
J. Symbolic Computation (1998) 11, 1{000
KANT V4M. Daberkow, C. Fieker, J. Kl�uners, M. Pohst, K. Roegner, M. Sch�ornig, and K. Wildanger:Technische Universit�at Berlin,Fachbereich 3, Sekr. MA 8-1,Stra�e des 17. Juni 136, D{10623 Berlin, GermanyE-mail address:daberkow, �eker, klueners, pohst, roegner, schoern, wildan@math.tu-berlin.de(Received 30 March 1998)

The software package KANT V4 for computations in algebraic number �elds is nowavailable in version 4. In addition a new user interface has been released. We will outlinethe features of this new software package.
1. IntroductionKANT V4 is a program package for computations in algebraic number �elds. The emphasisis on the interaction of elements of sub�elds of a given �eld. Consequently, algebraicintegers are considered to be elements of a speci�ed order of an appropriate number �eldF . Algebraic numbers are presented by an integer and a denominator, usually chosen as anatural number. The available algorithms provide the user with the means to compute allinvariants of F and to solve tasks like calculating the solutions of Diophantine equationsrelated to F . Further sub�elds of F can be generated and F can be embedded into anover�eld. The potential of moving elements between di�erent �elds (orders) is a signi�cantfeature of our system.KANT V4 was developed at the University of D�usseldorf from 1987 until 1993 and at theTechnical University Berlin afterwards. During these years the performance of existingalgorithms and their implementations grew dramatically. While calculations in number�elds of degree 4 and up were nearly impossible before 1970 and number �elds of degreemore than 10 were beyond reach until 1990, it is now possible to compute in number �eldsof degree well over 20, and { in special cases { even beyond 1000. This also characterizesone of the principles of KANT V4, namely to support computations in number �elds of0747{7171/90/000000 + 00 $03.00/0 c 1998 Academic Press Limited

2 The Kant Grouparbitrary degree rather than �xing the degree and pushing the size of the discriminantto the limit.Our philosophy is to substitute mere existence theorems for invariants of algebraic num-ber �elds by algorithms which actually provide these objects. In the seventies H. Zassen-haus postulated the following 4 principal tasks for computational algebraic number the-ory: the development of e�cient algorithms for the computation ofthe maximal order,the unit group,the class group,the Galois groupof an algebraic number �eld F .All these tasks were solved e�ectively in the past, though we are far from having e�cientmethods in general. However, those algorithms are fundamental for recent research inadvanced topics like the computation of class �elds (see below). In the meantime variousnew algorithms were established, and all the old ones were improved, some of them con-siderably. Members of the KANT group have contributed considerably to this progress.Hence, bottlenecks of existing implementations could be overcome by improvements ofthe theory rather than by e�orts to write better code.KANT V4 consists of a C{library of more than 1000 functions for doing arithmetic innumber �elds. Of course, the necessary auxiliaries from linear algebra over rings, es-pecially lattices, are also included. The set of these functions is based on the computeralgebra system MAGMA [Cannon (1996)] from which we adopt our storage management,arithmetic for (long) integers and arbitrary precision oating point numbers, arithmeticfor �nite �elds, polynomial arithmetic and a variety of other tools. Essentially, all of thepublic domain part of MAGMA is contained in KANT V4 . In return, almost all KANTV4 routines are included in MAGMA. The only other computer algebra system allowingextensive calculations with algebraic numbers and number �elds is PARI (Bordeaux).Systems like LiDIA and Simath (both Saarbr�ucken) o�er only access to a rather limitednumber of tasks.A user of KANT V4 routines needs to write his own header programs, which requiressome knowledge of the storage handling in MAGMA. To make KANT V4 easier to use werecently developed a shell called KASH . This shell is based on that of the group theorypackage GAP [Sch�onert et al. (1993)] and the handling is similar to that of MAPLE. Weput great e�ort into enabling the user to handle the number theoretical objects in thevery same way as one would do using pencil and paper. For example, there is just onecommand Factor for the factorization of elements from a factorial monoid like rationalintegers in Z, polynomials over a �eld, or ideals from a Dedekind ring.In the subsequent sections we discuss in some detail:

KANT V4 3the realization of number theoretical objects in KANT V4 and the correspondingdata types;the most important algorithms contained in KANT V4;the shell KASH in greater detail to demonstrate its power and simple use;the potential of KANT V4 as well as KASH to carry out tasks on several workstationssimultaneously, for distributed calculations we make use of PVM;the integrated SQL{database for number �elds.The article is concluded by several introductory and also more sophisticated examples.The development of KANT V4 as well as KASH is continued in view of providing the userwith the most advanced tools for computations in algebraic number �elds. In the nearfuture we plan to installadditional (basic) routines into KASH,a general machinery for local �elds,a general machinery for global �elds,a Diophantine equation solver for special classes of equations.Suggestions for additional important features to be included are welcome.2. Basic Concepts and Data StructuresThe design of KANT V4 is based on the mathematical structures of algebraic number�elds. We have recently extended this design to function �elds over �nite �elds, for whichthe following structures of algebraic number �elds will soon be available.The design of the structures has been laid out to minimize limitations, which are dueto practical aspects. As a result nearly all mathematical objects in KANT V4 can haveseveral repesentations and some even at the same time. Among the available objects, thefollowing are the most important:orders,algebraic numbers,ideals in orders,lattices.The most important data type is the order type. For simplicity we de�ne Z to be thetrivial order and Q to be the trivial number �eld. An order O is a data type, whichcollects information about arithmetic for elements in the quotient �eld F = Q(O) of Ohaving a representation related to the order (see below) and information concerning theorder itself, such as the discriminant, unit group or regulator. For the maximal order oF ,some general information about F , such as the class number or the class group, can bestored.

4 The Kant Group 2.1. OrdersIn KANT V4 an order O1 is always a free module with another order O2 as its coe�cientring. The degree of O1 over O2 equals the �eld degree [Q(O1) : Q(O2)] of the associatedquotient �elds. There are basically two ways to create orders. Both methods assume thatwe already have an order O (remember that Z is treated as an order). The �rst methodcan be used to create an order in a �nite extension of the quotient �eld of the given orderO. This is done by a monic polynomial f(t) 2 O[t] which is irreducible in Q(O)[t]. Thegenerated order is O[�], with the O{basis 1; �; : : : ; �deg(f)�1 if � is an algebraic numberwith f(�) = 0. An order created in this way is called the equation order of � over O.The second method can only be applied to non trivial orders O. In this case O is an O0module with O = O0!1 + � � �+O0!n:An overorder M of O in Q(O) can now be de�ned by a transformation (d; T) 2 Z�1�O0n�n such that �1; : : : ; �n with(�1; : : : ; �n) = 1d (!1; : : : ; !n)Tis an O0{basis of M . 2.2. Algebraic numbersTo de�ne algebraic numbers in KANT V4 it is necessary to have a non trivial order O =O0!1+� � �+O0!n. KANT V4 supports two di�erent presentations for an algebraic number� 2 Q(O). The �rst one is the basis presentation of � with respect to the basis of theorder O. Here � can be uniquely represented by coe�cients (d; (�1; : : : ; �n)) 2 Z�1�O0nsuch that � = 1d (�1!1 + � � �+ �n!n) :The second method is only available if O is a Z{order, e.g. if the coe�cient ring O0 equalsZ. In this case KANT V4 can identify � by a conjugate vector con(�) as outlined below.Since O is a Z{order, we know that a suitable suborder M of O is an equation ordercreated by a root � of a monic, irreducible polynomial f(t) 2 Z[t], i.e. M = Z[�]. Thesecond representation of algebraic numbers depends on an appropriate ordering of theroots of f . We denote by r1 the number of real roots and by 2r2 the number of complexroots of f and hence have n = deg(f) = r1 + 2r2:The roots of f are ordered such that � = �(1); : : : ; �(r1) are the real roots and �(r1+1); : : : ;�(r1+2r2) are the complex roots of f with �(r1+j) = �(r1+r2+j) (1 � j � r2).

KANT V4 5Using these de�nitions, we can de�ne n di�erent, so called conjugate maps on F =Q(M) = fPn�1i=0 �i�i j �i 2 Qg by'k : Q(M)! C : n�1Xi=0 �i�i 7! n�1Xi=0 �i ��(k)�i (1 � k � n):We call 'k(F) =: F (k) the k{th conjugate �eld of F and de�ne the conjugate represen-tation con(�) of an algebraic number � 2 Q(O) by an n{tuple (�1; : : : ; �n) 2 Rn suchthatcon(�) = ('1(�); : : : ; 'r1(�);<('r1+1(�));=('r1+1(�)); : : : ;<('r1+r2(�));=('r1+r2(�)))tr:It is possible to perform arithmetic with algebraic numbers in each of the availablerepresentations. 2.3. IdealsThe fractional ideals of a Z{orderO = Z!1+ � � �+Z!n are another important structurewithin KANT V4. As we know, these ideals form a group for the ring of integers oE ofE = Q(O). Since the algorithmic treatment of relative extensions is very new, we willnot consider ideals of orders in relative extensions here, but rather restrict ourselves tothe case of absolute orders with a Z{basis. KANT V4 supports two di�erent formats forthese ideals. One is available in all orders and the other is restricted to maximal orders.The general representation is based on the fact that every fractional ideal a is a freeZ{module, i.e. there are �1; : : : ; �n 2 a witha = Z�1+ � � �+Z�n:Thus we are able to represent the fractional ideal a of O by a tuple (d;M) 2 Z>0�Zn�nsuch that (�1; : : : ; �n) = 1d (!1; : : : ; !n)M:For doing computations with this ideal we use special representations, e.g. for testingwhether two ideals are equal. Here the Hermite normal form plays an important role. Forexample, that representation is unique if M is in Hermite normal form (column reduced)and no prime number p which divides d does divide all entries of M . We note that anideal in KANT V4 can have several di�erent Z{bases at the same time.The second representation is basically only available for the ideals of the maximal order,so that we assume O is a maximal order oE of some algebraic number �eld E . Thisrepresentation is the so called 2{element representation and is based on the fact that forevery fractional ideal a of oE we can �nd two elements �; � 2 a such thata = �oE + �oE :A slightly re�ned version of this 2{element representation is the so called P{normalrepresentation, which is a 2{element representation of a = �oE + �oE such that for agiven set of prime ideals P = fp1; : : : ; pkg the following conditions are satis�ed� 2 oE and 8 p 2 P : �a�1 6� p:

6 The Kant GroupThis somehow arti�cial representation provides fast arithmetic for ideals a = �oE + �oEand b = oE+�oE . We have, for example, a�b = �oE+��oE for P{normal representationsand a fast inversion of ideals is possible in a similar way [Pohst, Zassenhaus (1989)].Beside these two di�erent representations, KANT V4 can store several other pieces ofinformation related to an ideal. Some examples are the norm of the ideal, a single gen-erator if the ideal is principal, or the rami�cation index and the degree of inertia if theideal is a prime ideal. 2.4. LatticesThe �nal important number theoretical structure we want to discuss is the lattice struc-ture, which arises in a natural way from Minkowski's Geometry of Numbers. The im-portant lattices here are those which are de�ned by ideals and orders having a Z{basis.Given an ideal or order M = Z!1+ � � � + Z!n to de�ne the lattice L associated to Mwe need the map mink(�) :M ! Rn de�ned bymink(�) = ('1(�); : : : ; 'r1(�);p2<('r1+1(�));p2=('r1+1(�));: : : ;p2<('r1+r2(�));p2=('r1+r2(�)))tr;which is a normalized version of the con{map. L is then given by the setL(M) := fx = (x1; : : : ; xn)tr 2 Rn j x = mink(�) for some � 2Mg:The importance of lattices for constructive number theory cannot be stressed oftenenough. They are an important structure for performing computations in number �elds,since they o�er access to algebraic numbers in a canonical way. Besides the de�nition ofa lattice via ideals and orders, KANT V4 also o�ers the possibility to de�ne arbitrarylattices by a Gram{matrix, i.e. a positive de�nite matrix G 2 Rn�n for some n 2 Z�1. Atthe moment the data which can be stored in a lattice range from the successive minimaof the lattice and its discriminant to the Gram{matrix and the quadratic form associatedto the lattice. 3. Library functions and algorithmsIn this section we give a short overview of the KANT V4 library and the most importantalgorithms. Many of the library functions can be accessed by using the shell. This willbe discussed in a later section. 3.1. BasicsThe C{library of KANT V4 is based on the MAGMA library, which is under developmentby J. Cannon in Sydney. This library o�ers a memory management package, an arbitraryprecision integer and real number package, and a generic treatment of matrices andpolynomials.

KANT V4 73.2. LatticesIn the sequel we will consider some of the algorithms provided by the KANT V4 librarywhich can be applied on a given lattice � = Zb1 + � � � + Zbk � Rn of rank k withR-linearly independent vectors b1; : : : ;bk.The �rst task considered is the computation of a basis of short lattice vectors [Pohst,Zassenhaus (1989)]. Ordering the vectors of Rn according to their norm induces a partialordering � on the set B� of all bases of �. A minimal element of B� with respect to � iscalled a Minkowski reduced basis. However, the computation of Minkowski reduced basescan be rather time consuming. Therefore in KANT V4 , LLL-reduced bases are computedas a substitute. Although their properties are not as nice as the ones of Minkowksi reducedbases, LLL-reduced bases usually su�ce for most applications.In some cases however, it is necessary to compute all vectors b of � subject to kbk2 � Cfor a certain constant C > 0. In KANT V4, all these vectors are determined by theenumeration algorithm of Fincke/Pohst. The KANT V4 library also provides slight mod-i�cations of the enumeration algorithm for the computation of a shortest non-zero latticevector and for the determination of all lattice vectors which are close to a given vectorv in the subspace of Rn generated by �.Additionally KANT V4 o�ers functions for determining a basis from a system of gen-erators by the MLLL algorithm and for the computation of the successive minima of alattice. 3.3. Fundamental functions for number fieldsFor a given number �eld F , represented by an order O, KANT V4 o�ers the completearithmetic of elements in F . For ideals of arbitrary Z orders addition and multiplicationare possible. Ideals of maximal orders can be inverted and factorized into prime ideals;this includes the decomposition law of rational primes in F . For arbitrary orders this ispossible only, if the ideal under consideration is coprime to the index of that order. Allelementary operations for polynomials and matrices are adopted from MAGMA.According to H. Zassenhaus, one of the founders of computational algebraic numbertheory, the main tasks in this area are the computation of an integral basis, the unitgroup, the class group and the Galois group.Integral Bases An integral basis for the maximal order oF of a number �eld F iscomputed by a combination of the Round{2 and Round{4 algorithm [Cohen (1993),Pohst (1993), Pohst, Zassenhaus (1989)]. Let f(t) 2 Z[t] be a monic irreduciblepolynomial such that F is generated by a root � of f(t). For each prime numberp whose square divides the discriminant d(f) of f we determine its p{maximaloverorder Rp de�ned byRp = f� 2 oF j 9m 2 N : pm� 2 Z[�]g:

8 The Kant GroupBecause of oF=Z[�] = Mp2jd(f)Rp=Z[�];we easily obtain the maximal order oF from all p{maximal orders. We note that theDedekind criterion allows us to decide whether the equation order Z[�] is alreadyp{maximal for a given prime p. The Round{4 method is essentially used to split thetask of determining p{maximal orders into several such tasks, but for polynomialsof smaller degrees.Fundamental Units For the computation of the unit group in the maximal orderoF we use di�erent strategies. A generalized continued fraction algorithm [Pohst(1993)] computes such a system of independent units "1; : : : ; "r; r = r1 + r2 � 1; ifthe �eld discriminant is \small". We note that for any given set I � f1; : : : ; r1+r2gthis algorithm calculates a unit " subject toj'i(")j < 1 8 i 2 I;j'j(")j � 1 8 j 2 f1; : : : ; r1 + r2g n I:However, for larger number �elds we obtain a system of independent units by therelation method, we calculate integers of F generating principal ideals which factorover a given set of prime ideals [Cohen (1993)]. SetG = < � > � < "1 > � � � � � < "r >;where � is a generator of the torsion units in oF . After computing a lower regulatorbound, we obtain an upper bound B for the index of G in the full unit group ofoF . By testing !p 2 G (! 2 oF nG; p 2 P; p � B)for solvability we extend G to the full unit group. Unit groups in arbitrary ordersR are obtained by intersecting the unit group of the maximal order with R.Class Groups The computation of the class group ClF = IF =HF is done by acombination of the methods from Pohst, Zassenhaus (1989) and Cohen (1993).We �rst assume that the class group is generated by classes of prime ideals p1; : : : ; pswith norm below some given bound. This bound is usually chosen quite smallrelative to the Minkowski bound for which the above assumption is known to betrue. The correctness of the small bound can be proved in an extra step.Next we approximate the class group from above by �nding relations between theclasses p1HF ; : : : ; psHF , i. e. algebraic numbers � such that�oF = sYi=1 pkii :These relations can be obtained in di�erent ways. The enumeration of short vectorsin lattices of conjugates associated to the pi usually yields relations in a fast manner.We also apply ideal reduction or a strategy to force independent relations. The ideaof considering exceptional primes from the Number Field Sieve essentially supportsthe relation search in di�cult cases.In this way we obtain an overgroup of the class group. We then determine the

KANT V4 9class group itself by taking p-th roots similar to the procedure for the computa-tion of fundamental units. However, assuming GRH, it is often better to use anapproximation to the Euler product which satis�esYp (1� p�1)Qp j p(1�N(p)�1) = 2r1(2�)r2hFRFwpjdF jto check if we are done and to continue with the relation search otherwise. Af-terwards, we can apply a veri�cation procedure to make the results independentfrom GRH. These computations give the class group via integral ideals a1; : : : ; ak,algebraic elements �1; : : : ; �k and positive minimal integers c1; : : : ; ck with ci j ci+1such that acii = �ioF andClF = < a1HF > � � � �� < akHF > ' (Z=c1Z)� � � � � (Z=ckZ):Galois Groups Let f(t) 2 Z[t] denote an irreducible polynomial of degree n. ItsGalois group � is a transitive subgroup of Sn, the symmetric group of n letters.For an approximation of � from below, the modulo p factorizations of f for afew primes p give a rather precise idea of the cycle types to be expected in �,excluding all transitive subgroups of Sn which are too small. Using factorizationmethods over number �elds, the inductive construction of Q(�1 ; : : : ; �s) for someroots �1; : : : ; �s of f will usually produce an approximation of � from above. In thecase that both approximations still admit several candidates for � we need to decidewhether � is contained in one of certain conjugate subgroups of Sn. This decisionis possible through the use of indicator functions. Presently, KANT V4 enables thecomputation of Galois groups for polynomials up to degree 11 [Pohst, Zassenhaus(1989), Eichenlaub, Olivier (1996)].Although the results of KANT V4 concerning unit groups and class groups do not gener-ally depend on the validity of GRH, by using certain options, the user has the possibilityof assuming GRH to speed up the computation of fundamental units and of class groups.3.4. Sophisticated featuresThe fundamental functions for number �elds enabled the implementation of more sophis-ticated and specialized features. We list those which are currently realized. Implementa-tions were partly done using the programming language of the shell.Sub�elds Let F = Q(�) be an algebraic number �eld which is given by a zero� of the corresponding minimal polynomial f 2 Z[t]. Each sub�eld E = Q(�) of Fcan be described by a pair (h; g) where g is the minimal polynomial of � and anembedding polynomial h 2 Q[t] with h(�) = �. In KANT V4 sub�elds are describedin this way and can be computed by a generalized and improved version [Kl�uners,Pohst (1996)] of Dixon's (1990) method.

10 The Kant GroupRelative Norm Equations Let Q � F � E be algebraic number �elds and letM � E be a free oF module. For a non{zero � 2 oF KANT V4 provides routines forthe computation of all non-associate 2M with NE=F() = �. These routines arebased on a generalization [Fieker, Jurk, Pohst (1996)] of the algorithm by Finckeand Pohst (1983).Kummer Extensions Let F be an algebraic number �eld containing the n-throots of unity. We consider an extension E=F such that E = F(np�) where � 2 oF .KANT V4 is able to compute the relative discriminant dE=F of the extension E=Fand a small set f�1; : : : ; �mg � oE such thatoE = �1oF + � � �+ �moF :Additionally KANT V4 can derive an integral basis of oE from f�1; : : : ; �mg [Daber-kow (1995), Daberkow, Pohst (1995), Daberkow, Pohst (1996a)].Hilbert Class Fields Let F be an algebraic number �eld. Making extensive useof computations in Kummer extensions, KANT V4 can compute the Hilbert class�eld H(F) of F arithmetically [Daberkow, Pohst (1996b)].Thue Equations One of the classical objects of number theory is the Diophantineequation of Thue f(X;Y) = a;where f(X;Y) 2 Z[X;Y] is an irreducible form of degree � 3 and a is an integer.In KANT V4 such equations are solved by the methods in Bilu, Hanrot (1995).4. The shellA most recent and extremely important part of our software is KASH { the KAnt SHell.For a proper use of KANT V4, the user needs to have some experience with programmingin C and an understanding of the memory management in MAGMA. Because of thisdisadvantage, we started to build a shell around the C{library KANT V4, which combinesthe functionality of KANT V4 with a comfortable user interface based on GAP, a softwarepackage for group theory [Sch�onert et al. (1993)].The interpreter consists of several units, e.g. the KANT V4{package, system{dependentfunctions, an additional memory manager, an internal function library, etc.In principle, a simple main{loop is performed:READ Reading the command{line from the keyboard, out of a �le or from anotherprocess (see above: distributed computing).EVAL Evaluating the input: the input is tokenized and a multiway tree for evaluationis created. By recursion, the root of the tree is evaluated to a single result(value).PRINT Printing the result on the screen, into a �le or sending it to another process(see above).

KANT V4 11Within the shell, the user can do arithmetical operations with integers, rationals, realand complex numbers (with arbitrary precision), matrices or | after the de�nition ofan order | with algebraic numbers, ideals, etc.. Of course, all results can be assigned tovariables for later use.Furthermore the user can make use of two di�erent kinds of functions, the \internal func-tions" and the \user functions". The �rst are built{in functions of the internal functionlibrary, i.e. they are written in C, linked to KASH and cannot be changed. With these athand, most of the algorithms mentioned above can be performed.In contrast to these, the user can create his own (user) functions: With the PASCAL{like programming language, he can create loops, conditional branches, functions etc. anduse all internal and user functions. In this environment, he can even write sophisticatedprograms. All user functions and programs can be stored as (external) text �les whichbuild a user function library (in contrast to the internal function library).Additionally, KASH posesses an interface to the public domain PVM{software whichallows distributed computing (see previous section) and is very easy to handle.Presently, there are more than 350 internal functions installed, 200 additional prede�neduser functions and comprehensive references are available. Because KASH grows weekly,updates will be made more often than for the KANT V4{library.5. Distributed ComputingIt is possible, both in KANT V4 and KASH, to bene�t from distributed computing. Therequirement for this (in addition to KASH) is a network of workstations running PVM3(at least version 3.3, see [Geist et al. (1994)]). Based on the PVM-protocol we providea high-level interface for process communication and exchange of KANT V4 data. Wesupport two di�erent modes of communication: one is based on KANT V4, providingC-functions, and the other is based on KASH, consisting of several KASH commands. Inthe sequel both of these will be described seperately.Our (virtual) parallel computer is hierarchical, consisting of one master, the KASH ses-sion running in the foreground, and an arbitrary number of slaves, running on di�erentmachines in the background. If the current task is able to use them, additional slavescan be added at run time. It is possible to give arbitrary time spots for each machine,e.g. allowing the slaves only to run at night or on the weekend, in order to be able to doreally large jobs at times which are convenient.For data security we provide a so called \security system", guaranteeing that all jobs sentwill be processed, i.e. if eventually one slave dies (due to network errors, or similar events)it will be restarted (if possible) and all jobs running on that slave will be redistributedamong all slaves.In order to use PVM one has to start it (normally by just typing pvm) and to add all

12 The Kant Grouphosts one wants to use to the network (e.g. using add hostname on the PVM-console, orusing a con�guration �le).In KANT V4 (that is, using the C-library) and in KASH, distributed computing can beenabled using just one statement, pvm_set_use_pvm(1); or in KASH PvmUse(true);,provided PVM itself is already started. Afterwards, some packages (e.g. Round-2 orclassgroup computation) will use as many slaves as available and convenient.As an example we discuss the processing of the computation of the maximal order by theRound-2 algorithm. After the factorization of the discriminant, the p-maximal overordersfor all primes p whose square divides the discriminant have to be computed. Since thosecalculations are quite independent, we use di�erent slaves for di�erent primes. The com-bination of the results is done on the master afterwards. Especially when \large" com-putations (involving many primes) are carried out, a lot of time can be saved in thisway.As a second example we consider norm equations, which are required for principal idealtests. Solutions of norm equations are determined as lattice points in suitable ellipsoids.Sometimes it is necessary to enumerate several thousand ellipsoids, especially when thereis no solution resp. the ideal is not principal. To save time the ellipsoids can be distributedamong all slaves.Besides these examples, several other algorithms have sub-tasks which can be distributed.When it is possible (i.e. the algorithm permits it and PVM is started and enabled) thiswill be done automatically without notifying the user.Note however that it is not advisable to permanently enable distributed computing inthis way, since the overhead generated might even increase the computation time forsmall examples.In KASH there is another possibility for parallelizing: KASH contains a set of interfacefunctions to PVM, allowing the user to write programs in KASH that utilize PVM toperform certain parts concurrently. The main advantage, in comparison to library calls,are the short developing cycles when writing parallel functions.6. The databaseAccessible from KASH is a SQL{database for number �elds [Daberkow, Weber (1996)].The database is designed to give easy and fast access to several hundreds of thousands ofnumber �elds. Currently the following invariants are stored (if known) and can be usedas keys in a selection:a generating polynomial together with its signaturean integral basis, the �eld discriminantthe unit group and regulatorthe class group with structural informationthe Galois group

KANT V4 13In accordance with PARI we choose a special form of the generating polynomial f(t) =tn + a1tn�1+ � � �+ an as a unique key for the �elds in the database (at least for number�elds of low degree). As a generating element we take an algebraic integer � subject tothe following conditions:1 T2(�) =Pnj=1 j'j(�)j2 is minimal,2 the index of the equation order Z[�] in the maximal order is minimal,3 a1 > 0 is minimal,4 jaij (2 � i � n) are minimal.Isomorphy can be tested with KASH. In a �rst step one can check some invariants andif all tests are successful there is the possibility to choose between several algorithms forproving the isomorphy.The underlying SQL{database (currently mSQL, Postgres95 interface is under develop-ment) is public domain and available for every system supported by KASH.As an example we will �nd all totally real cubic �elds with discriminant less 10; 000 andcommon inessential discriminant divisors. It is well known that a su�cient and neccessarycriterion is that exactly three di�erent prime ideals divide 2, so the following program isstraightforward:kash> DbOpen("donald:kantnf"); # open the databasetruekash> query := # we are interested only> "degree=3 and discriminant<10000 and [number of real zeroes]=3";;kash> # in small totally real cubic fieldskash> DbCountMatchesQueryFLDTable(query);382kash> DbQueryFLDTable(query);truekash> L:= [];kash> repeat> o := DbNextOrderFromQuery();> if o<>false and> OrderIndex(o)mod 2 = 0 and # 2 has to divide the index,> # this is a fast criterion> Length(Factor(2*o))=3 then # exactly 3 different primes> Add(L, o);> fi;> until o=false;kash> Length(L); # we found 14 fields14

14 The Kant Group 7. ExamplesIn the sequel we give some examples of KASH.7.1. Computing the maximal order, unit group and class groupWe start with the equation order Z[�] for �4�117 = 0 and compute a set of fundamentalunits.First we create the order Z[4p117] of degree 4 over Z.kash> o := Order(Z,4,117);Generating polynomial: x^4 - 117We compute the fundamental units in the equation order. Setting � = 4p117 the �rstfundamental unit is 649� 60�2.kash> OrderUnitsFund(o);[[649, 0, -60, 0], [26618086, -8093388, 2460843, -748234]]To calculate the index of the unit group of the equation order in the unit group of thecorresponding maximal order, we proceed as follows.kash> O := OrderMaximal(o);F[1]|F[2]//QF [1] Given by transformation matrixF [2] x^4 - 117Generating polynomial: x^4 - 117Discriminant: -316368A transformation matrix from a basis of o to a basis of O is stored but not printed (itcan be obtained with the command OrderTransformationMatrix).kash> OrderUnitsFund(O);[[2, 0, -1, 0], [1, -1, 1, 0]]

KANT V4 15The units are representated in the basis of the maximal order. After determining a setof fundamental units, we get the index as the quotient of the two regulators.kash> OrderReg(o)/OrderReg(O);36Finally, we calculate the class group structure:kash> OrderClassGroup(O);[4, [2, 2]]This means that the class group is of order 4 and is isomorphic to C2 � C2.7.2. Computing subfieldsThe following example demonstrates the computation of sub�elds: We start by creatingthe equation order Z[�] for �6 + 108 = 0.kash> o:=Order(Z,6,-108);Generating polynomial: x^6 + 108The computation of proper sub�elds of the quotient �eld Q(�) of o yields the followinglist of equation orders.kash> L:=OrderSubfield(o);[Generating polynomial: x^3 - 108, Generating polynomial: x^3 - 108, Generating polynomial: x^3 - 108, Generating polynomial: x^2 + 108]There are 3 sub�elds of degree 3 which are isomorphic but not identical and one sub�eldof degree 2. Let �1; �2; �3 denote the roots of x3�108. L[i] denotes the i-th equation orderin L.kash> r1:=Elt(L[1],[0,1,0]);[0, 1, 0]kash> r2:=Elt(L[2],[0,1,0]);;kash> r3:=Elt(L[3],[0,1,0]);;

16 The Kant GroupThe elements look identical, but they are indeed di�erent which is detected upon movingthem into the order o.kash> EltMove(r1,o) # This produces the element# (6*rho^2-rho^5)/12[0, 0, 6, 0, 0, -1] / 12kash> EltMove(r2,o); # This produces the element -rho^2[0, 0, -1, 0, 0, 0]kash> EltMove(r3,o); # This produces the element# (6*rho^2+rho^5)/12[0, 0, 6, 0, 0, 1] / 12Any element of L[i] can be lifted in an analogous way.7.3. Solution of Thue{equationsGiven an irreducible form f 2 Z[X;Y] of degree � 3 and an integer a, we compute all(x; y) 2 Z2 subject to f(x; y) = a.Let f(X;Y) := X3 + X2Y � 6XY 2 + 2Y 3 and solve f(x; y) = 2. The correspondingnumber �eld F is created by a root of the irreducible polynomial f(X; 1) 2 Z[X].kash> t := Thue([1,1,-6,2]); # [1,1,-6,2] are the coefficients of f.X^3 + X^2 Y - 6 X Y^2 + 2 Y^3kash> Solve(t,2); # Compute a list of all solutions [x,y].[[-724, -411], [-4, -11], [-3, 1], [-1, -1],[0, 1], [2, 1]]Additionally, we can solve Thue{equations up to sign on the right hand side, for exampleX7 +X6Y � 6X5Y 2 � 5X4Y 3 + 8X3Y 4 + 5X2Y 5 � 2XY 6 � Y 7 = �1.kash> t := Thue([1,1,-6,-5,8,5,-2,-1]);X^7 + X^6 Y - 6 X^5 Y^2 - 5 X^4 Y^3 + 8 X^3 Y^4 + 5 X^2 Y^5\- 2 X Y^6 - Y^7kash> Solve(t,1,"abs"); # Compute a list of all solutions [x,y].[[-2, -1], [-1, -1], [-1, 0], [-1, 1], [0, -1],[0, 1], [1, -1], [1, 0], [1, 1], [2, 1]]

KANT V4 177.4. Solution of norm equationsWe consider the relative extension E=F forF = Q(�), �2 � 2 = 0; and E = F(�), �2 + 1 = 0:For all � = i� + j (�4 � i; j � 4) we want to know if there exists � 2 oE withNE=F (�) =� 2 TUF the group of torsion units.kash> F := Order(Z, 2, 2);;kash> E := Order(F, 2, -1);;kash> l1:=[]; # Create an empty list.kash> zero := Elt(F, 0);; # Create the zero element in Fkash> for i in [0..4] do> for j in [-4..4] do> z := Elt(F, [i,j]);> if z<>zero then> Add(l1, [z, OrderNormEquation(E, z)]);> fi;> od;> od;The output consists of a list containing pairs [�; �] if there is a solution � and [�; false]otherwise (optional).[[[0, -4], false], [[0, -3], false],[[0, -2], false], [[0, -1], false],[[0, 1], false], [[0, 2], false], [[0, 3], false],...[[1, -1], false], [1, [[[0, -1], [0, 1]] / 2]],...[[4, 3], false], [[4, 4], false]]It took 17 seconds to solve these 44 norm equations.7.5. Computation of Hilbert class fieldsThe following is an example for the computation of the Hilbert class �eld for F := Q(�)where �3 + �2 � 42�� 107 = 0.We start by reading the equation order of F .

18 The Kant Groupkash> f:=Poly(Zx,[1,1,-42,-107]);; # f(x)=x^3+x^2-42x-107kash> F:=Order(f);; # Create the equation order# of the polynomial fkash> F:=OrderMaximal(F);;kash> OrderUnitsFund(F);;kash> OrderClassGroup(F,"euler");; # option "euler" is necessary# for the function# OrderHilbertClassFieldkash> F;Generating polynomial: x^3 + x^2 - 42*x - 107Discriminant: 70313Regulator: 21.20506Units:[3, 1, 0] [9, 12, 2]class number 2class group structure C2cyclic factors of the class group:<5, [3, 0, 1]>The discriminant is always the discriminant of the order. The cyclic factors are given ina 2 element normal representation.We apply the user function OrderHilbertClassField to it.kash> Y := OrderHilbertClassField (F);Starting Class Field ComputationDegree : 3Signature : [3, 0]Class Group : [2, [2]]=====================================Checking cyclic group C2__--Computing Classfield for cyclic subgroup C2We obtain the following 4 elements �1; : : : ; �4, a power product of which yields a gener-ating element.List of Generators :[[1299, 255, -62], -1, [3, 1, 0], [9, 12, 2]]We compute a generating element � = �e11 � : : : � �e44 for (e1; : : : ; e4) 2 (Z=2Z)4: Onlyunrami�ed extensions F(2p�) of F are processed further.

KANT V4 19Exponent Vector [1, 1, 0, 1] -->[79, 5, -2]That means � = 79 + 5�� 2�2.Since we obtain just one unrami�ed extension, it has to be the class �eld. There is alsoa built in checking routine, however.8. AvailabilityKASH is freely available via ftp.math.tu-berlin.de at pub/algebra/Kant/Kash. Ithas been ported to the following architectures:HP 7000 (HP{UX 9.01),IBM RS 6000 (AIX 3.2.5),Intel 486 (Linux Kernel 1.3.0),Intel 486 (MS DOS 5.0),Silicon Graphics (IRIX 5.3),Sun SPARC (SunOS 4.1.3),Sun SPARC (SunOS 5.4). ReferencesBilu, Y.; Hanrot, G.: Solving Thue Equations of High Degree; Mathematica Gottingensis, Schriftenreihedes Sonderforschungbereichs Geometrie und Analysis; Heft 11; G�ottingen; 1995Cannon, J.: Magma; this volumeCohen, H.: A Course in Computational Algebraic Number Theory; Springer-Verlag; Berlin - Heidelberg- New York; 1993Daberkow, M.: �Uber die Berechnung der ganzen Elemente in Radikalerweiterungen algebraischerZahlk�orper ; Thesis; Berlin; 1995Daberkow, M.: Computing with Sub�elds; submitted to J. Symb. Comput.Daberkow, M.; Pohst, M.: Computations with relative extensions of number �elds with an applicationto the construction of Hilbert class �elds; ISSAC'95 Proc.Daberkow, M.; Pohst, M.: On Integral Bases in Relative Quadratic Extensions; to appear in Math.Comput., 1996aDaberkow, M.; Pohst, M.: On the Computation of Hilbert Class Fields; submitted for publication, 1996bDaberkow, M.; Weber, A.: A Database for Number Fields; submitted to DISCO'96Dixon, J.: Computing Sub�elds in Algebraic Number Fields; J. Aust. Math. Soc., Ser. A 49; 1990; 434{448Eichenlaub, Y.; Olivier, M.: Computation of Galois groups for polynomials with degree up to eleven; toappearFieker, C.; Jurk, A.; Pohst, M.: On Solving Relative Norm Equations in Algebraic Number Fields; toappear in Math. Comput.Fincke, U.; Pohst, M.: A Procedure for Determining Algebraic Integers of Given Norm; ProceedingsEUROCAL 83; Springer LNCS Series No. 162; Springer-Verlag; Berlin - Heidelberg - New York;1983Geist, A. et al.: PVM 3 user's guide and reference manual ; Oak Ridge National Laboratory, Oak Ridge,Tennessee 37831; 1994Kl�uners, J.; Pohst, M.: On Computing Sub�elds; submitted to J. Symb. Comput.Pohst, M.: Computational Algebraic Number Theory; Birkh�auser; Basel; 1993Pohst, M.; Zassenhaus, H.: Algorithmic Algebraic Number Theory; Cambridge University Press; Cam-bridge; 1989Sch�onert, M. et al.: GAP { Groups, Algorithms and Programming, version 3 release 3 ; RWTH Aachen,Lehrstuhl D f�ur Mathematik; Templergraben 64, 52062 Aachen, F.R.G.; 1993

