preimages of Clmn ! In=U 0 and Clmn ! Im=U oinide. In this ase we writeU 0 � U . The main results from lass �eld theory we need are



4 CLAUS FIEKER AND J�URGEN KL�UNERSTheorem 7. (1) For any U there is exatly one abelian extension N=M suhthat Gal(N=M) �= Im=U where the isomorphism is given by the Artin-map:aU 7! (a; N=M) 2 Gal(N=M) whih maps prime ideals to their Frobeniusautomorphism.(2) For any abelian extension N=M there is exatly one lass of fator groupsIm=U suh that Gal(N=M) �= Im=U .(3) For any automorphism � of M we have(�a; N=M) = ��1(a; N=M)�(4) Let f be the ondutor of Im=U and N=M the orresponding abelian exten-sion. Then the rami�ed primes of N=M are exatly the divisors of f.Suppose now M=k normal with Gal(M=k) = H = h�1; : : : ; �ri.In order for N=k to be normal it is neessary and suÆient that �i(U) � U for1 � i � r, whih in partiular implies �i(fU ) = fU . If �i(m) = m then thissimpli�es to �i(U) = U . In this situation the Galois group of N=k is an extensionof Gal(N=M) by Gal(M=k):0! Gal(N=M) �= Im=U ! Gal(N=k)! Gal(M=k)! 0This extension is entral i� aU = �i(a)U for all lasses aU of Im=U and all 1 � i � r.If, in addition, H is yli, N=k is abelian.6. p-extensionsBy the results of the last setion, the omputation of p-extensions ofM that are nor-mal (entral, abelian) over k is redued to the problem of �nding suitable quotientsof ray lass groups.To hek �i(U) � U we will assume that �i(m) = m holds. In what follows m0 isalways generated by some ideal of k so this ondition will always be ful�lled. m1will either be empty or ontain all real plaes. Sine we are free to hoose U withinits equivalene lass, these hoies are no restrition.We want to ompute a p-extension N of M suh that(1) Gal(N=M) �= F = Csp for some prime p and some integer s,(2) N=k is normal (possibly additional restritions)(3) and some onditions on the disriminant of N=M are met.The last properties just imposes some onditions on the module m that we willignore in this setion. However these onditions will be important in the algorithms.Assume m is given and we want to ompute Pm � U � Im suh that Im=U �= Fand N=k normal holds. Sine p is the exponent of F , we obtain (Im)p � U � Im.By our hoie of m, Clm[p℄ := Im=(Im)p is an Fp [H ℄-module, and U orrespondsto an Fp [H ℄ submodule. The problem is now redued to a purely module theoretione and an be solved using the tools of module theory [11, 16℄.In the speial ase of H = h�i however, the situation is muh easier, here theproblem redues to �nding �-invariant subspaes of the Fp -vetorspae Clm[p℄.Here we obtain the following:Corollary 8. (1) U exists i� there is a �-invariant subspae of dimension s.(2) For s = 1, N=k is abelian i� U is an eigenspae to the eigenvalue 1.An algorithmi solution for the speial ase s = 1 if we want all subgroups U givingentral extensions is ontained inAlgorithm 9. (1) Set ~F := Clm[p℄=(Id��) Clm[p℄.(2) Using [3℄ or [6, Thm 4.1.18℄ �nd all subgroups U of index p.In order to �nd non-entral extensions we use (� Id��) for all 1 6= � 2 F�p insteadof (Id��) in step 1.



MINIMAL DISCRIMINANTS 5(Note that this proedure an also be applied to the problem of �nding entralextensions of yli �elds of prime-power order.)Now we want to give some neessary onditions for the module m. We an restritourselves to modules m whih are ondutors. We know that exatly the primeideals dividing m0 are rami�ed in the orresponding abelian extension. Furthermorea prime ideal p is wildly rami�ed if and only if p2 j m0. Therefore we get that allprime ideals but the ones dividing the degree have exponent 0 or 1. In the followinglemma we give an estimate for the exponent of wildly rami�ed primes.Lemma 10. Let N=M be a yli extension of prime degree p and p be a primeideal of Zk ontaining p whih is rami�ed in N=M . Denote by e the rami�ationindex (over M) of an ideal P lying over p. Let m be the ondutor of this extension.Then we get that vp(m0) � e� 1 + evp(e)p� 1 ;where vp denotes the ordinary p valuation of an ideal.Proof. The lemma follows immediately by applying Remark 1 in [19, page 58℄. �7. AutomorphismsHaving onstruted suitable subgroups U , we an use the tehniques desribedin [9℄ to ompute de�ning equations for N=M . For our appliations the expliitknowledge of the automorphism group of N=k is neessary, so we will explain howwe an easily ompute it, too.During the lass �eld omputation for p-extensions, we onstrut the followingsystem of �elds: N M M(�p)
N 0 = k(�p)( pp�)
kIn order to extend �, a generator of Gal(M=k), to N , we �rst extend it to M(�p).This is straightforward, sine M(�p) is the ompositum of M=k and k(�p)=k andfor both �elds we expliitly know all automorphisms.Next, we extend � to N 0. Sine N 0 is a Kummer-extension, the extension of � musthave the form � : pp� 7! �0 pp�rwhere gd(r; p) = 1. From the ation of � on Clm[p℄ (7.3) we obtain linear equationsfor r. Having omputed r we get �0 as any solution of �p0 = �(�)��r.Finally, to restrit � to N , we have several possibilities, none of whih seems tobe superior over the others, starting point for all of them is the knowledge of theprimitive element of N=M as an element 0 of N 0.We applied linear algebra: solving the linear system Pp�1i=0 �i0i = �(0) we obtainthe oeÆients of �() with respet to the M -basis 1, , 2, . . . , p�1 of N .



6 CLAUS FIEKER AND J�URGEN KL�UNERS8. Transitive groups of degree 8We want to apply our methods to ompute minima for some groups ouring indegree 8. There are 50 transitive groups of degree 8, seven of whih are primitive.Consequently, we have 43 imprimitive groups of degree 8. All but seven of themhave a blok of size 2 (whih orresponds to a sub�eld of degree 4). The minimal�elds orresponding to these groups are determined in [5℄. We ompute the �eldswith minimal disriminants for all imprimitive groups whih do not have a blok ofsize 2. This means that the orresponding �eld extensions have a sub�eld of degree2 and the relative Galois group is primitive on four points. Thus two ases arise.In the �rst ase, the relative Galois group is A4 and we get the following absoluteGalois groups:(1) 8T33(2) 8T34(3) 8T42 = A4 o 2.In the seond ase, the relative Galois group is S4, and the orresponding absolutegroups are:(1) 8T41(2) 8T45(3) 8T46(4) 8T47 = S4 o 2.We remark that there are three further groups where the orresponding �elds ofdegree 8 have a sub�eld of degree 2 suh that the �eld of degree 8 is primitive overthis sub�eld. In these ases there is a sub�eld of degree 4 and the �eld an beobtained as a quadrati extension. These groups are 8T13 = A4 � C2, 8T14, and8T24 = S4�C2. As mentioned above the minima for these groups are omputed in[5℄. As a byprodut of our omputations we have been able to verify their results.Furthermore, our methods ould be used to ompute minima for some of the prim-itive groups as well. The group 8T25 = C32 o C7 is a Frobenius group and thedisriminant relation is given in Corollary 6. A similar relation exists for the group8T36 = C32 o (C7 o C3).Now we want to desribe how we proved the minima for above mentioned groups indegree 8. We noted above that all of them orrespond to �elds having a quadratisub�eld k. We will demonstrate how, given a quadrati �eld, one an omputeall of the degree 8 �elds as extensions of k of (relative) degree 4 with a boundon the absolute disriminant. Sine listing quadrati �elds is equivalent to listingthe orresponding disriminants whih is essentially the same as listing square freeintegers, the neessary �elds an be obtained easily.Afterwards we have to desribe a method to �nd A4 or S4 extensions of a givenquadrati �eld. A4 is a Frobenius group and we an apply the methods desribedbefore. Sine S4 is not a Frobenius group, we need a di�erent approah. Let k besome number �eld and N=k be a normal extension with Galois group S4. Thereare three sub�elds k � K;L;M � N suh that [K : k℄ = 4, [L : k℄ = 6 and[M : k℄ = 3, where L is the �xed �eld under a subgroup C2�C2 of S4 whih is notnormal (see �eld diagram in Setion 10). All of them are unique up to onjugation.The orresponding permutation representation of S4 ating on the osets of thisC2 � C2 is isomorphi to 6T7. Taking the right onjugate we an assume thatM � L holds. Using Theorem 1 we get Nk=Q(dK=k) = NK=Q(dM=kNM=k(dL=M )).Therefore we �rst have to produe S3-extensions M=k of degree 3. Sine M=k isnot normal we �rst apply the methods desribed in Setion 6 to produe a normalS3-extension of k of degree 6. Afterwards we an get M as a sub�eld of thisextension. Now we have to produe relative quadrati extensions L of M with the



MINIMAL DISCRIMINANTS 7right Galois group. Unfortunately the disriminant ideals does not arry enoughinformation. Let !1; : : : ; !n be a basis of a �eld extensions L = M(�). Thend(!1; : : : ; !n) := det(�i(!j))2, where �i are the M -linear embeddings of L intoC (mp. [6, p. 78℄). It is well known that the disriminants of (the minimalpolynomial of) � and d(!1; : : : ; !n) only di�er by a square.Lemma 11. Let L=M=k be extensions of number �elds, where L =M(�) is of de-gree n and M = k(�) is of degree m. Then f�i�j j 0 � i < m; 0 � j < ng is a basisof L=k and d(1; �; : : : ; �i�1�j�1) = d(1; �; : : : ; �n�1)mNM=k(d(1; �; : : : ; �m�1)).Proof. The �rst part of the lemma is trivial, it remains to prove the statementinvolving the disriminants.Denote the onjugates (over k) of � by �1; : : : ; �n and the onjugates of � by �i;j(1 � i � n, 1 � j � m), where �i;j are lying above �i.We have d(1; �; : : : ; �i�1�j�1) = (detC)2, where C is a blokmatrix of the formC = 0BB� A1 : : : An�1A1 : : : �nAn: : : : : :�n�11 A1 : : : �n�1n An1CCA ; where Ai = 0BB� 1 : : : 1�i;1 : : : �i;m: : : : : :�m�1i;1 : : : �m�1i;m 1CCA :Let B the orresponding matrix to d(1; �; : : : ; �n�1). From the blokmatrix stru-ture we get that det(C)2 = (det(A1) � � � det(An) det(B)m)2 =NM=k(d(1; �; : : : ; �m�1))d(1; �; : : : ; �n�1)m: �The following Lemma an be found in [1, Lemmata 4,5℄ for the ase k = Q.Lemma 12. Let L=M=k suh that [L : M ℄ = 2, [M : k℄ = 3 and suppose L =M(p�).(1) Let Gal(M=k) = S3. Then L=k has Galois group 6T7 if and only ifNM=k(�) is a square.(2) Let Gal(M=k) = C3. Then L=k has Galois group 6T4 = A4(6) if and onlyif NM=k(�) is a square.Proof. Let 1, �, �2 be a basis of M=k. The group 6T7 is a subgroup of A6 andtherefore d(1; �; : : : ; ��2) is a square. Using Lemma 11 we get d(1; �; : : : ; ��2) =d(1; �; �2)2NM=k(d(1;p�)). It follows NM=k(d(1;p�)) = 4NM=k(�) is a square.On the other hand if NM=k(�) is a square we get that d(1; �; : : : ; ��2) is a squareand therefore Gal(L=k) � A6 \ C2 o S3 using [13℄. The group 6T7 is the onlytransitive subgroup whih has all these properties. The proof for the A4 ase isanalogous. �We remark that NM=k(�) is a square implies that NM=k(dL=M ) is a square.9. A4In order to onstrut tables of A4-extensions K of quadrati �elds subjet tojdK=Qj � B, we will work with the following �eld diagram:From dK=Q = d4kN(dK=k) we immediately get jdkj � 4pB and N(dK=k) � B=d4k.Furthermore, from Corollary 6 we onlude N(dM=k) � N(dK=k) � B=d4k. SineGal(M=k) �= C3, this implies N(fM=k) �pB=d4k = pB=d2k (beause dM=k = f2M=k).In the last step we need to ompute V4-extensions N ofM suh that N=k is normal,but Ni=k is not normal for 1 � i � 3.In our atual omputations, we started by omputing a table of all C3-extensionsM of quadrati �elds with absolute disriminant jdM=Qj � BM using:



8 CLAUS FIEKER AND J�URGEN KL�UNERS
4 k C2A4K C3 M C2N1 N2 N3C2

Q

N

Algorithm 13. Computation of C3-extensionsM of real quadrati �elds of absolutedisriminant jdM=Qj � BM .(1) dk := 5(2) while dk � 3pBM do(3) let k be the quadrati �eld of disriminant dk(4) let b = 2, if 3 is unrami�ed in k, and b = 4 otherwise (Lemma 10).(5) ompute a list l of ideals a � Zk suh that a apart from the 3 part is squarefree, the exponents of the 3 parts are bounded by b, and N(a) �pBM=d3k.(6) for eah a in l do(7) if the ondutor of Cla is di�erent from a, try next a.(8) for all Pa � U � Ia with [Ia : U ℄ = 3 do(9) hek if fU equals a. If not, try next U .(10) ompute M as the lass �eld orresponding to U .(11) end do U(12) end do a(13) �nd the next quadrati disriminant.(14) end do(and a orresponding algorithm for imaginary quadrati base �elds).A total of 7121 C3-extensions of imaginary quadrati �elds with BM = 1010 and10601 extensions of real quadrati �elds with BM = 1012 have been omputed.In the next stage, we ompute V4-extensions of those sexti �elds:Algorithm 14. Computation of V4-extensions.(1) For eah M in the list omputed before do(2) Compute k as a sub�eld of M(3) Compute a non trivial automorphism � of M=k(4) Let b = 2e + 1, where e denotes the maximal rami�ation index of aprime ideal in ZM lying over 2.(5) Compute a list l of ideals a � ZM that are square free (apart from the2 part, whih is bounded by b) and invariant under �. For eah a do:(6) Let V be the F2 [�℄ module Ia=(Ia)2.Compute all irreduible 2-dimen-sional quotients U of V(7) if fU = a, ompute N as the orresponding lass �eld.(8) extend � to N (this still has order 3)(9) ompute K as the �eld �xed by �



MINIMAL DISCRIMINANTS 9(10) end do U(11) end doA total of 60 �elds with group 8T33, 36 �elds with 8T34 and 1437 �eld with 8T42have been omputed. Therefore we proved:Theorem 15. The minimal disriminants for imprimitive degree 8 �elds with rel-ative Galois group A4 are as given in Table 2.10. S4The omputation of S4-extensions follows the following diagram of �elds. In oursituation k is a quadrati extension of Q.
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As one an see, the �rst step is the ompilation of tables of S3 extensions ofquadrati �elds. This task is addressed here: To ompute the relativeS3-extensionswe use the dotted part of the diagram. We deided to use a two pass approah: we�rst omputed imprimitive quarti �elds k1=Q and, in a seond pass, extend these�elds by C3-extensions and get the S3 sub�eld using Galois theory.The task of ompiling tables of quarti �elds was further split up by Galois groupsand signatures.Gal(K=Q) Gal(k1=Q) r1 28T41 V4 f0; 4; 8g8T45 V4 f0; 4; 8g8T46 C4 f0; 4; 8g8T47 D4 f0; 2; 4; 6; 8gWe have used di�erent bounds for the disriminant for eah group and signature.The tables of D4 and C4-extensions were omputed using lass �eld theory, for theV4-extensions a more diret approah was used.Algorithm 16. Computation of D4-extensions of Q up to disriminant jdk1 j �Bk1 .(1) dk := 5(2) while dk � 2pBk1 do(3) Let k be the quadrati �eld of disriminant dk, Gal(k=Q) = h�i.(4) Let b = 2e+1, where e denotes the rami�ation index of a prime ideal inZk lying over 2.



10 CLAUS FIEKER AND J�URGEN KL�UNERS(5) ompute a list l of ideals a � Zk suh that a apart from the 2 part is squarefree, the exponents of the 2 parts are bounded by b, and N(a) � Bk1=d2k.(6) for eah a in l do(7) if the �nite part of the ondutor of Cla1112 is di�erent from a, trynext a.(8) for all Pa < U < Ia with [Ia : U ℄ = 2 do(9) hek if the �nite part of fU equals a. If not, try next U .(10) if �(U) = U , try next U .(11) ompute k1 as lass �eld orresponding to U .(12) end do U(13) end do a(14) �nd the next quadrati disriminant.(15) end doIn order to ompute C4-extensions of Q stronger riteria were used. First of alla C2-extension embeds into a C4-extension if and only if it is totally real and allodd rami�ed primes are ongruent 1 mod 4. It is neessary that all primes whihare rami�ed in k must ramify in k1. This redues the number of ideals in the listl dramatially. Furthermore, we only enumerate subgroups U invariant under theation of �.The V4-extensions were obtained diretly as the produt of two quadratis.We omputed 582 totally omplex C4 �elds of disriminant < 108, 13360 totallyreal �elds of disriminant < 5 � 1010, 13076 omplex V4 �elds (< 108), 32262 totallyreal V4 �elds (< 4 � 1010), and 426788 D4 �elds of all signatures.To �nally get the S3-extensions of k, a similar proedure was used. A total of64432 S3-extension was obtained.The last step is to ompute the S4-extensions. Suppose that we have omputed alist of S3-extensions of k up to a suitable bound (the �eld M in the diagram). Wewant to ompute relative quadrati extensions as explained in Setion 8.Algorithm 17. Computation of S4-extensions of a quadrati �eld k up to dis-riminant jdK j � B.(1) Compute all S3-extensions M=k suh that jdMdkj � B.(2) For all M do(3) Compute b aording to Lemma 10.(4) Compute a list l of ideals a � ZM of absolute norm smaller or equal toBdMdk that are square free (apart from the 2 part, whih is bounded byexponent b) suh that the norm is a square (see Lemma 12).(5) for eah a do(6) Compute all quotients U of size 2 suh that fH = a.(7) For all of these U ompute the lass �eld L =M(p�).(8) For all of these L with NM=k(�) is a square in k use Algorithm 3.5 in[12℄ to ompute the �eld K.(9) end do a(10) end do MUsing the above algorithm we proved:Theorem 18. The minimal disriminants for imprimitive degree 8 �elds with rel-ative Galois group S4 are as given in Table 3.11. Minimal disriminants for some Frobenius groupsIn Corollary 6 we gave disriminant relations for the Frobenius groupsG := CpoCl,where p is prime and 1 6= l j (p � 1). The onstrution of �elds with these Galoisgroups over a given number �eld k is as follows. First onstrut a yli extension



MINIMAL DISCRIMINANTS 11M=k with Galois group Cl = h�i. Now we have to �nd yli extensions N=M withGalois group Cp suh that Gal(N=k) �= Cp oCl. Using Corollary 8 we have to �nd�-invariant subspaes of dimension 1 whih are not an eigenspae to the eigenvalue1 (to avoid the diret produt Cp � Cl). We omputed the minimal disriminantsfor these groups for p = 7; 11; 13. Sine all non trivial elements in Frobenius groupsin its natural permutation representation on p points have at most one �x point,the orresponding �elds are totally real or have exatly one real embedding. Usingsimilar algorithms as in Setions 9 and 10 we proved:Theorem 19. The minimal disriminants for �elds of prime degree 7 � p � 13with Galois group Cp o Cl are as given in Table 1.In Corollary 6 we noted a relation for the Frobenius group 8T25 = C32 o C7. Toprodue suh extensions we have to �nd extensions M=k with Galois group C7 =h�i. Afterwards we have to �nd extensions N=M suh that Gal(N=M) = C32 andGal(N=k) = C32 oC7. Using Corollary 8 we have to �nd all irreduible �-invarianteigenspaes of dimension 3. Analogously we proved:Theorem 20. The minimal disriminants for �elds of degree 8 with Galois groupC32 o C7 are as given in Table 4.As noted above we an �nd a similar disriminant relation for the group 8T36=C32o(C7 o C3). This is a primitive group whih is no Frobenius group. In order toonstrut �elds with group 8T36 we proeed as follows: Let N=k be a normalextension with Galois group 8T36. Denote by K;M , and L sub�elds of degree8,7, and 14, respetively. We suppose that M � L. Using Theorem 1 we getNk=Q(dK=k) = NK=Q(dM=kNM=k(dL=M )). Therefore we have to �nd degree 7 exten-sions M suh that the Galois group of the splitting �eld is isomorphi to C7 o C3.We have desribed in Setion 11 how to onstrut suh �elds. For eah of thesesM 's we have to ompute quadrati extensions L=M suh that the splitting �eld ofL=k has Galois group 8T36. Similar to the S4-ase we an prove that the normof the �nite part of the ondutor of L=M must be a square. The Galois groupof L=k is 14T11 whih is a subgroup of A14 and therefore dL=k is a square. FromdL=k = d2M=kNM=k(dL=M ) we get the desired result. For the oprime 2-part we ando better by looking at the possible onjugay lasses of that group. Denote by ~fthe part of f whih is prime to 2. Then NM=k( ~f) has to be a fourth power. Usingthese restritions we produe all quadrati �elds (up to the given bound) and hekif we get the desired Galois group. After the omputation of L=k we an omputeK=k using the algorithms desribed in [12℄. We remark that the norm of the 2-partis not neessarily a fourth power. We proved:Theorem 21. The minimal disriminants for �elds of degree 8 with Galois groupC32 o (C7 o C3) are as given in Table 4.12. TablesThe following tables ontain the minimal disriminants of �elds with presribedGalois groups and r1 real zeros. The notation \Hilbert lass �eld or ray lass �eldof a polynomial" means that our �eld is ontained in the orresponding lass �eldof the �eld generated by a zero of that polynomial. In these ases we have provedthe minimum, but were not able to ompute a generating polynomial.



12 CLAUS FIEKER AND J�URGEN KL�UNERSTable 1: Minimal disriminants of Frobenius groups Cp o Clgroup r1C7 o C2 7 192 100 033=5773x7 � 2x6 � 7x5 + 10x4 + 13x3 � 10x2 � x+ 11 -357 911=�713x7 � 2x6 + 2x5 + x3 � 3x2 + x� 1C7 o C3 7 1 817 487 424=26734x7 � 8x5 � 2x4 + 16x3 + 6x2 � 6x� 2C7 o C6 7 12 431 698 517=741733x7 � x6 � 12x5 + 9x4 + 37x3 � 26x2 � 21x+ 51 -38 014 691=�113134x7 � 3x6 + 9x5 � 13x4 + 17x3 � 10x2 + 4x+ 1C11 o C2 11 3 670 285 774 226 257=12975x11 � 5x10 � 4x9 + 54x8 � 53x7�127x6 + 208x5 + 69x4 � 222x3 + 29x2 + 56x� 51 -129 891 985 607=�1675x11�x10+5x9�4x8+10x7�6x6+11x5�7x4+9x3�4x2+2x+1C11 o C5 11 1 771 197 285 652 216 321=1918Hilbert lass �eld of x5 + x4 � 76x3 � 359x2 � 437x� 155C11 o C10 11 3 483 293 138 903 825 541=3575318Hilbert lass �eld of x10 � 7x9 � 29x8 + 272x7 � 78x6�1948x5 + 1274x4 + 4243x3 � 1393x2 � 2035x+ 6251 -34 522 712 143 931=�1113x11 � 11x9+55x7+11x6� 143x5� 66x4+165x3+121x2+11C13 o C2 13 282 638 808 125 771 304 198 601=81016x13 � x12 � 50x11 � 6x10 + 857x9 + 943x8 � 5045x7 � 9319x6+3890x5 + 13442x4 + 1835x3 � 2759x2 + 304x+ 41 48 551 226 272 641=1916x13 � 6x12 + 10x11 � 16x10 + 22x9 � 19x8+11x7 � 5x6 � x5 + 5x4 � 4x3 + 2x� 1C13 o C3 13 353 629 668 200 918 277 880 881=3121316x13 � 39x11 + 468x9 � 1989x7 � 507x6+2886x5 + 1443x4 � 624x3 � 234x2 + 3C13 o C4 13 4 832 905 768 528 976 580 078 125=5911636Hilbert lass �eld of x4 + 3x3 � 1456x2 � 4368x+ 4161411 51 185 893 014 090 757=1315x13 + 13x10 � 26x8 + 13x7 + 52x6 � 39x4 + 26x2 + 13x+ 2C13 o C6 13 157 840 477 768 256 032 709 001=31278616Ray lass �eld of (3) ofx6 + 3x5 � 56x4 � 131x3 + 637x2 + 164x� 10791 38 376 770 428 210 201=138196Hilbert lass �eld of x6 � x5 + 6x4 + x3 + 85x2 � 118x+ 415C13 o C12 13 145 952 577 189 773 202 214 912=212761313Ray lass �eld of (26) ofx12 � x11 � 25x10 + 25x9 + 235x8 � 235x7 � 1013x6+1013x5 + 1899x4 � 1899x3 � 1013x2 + 1013x� 1811 33 171 021 564 453 125=59198Hilbert lass �eld of x12 +2x11 +9x10 +29x9+105x8� 163x7+228x6 � 254x5 + 469x4 � 104x3 + 23x2 � 5x+ 1



MINIMAL DISCRIMINANTS 13Table 2: Minimal disriminants of imprimitive degree 8 extensions with relativeGalois group A4group r18 94 540 875 625=54742512x8 � 2x7 � 14x6 + 32x5 + 44x4 � 121x3 � 19x2 + 126x� 368T33 4 2 522 550 625=5474412x8 + 3x7 � 2x6 � 13x5 + 2x4 + 34x3 + 4x2 � 30x+ 50 1 262 025 625=5474292x8 + 2x7 + 4x5 + 12x4 � 2x3 � 14x2 + 5x+ 118 3 747 708 810 000=2438542392x8 � 2x7 � 29x6 + 34x5 + 223x4 � 62x3 � 151x2 � 46x� 48T34 4 20 880 250 000=2456174x8 + x7 � 6x6 � 13x5 � 6x4 � x3 � 14x2 � 7x+ 10 1 614 110 976=2838312x8 � 2x7 � 2x6 + 8x5 + 14x4 � 40x3 + 40x2 � 20x+ 48 22 982 560 000=28543792x8 � 2x7 � 18x6 � 2x5 + 63x4 + 44x3 � 22x2 � 4x+ 18T42 4 618 765 625=561992x8 � 3x7 � 5x6 + 17x5 + 9x4 � 27x3 � 10x2 + 13x+ 10 12 075 625=541392x8 + 4x5 + 2x4 + 4x2 � x+ 1Table 3: Minimal disriminants of imprimitive degree 8 extensions with relativeGalois group S48 47 461 236 736=216232372x8 � 24x6 + 44x5 + 20x4 � 64x3 � 4x2 + 24x+ 48T41 4 258 405 625=546432x8 � 4x7 + 2x6 + 18x5 � 19x4 � 10x3 + 21x2 � 9x+ 10 24 255 625=541972x8 + 3x7 + 4x6 + 4x5 + 6x4 + 6x3 + 4x2 + 2x+ 18 43 816 955 625=325427912x8 + x7 � 11x6 � 8x5 + 40x4 + 17x3 � 54x2 � 6x+ 198T45 4 118 810 000=24541092x8 � 3x7 � 3x6 + 17x5 � 12x4 � 9x3 + 13x2 � 6x+ 10 55 115 776=216292x8 � 2x6 + x4 + 4x2 + 4x+ 18 210 791 778 125=554321912x8 + x7 � 31x6 � 20x5 + 130x4 � 10x3 � 170x2 + 125x� 258T46 4 402 753 125=553592x8 � x7 + x5 � 4x4 + 5x3 + 6x2 � 2x� 10 275 653 125=3655112x8 + 2x7 + 7x6 + 11x5 + 19x4 + 20x3 + 20x2 + 10x+ 58 661 518 125=54439124111x8 + x7 � 9x6 � 13x5 + 11x4 + 17x3 � 4x2 � 4x+ 16 �74 906 875=�541198511x8 � 3x6 + 3x5 + 3x4 � 7x3 � 2x2 + 3x+ 18T47 4 16 643 125=543118591x8 � x7 � 2x6 + 2x5 � x3 + x+ 12 �5 756 875=�546111511x8 � 2x6 + 3x5 � 3x3 + 2x2 + x� 10 1 342 413=34165731x8 + 3x7 + 6x6 + 7x5 + 7x4 + 6x3 + 4x2 + 2x+ 1



14 CLAUS FIEKER AND J�URGEN KL�UNERSTable 4: Minimal disriminants of some primitive groups of degree 8group r18T25= 8 9 745 585 291 264=214296x8�2x7�20x6+10x5+102x4+26x3�112x2�50x+7C32 o C7 0 594 823 321=296x8 � 4x7 + 8x6 � 6x5 + 2x4 + 6x3 � 3x2 + x+ 38T36= 8 6 423 507 767 296=2121994x8 � 40x6 � 16x5 + 272x4 + 144x3 � 320x2 � 40x+ 44C32 o (C7 o C3) 0 1 817 487 424=26734x8 + 3x7 + 20x4 + 18x3 � 18x2 � 8x+ 14All of the above omputations were done using Kash 2.2 ([8, 17℄). For a large part ofthe tables (all of the degree 4 and 6 �elds) we used a network of 30 IBM-PPC run-ning under AIX. The �nal step was done on some PC running under Linux. We useda total of about 2 weeks on the network plus 1 more week on the PC. The �elds anbe obtained from ftp://ftp.math.tu-berlin.de/pub/algebra/Kant/tables.Referenes[1℄ A. M. Baily. On the density of disriminants of quarti �elds. J. reine angew. Math., 315:190{210, 1980.[2℄ R. Brauer. Beziehungen zwishen Klassenzahlen von Teilk�orpern eines galoisshen K�orpers.Math.Nahr., 4:158{174, 1950.[3℄ Lynne M. Butler. Subgroup latties and symmetri funtions. Mem. Am. Math. So., 539,1994.[4℄ J. J. Cannon. MAGMA. http://www.maths.usyd.edu.au:8000/u/magma/, 2000.[5℄ H. Cohen, F. Diaz y Diaz, and M. Olivier. Tables of oti �elds with a quarti sub�eld.Math.Comput., 68:1701{1716, 1999.[6℄ Henri Cohen. Advaned Topis in Computational Number Theory. Springer, 2000.[7℄ J.H. Conway, A. Hulpke, and J. MKay. On transitive permutation groups. London Math.So. J. of Comp. and Math., 1:1{8, 1998.[8℄ Mario Daberkow, Claus Fieker, J�urgen Kl�uners, Mihael Pohst, Katherine Roegner, andKlaus Wildanger. KANT V4. J. Symb. Comput., 24(3):267{283, 1997.[9℄ Claus Fieker. Computing lass �elds via the artin map. Math. Comput., 70(235):1293{1303,2001.[10℄ A. Fr�ohlih and M.J. Taylor. Algebrai Number Theory. Cambridge University Press, 1991.[11℄ Derek F. Holt and Sarah Rees. Testing modules for irreduibility. J. Aust. Math. So., Ser.A, 57(1):1{16, 1994.[12℄ J�urgen Kl�uners and Gunter Malle. Expliit Galois realization of transitive groups of degreeup to 15. J.Symb.Comput., 30:675{716, 2000.[13℄ M. Krasner and L.A. Kaloujnine. Produit omplet des groupes de permutation et probl�emed'extension de groupes II. Ata Si. Math. (Szeged), 14:39{66, 1951.[14℄ S. Kuroda. �Uber die Klassenzahlen algebraisher Zahlk�orper. Nagoya Math. J., 1:1{10, 1950.[15℄ Serge Lang. Algebrai Number Theory, volume 110 of Graduate Texts in Mathematis.Springer, 2nd edition, 1994.[16℄ Rihard A. Parker. The omputer alulation of modular haraters. (the meat-axe). In Com-putational group theory, Pro. Symp., pages 267{274, Durham/Engl., 1982.[17℄ M. Pohst. KASH. http://www.math.tu-berlin.de/algebra/, 2001.[18℄ M. Sh�onert et al. GAP 3.4, pathlevel 4. Shool of Mathematial and Computational Si-enes, University of St.Andrews, Sotland, 1997.[19℄ J.-P. Serre. Loal Fields. Springer, New York, 1995.Shool of Mathematis and Statistis F07, University of Sydney NSW 2006, AustraliaE-mail address: laus�maths.usyd.edu.auUniversit�at Heidelberg, IWR, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.E-mail address: klueners�iwr.uni-heidelberg.de


