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Let L = K(o) be an abelian extension of degree n of a number field K, given by the
minimal polynomial of o over K. We describe an algorithm for computing the local Artin
map associated to the extension L /K at a finite or infinite prime v of K. We apply this
algorithm to decide if a nonzero a € K is a norm from L, assuming that L/K is cyclic.

1. Introduction

The problem of effectively constructing local and global Artin maps was posed in
H.W. Lenstra (1992). Acciaro and Kliiners (1999) have shown how to construct the Artin
symbol (p, L/Q) of a rational prime p in Gal(L/Q), with L/Q abelian. Subsequently, the
second author has shown (Kliiners, 1997) how to extend this algorithm to construct the
Artin symbol (p, L/K) of a prime p of K in Gal(L/K), where K is an arbitrary number
field and L/K is abelian. In the present paper we exploit this algorithm to construct the
local Artin maps associated to an abelian extension L/K of degree n, where L = K(«)
is given by the minimal polynomial m () of « over K. Although it is possible to define
the local Artin map in several ways, we have chosen to use the language of ideles as a
convenient tool to describe the effective construction.

We apply this algorithm to solve the following problem: Let L = K(«) be a eyclic
extension of a number field K of degree n, given by the minimal polynomial mq(x) of o
over K, and let a € K, with a # 0; decide if the equation

admits any solution X in L.

Note that we are not interested in finding a solution A, but simply in determining
whether a solution exists. Without loss of generality we can assume that o € Op, the
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ring of algebraic integers of L. Our algorithm is based on the well known Hasse Norm
Theorem, which states that, for a cyclic extension of number fields, an element of the
base field is a global norm if and only if it is a local norm everywhere.

Acciaro (1996) described an algorithm to solve the same problem, assuming that n is
prime and K is the field @ of rationals. In the present paper we remove this constraints,
and we use a different technique to attack the problem — namely, by exploiting the local
Artin maps associated to the extension L/K.

If we assume that a € Z, the rational integers, and we ask for solutions of (1.1) in the
algebraic integers, we can use an algorithm, due to U. Fincke and M. Pohst (Pohst and
Zassenhaus, 1989, p. 336), based on methods borrowed from the geometry of numbers,
which works for any finite extension of . However, even if (1.1) is not solvable in the
algebraic integers, it may still be solvable in @(a). A generalization of this algorithm to
relative extensions is presented in Fieker (1997). In Fieker’s thesis there is a different
approach to solve norm equations based on the computation of S-units; moreover, is
possible to solve the norm equation in arbitrary orders or in the given field.

The paper is organized as follows. In §3.1 we recall the ideal theoretical definition of
the Artin map for abelian extensions of number fields. Then, in §3.4 we give the idele
theoretical definition. Finally, in §3.5 we give the definition of the Artin map for abelian
extensions of local fields, and we show how to compute it. In §4 we show how to apply
our algorithms to decide if (1.1) is solvable.

The algorithms described in this paper have been implemented using the number
theory package KASH (Daberkow et al., 1997), developed in Berlin by Prof. M.E. Pohst
and his collaborators.

For the terminology and the basic concepts of algebraic number theory used in this
paper we refer the reader to Lang (1994).

2. Notation

If k is a subfield of a field K| then [K : k] will denote the degree of the field extension
K/k, and K* = K\{0} will denote the multiplicative group of K.

Let k be an algebraic number field. The symbol Oy will denote the ring of integers of k.
By a prime of & we mean a class of equivalent valuations of k. Recall that the finite primes
are in one-to-one correspondence with the prime ideals of Oy, and the infinite primes are
in correspondence with the embeddings of k£ into C, the field of complex numbers.

The symbols v and w will denote primes of an algebraic number field, either non
archimedean or archimedean.

Let v be a finite prime of k. The symbol k, will denote the completion of & with respect
to the v-adic valuation, and @, the corresponding ring of v-adic integers.

Let v be an infinite prime of &, that is, an embedding v : k¥ — C. The symbol %, will
denote the completion of & with respect to the (archimedean) valuation § +— |v(3)|.

3. Global and Local Artin Maps
3.1. GLOBAL ARTIN MAPS (IDEAL APPROACH)
In the sequel L/K will always be a finite abelian extension. By 97/ we denote the

relative discriminant of L/ K as an ideal of Ok . Let 98 be an unramified prime ideal of Of,
which lies above a prime ideal p of Ox. We denote by oy the Frobenius automorphism
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of B. Since L/K is abelian, this automorphism depends only on p and is called the
Artin automorphism of p; it is denoted by (p, L/K). The Artin map is the multiplicative
extension of this map to the group of fractional ideals 7°2/% which are prime to 0r/K:

(wL/K): Jor/E Gal(L/K) :a= Hpvp(a) — H(p’L/[()vp(a)
pla pla

Acciaro and Kliiners (1999) have shown how to compute the Artin automorphism of
a prime p in the case K = Q. Kliiners (1997) has extended this algorithm for arbitrary
number fields K. Let p be a prime ideal of Og which is unramified in L. Let o be a
primitive element of L/ K. Then we know that the Artin automorphism (p, L/ K) has the
following property:

(p, L/K)(a) = oN®) mod pOy, (3.1)

where N is the norm function applied to ideals giving integers (see (Lang, 1994, p. 24)
for a definition).
The automorphism ¢ = (p, L/K) is determined by § := o(a) = %Z?:_Ol a;a’, where

a; € O, d € N. Using (3.1) we compute 3 = oN®) mod pOp . Using Newton’s algorithm
we compute an element g € Og[a] with

n—1
Br = Z a; ya' = B mod p* Oy,
=0
for a suitable & € N. Then we get for 0 <2 < n:
a;
d
In the case K = QQ we can easily derive bounds for d and a;. Choosing k sufficiently large
we can compute a; and d with an algorithm based on continued fractions (Collins and
Encarnacién, 1995).

In the case K # () the reconstruction of a; and d from a; j is more complicated. If p is
the only prime ideal lying over p this process is essentially the same. When pQy = p1 - - - p,
(p1 = p), we use a combinatorial approach to compute o(a) mod p; O (2 < ¢ < r). Using
the Chinese Remainder Theorem we can compute o(a) mod pOr. Again we can use
Newton’s method to compute (a) mod p*@y. Knowing this, the reconstruction process
is analoguous to the case K = Q. For more details we refer to Kliiners (1997).

= a;; mod pk.

3.2. IDELES

Let us recall first some basic facts about the ideles. If v is a finite prime of K, then
the symbol U, will denote the group of units of O, . If v is an infinite prime of K, then
the symbol U, will denote the multiplicative group K of the field K,. Let .S be a finite
set of primes of K; the group of S-ideles of K is defined to be:

Ie=T[ K: <[] U
vES vES

The idele group of K is defined to be the union of all the groups Jf(, where S runs
through all finite sets of primes of K.
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3.3. ADMISSIBLE CYCLES

A cycle (or modulus) m of an algebraic number field K is a formal finite product of
primes (finite or infinite) of K. A finite prime v may occur in m with multiplicity > 1. If
v is a real infinite prime, then it may occur in m with multiplicity 1. A complex infinite
prime must not occur in m.

The notion of admissible cycle is of great importance in global class field theory. Its
definition will not be given here; the interested reader can consult Lang (1994). For our
purposes it is enough to recall the following properties:

An admissible cycle for an abelian extension L/K of number fields is divisible by
all the primes of K which ramify in L;

There is a smallest admissible cycle f called the conductor of the extension L/K;
any admissible cycle ¢ for L/K is a multiple of f;

A prime ideal p of Ok is ramified, if and only if p | f. It is wildly ramified, if and
only if p? | f.

Since the relative discriminant 07, of L/K divides the discriminant disc(mq(x)) of
mq (), it is easy to obtain an admissible cycle for our extension L/K, as follows.

Tt is clear that disc(mq(2)) € Ok since o € Op. Let ¢g = disc(my(2)) Ok . Let to be
the formal product of the infinite primes of K which ramify in L. Then ¢ = ¢o,¢p 1s an
admissible cycle for L/K.

If we factorize

r

— €3

Cp = sz 3
i=1

we can easily get a smaller admissible cycle ¢, ¢, as follows. We denote with p; the
characteristic of the residue class field of p;. If p; > n we know that p; cannot be wildly

ramified. We define
E0 = H ‘p?l H ‘pia
i=1

i=rg+1

where we assume that p; <n (1 <i<wrg)and p; >n (ro <j<r).

Now we are interested in computing the infinite primes of K which ramify in L. If v
is a complex infinite prime it cannot ramify in L. We denote with v a real infinite prime
of K. We denote with m, € R[z] the image of m, under v. The prime v is unramified if
all zeros of M, are in R, otherwise it ramifies. We use Sturm’s algorithm (Cohen, 1993,
Theorem 4.1.10) for real polynomials to compute the number of real zeros. We remark
that for L/K normal we get that this number is equal to 0 or [L : K].

3.4. GLOBAL ARTIN MAPS (IDELE APPROACH)

Let Jx denote the idele group of K. If j € Ji then j, will denote the local component
of j at the prime v (thus j, € K), and, as (Lang, 1994, Chapter 7), we write j = (jy ).

Recall that K* is embedded in Jx on the diagonal, by associating to b € K™ the idele
b (there is no risk of confusion, if we adopt the same name) whose v-th component is b,
for all the primes v of K.
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If v is discrete, then we can define the order of j at v to be that integer r, such that
j’U = Trzvuva

where m, denotes a prime element of O,, the ring of integers of K, , and w, some unit of
O, . Now, by definition of ideles, almost all 7, are equal to 0, and therefore, if we identify
a discrete valuation v of K with the corresponding prime ideal p of O, the ideal

II s
p prime ideal of ok

is a fractional ideal of K, denoted by (j), and called the associated ideal of j.
Let ¢ be an admissible cycle for L/K computed in §3.3. If v | ¢ with multiplicity m(v)

for some prime v of K, then we define ¢, to be the ideal generated by WT(U) in O,.
If | € Jk, then we say that { = 1(mod" ¢) iff for all v | ¢

If v is infinite, then I, > 0;
If v is finite, then {, € O, and [, =1 (mod ¢,).

LEMMA 3.1. Let ¢ be an admussible cycle. Then there is an isomorphism
J/K.=JTg/K”
where J. .= {a € Jx |a =1 mod™ ¢} and K, := J. N K*.

PRrROOF. We prove that any idele class (element of Jx/K*) has a representative idele in

J. for any given ¢. Given | € Ji select b € K™ using the approximation theorem such
that Ib = 1(mod* ). O

DEFINITION 3.1. Let ¢ be a cycle. We denote with I(c) the group of fractional ideals of
ox, which are prime to c¢. P. is the set of principal ideals (a) of Og with a € K.. Finally
H(c) := (¢, L/K) :={Np/k (A) | A is a fractional ideal of O prime to c}.

We can state the following theorem (Lang, 1994, Theorem 8, p. 150):
THEOREM 3.1. Let L/K be an abelian extension and ¢ be an admissible cycle for L/ K.
Then we have an isomorphism
JK/[(*NL/KJL = J(c)/PII(c).
The 1somorphism ts induced by the isomorphism
J/K.=Tg/K*,

followed by the ideal map I — (1) of J. onto I(c).

Following (Lang, 1994, chapter X, §3) we can define the Artin map for ideles. Let
1 € Jk be an idele, and let b € K* such that {b = 1(mod” ¢). If a is the associated ideal of

lb, then (I, L/K) is defined to be (a, L/K). This is well defined, since from our definition
we get (b, L/K) =1 for all b € K*.
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3.5. LocAL ARTIN MaAPS

It is possible to define in several ways the local Artin map at a prime v associated
to an abelian extension L/K of number fields. S. Lang, in his approach to Class Field
Theory (Lang, 1994, Part Two), goes from the global situation to the local one. In this
paper we follow closely Lang’s approach.

The objective of Local Class Field Theory is to describe all the abelian extensions of a
local field. We remark that all local fields in this paper are finite extensions of completions
of @@. Recall first that the main theorem of Local Class Field Theory establishes a one
to one correspondence between the abelian extensions of a local field F' and the open
subgroups of finite index in F*. More precisely, for a fixed local field F', to each abelian
extension E of F' there corresponds uniquely the norm subgroup Ng,p(£~) of F'*, and
conversely, any open subgroup of finite index in F'* is the norm subgroup of some abelian
extension F of F. We have the following theorem (Lang, 1994, Thm. 5, p. 221):

THEOREM 3.2. For a given abelian extension E of a local field F, there is a canonical
homomorphism:

(\E/F): F* = Gal(E/F)

called the norm residue symbol, whose kernel is precisely the norm group Ng,p(E*). The
norm residue symbol induces an isomorphism:

F*/Ng,p(E*) = Gal(E/F)

called the main 1somorphism of Local Class Field Theory.

Before turning to the construction of the local Artin map associated to an abelian ex-
tension of local fields, recall that if L/K is an abelian extension of number fields, and w
is a prime of L lying above a prime v of K, then L, /K, is an abelian extension of local
fields, whose Galois group is isomorphic to the decomposition group of w in Gal(L/K).
Since L/K is abelian the decomposition group of w is the same for all primes w lying
over v.

It is possible to embed K in Jg on the v-th component, by identifying an element
a, € K with the idele [a,] whose v-th component is a,, and having component 1 at all
the other primes of K. Thus, we can consider the local map (-, Ly, /K,) as a restriction to
K} of the global Artin map (-, L/ K) defined on the idele group of K. The compatibility
of the two maps is guaranteed by the following:

THEOREM 3.3. If L/K is an abelian extension of number fields, and w is a prime of L
lying above a prime v of K, then the diagram

Kr O Gal(Ly, /K

v

|1 [
I UEE Galn/k)
is commutative, where 1 denotes the standard embedding of Gal(L,, /K,) into Gal(L/K).

ProoF. This is just a restatement of (Neukirch, 1986, Proposition 6.6, p. 94), using
ideles rather then idele classes. O
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For this reason the norm residue symbol (-, Ly /Ky) = ([], L/ K) is called local Artin
map, too.

3.6. COMPUTATION OF THE LOCAL NORM RESIDUE SYMBOL.

Let a, € K; we want to compute (day, Ly /Ky). In the following we denote with m(v)
the integer such that ¢ = v™)¢ with v { ¢. We proceed as follows:

(i) First, we embed K, in Jx by considering the idele j whose v-th component is a,
and all the others are equal to 1;
(i1) Using the approximation theorem for Dedekind rings, we find h € K* such that:

ay = h mod v*, where s = m(v) + ord, (a,) and
h = 1mod"¢.

(iii) Now, we have jh~t = 1(mod” c);
iv) Let T be the associated ideal of A1, and let ¥ pbeits complete factorization
i=1 pz
n K,
(v) Next, we compute the Artin automorphism (Z, L/K) of Z by exploiting the multi-
plicativity of the Artin symbol, that is

k
(Z,L/K) = [ 10, L/K)*
i=1
where the product in the right hand side is meant to be in Gal(L/K);
(vi) By Theorem 3.3, we have (ay, Ly /K,) = n~YZ, L/K).

3.7. THE UNINTERESTING CASE

The computation of the norm residue symbol is trivial when the local extension L, / K,
is unramified — in particular, this happens when v { ¢o. In fact, when v is unramified then
Gal(Ly /Ky) is cyclic of order f and it is isomorphic to the decomposition group of L/ K
at v, which is generated by the (global) Artin map of L/K at v. Let m, denote a prime
element of K, and p the prime ideal of O corresponding to v. Now, if we write an
element a, of K, as

ay = Fsrd"(a”) Uy

for some v-adic unit u,, it is clear that

(ay, L /Ky) =9~ (p, L/ K)o dv(@) (3.2)
3.8. THE ALGORITHM

Now we are able to give the algorithm to compute the local Artin map (ay, Ly /Ky
for an element a, € K. As before we denote with m(v) the integer such that ¢ = p7 ()
with v {¢.

We can represent an element a, of K, as a convergent series, in the v-adic topology:

)

oQ

ay = E ¢ M,

i=ordy (ay)
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where 7, denotes a prime element of K, and the elements ¢; are taken from a fixed set of
coset representatives of the residue class field. Without loss of generality, we can assume
that m,,¢; € K. It will be clear from the description of the algorithm that we need only
to consider the (finite) approximation:

i=ordy (ay)

for s = m(v) + ordy (ay).
ALGORITHM 3.1. (Computation of the local Artin map at a finite prime v)

Input: An abelian extension L/K, a finile valuation v, a finite approzimation
s

So ¢ 7w ofa, € K, where s = m(v) + ord,(ay).

v
i=ordy (ay)

Output: (ay, Ly /Ky).

Step 1: Compute the automorphism group of L/ K.
Step 2: Compute an admisstble cycle ¢ of L/ K.
Step 3: If v { ¢ then return (p, L/ K)o (@) where p is the corresponding prime
tdeal to v.
s—1 .
Step 4: Let hy = S ¢ o, with s = m(v) 4 ordy(ay).
i=ordy (ay)
Step b: Find an element h € K such that h = hy mod v* and h = 1 mod” ¢, using
the approrimation theorem.
Step 6: Set a:= h p~orde(h),
Step 7: Return (a, L/ K)(=1).

ProoF. Write ¢ as v™()¢, with v {¢. By construction, we have that
ayrh™! =1 mod v™¥) (3.3)

for each v/ # v and v’ | ¢, since a, in this case is defined to be 1 (note for the reader: a,»
is the component of the idele [a,] at the prime v’, which is equal to 1).

Let s = m(v) + ordy(ay). By construction, we have that 2y = a, mod v*, and hence
h = a, mod v*, as well. Therefore

ayh~!' =1 mod v (3.4)
Now, (3.3) and (3.4) imply that

bl

ayh ™' =1modz¢

a

We remark that in Step 5 of the above algorithm the infinite primes are important. For
the algorithmic solution of this step we need a generalization of the Chinese Remainder
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Theorem. Let ¢ = ¢y, where ¢p is a product of finite primes. In the case K = @@ we
simply choose an element h € () such that

h =hy mod v*, h =1mod" ¢ and h > 0.

In the general case we use the function RayCantoneseRemainder of KASH (Daberkow
et al., 1997) which is described in Pauli and Pohst (1997). We give a simple solution to
this problem.

i) Compute h € K such that h = h; mod v* and h = 1 mod® ¢g.
ii) Compute the minimal natural number m in the ideal cyv®.
)
)

(iii) While A Z 1 mod” ¢o, set h := h +m.
(iv) Return h.

This algorithm terminates after a finite number of steps with the correct result. Now we
give an algorithm to compute the local Artin symbol for an infinite prime. We remark
that it is easier to decide if the Artin symbol is the identity than to compute it.
ALGORITHM 3.2. (Computation of the local Artin map at an infinite prime v)

Input: An abelian extension L/K, an admissible cycle ¢ of L/K, an infinite valu-
ation v, and a, € K, .

Output: (ay, Ly /Ky).

Step 1: If v 1s complex or a, > 0 then return the identity.

Step 2: If v { ¢ then return the identity.

Step 3: Compute h € K such that h = 1mod* ¢ and h £ 1 mod™ v using the approx-
wmation theorem.

Ste_p4: Set a:= hO.

Step 5: Return (a, L/ K).

4. Application: solvability of norm equations

Fundamental to this section is the following theorem (Neukirch, 1986, Corollary 5.2,
p. 89):

THEOREM 4.1. (HassE NORM THEOREM) Let L/K be a cyclic extension of number
fields. An element a € L* is a norm from L* if and only if a is a local norm at every
prime (including the infinite primes) of L.

We will deal with the infinite primes in §4.4. Until then, all the primes considered will
be finite.

Recall that the property of being Galois is preserved by the completions at the finite
primes. In fact, if L is a finite Galois extension of an algebraic number field K, and w 1is
a prime of L lying above a prime v of K, then L,, /K, is also Galois, with Galois group
equal to the decomposition group G, of w.

Throughout the following, I will denote a cyclic extension of degree n of K.
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4.1. DECOMPOSITION OF PRIMES NOT DIVIDING ¢

Our first task is to recognize the residue degree f of a finite prime v { ¢. We suppose
that v does not divide disc(a)Of, otherwise we use the admissible cycle ve instead of c.
We compute
n—1
3= aNW = Z(ai mod v)ai,
=0
where a; mod v is the unique representative computed with (Cohen, 1996, Algorithm
2.11). Using the same algorithm we compute G; = oi(a) mod vOr (1 < i < n). This
is not a problem, since the automorphisms o1, ..., 0, of L/K are known at this point.
After this, we simply compare 3 with the §; to determine the Frobenius automorphism
of v. The residue degree is equal to the order of the corresponding o;. Another possibility
for determining the residue degree of v 1s to compute the smallest number f such that
aN® =1 mod v.

4.2. THE UNRAMIFIED CASE

In this section we assume that the finite prime v does not divide ¢: it follows that v 1s
certainly unramified in L.

The case when f = 1, that is, when v splits completely in L, is uninteresting, since we
have L,, = K,, and so any a € K is the norm of itself in the trivial extension of K.

Hence we will restrict our attention to the case f > 1. Then L, is an unramified
extension of K, of degree f, and the next theorem characterizes completely the norm
group of Ly /K,.

THEOREM 4.2. Let L, be an unramified extension of K, of degree f. Lel 3 = w* uy €
Ky, with u, a unit in Oy, m € Z. Then § € Np /x,(L}) of and only of f | m. In

U
particular, every unit of O, is the norm of a unit in Ly, .

ProoOF. The proof follows easily from (3.2) and from Theorem 3.2. U

Therefore in our case, if m denotes the order of a at v, then a is a local norm at v iff
J | m. This implies in particular that the only finite unramified primes which must be
taken into account are those involving the factorization of a, and clearly there is only a
finite number of them.

4.3. THE (POSSIBLY) RAMIFIED CASE
In this section we assume that the finite prime v of K divides c: it follows that v might
ramify in .. However, we are not interested in deciding whether v does ramify or not in
L. Let w be any prime of L lying above v. By Theorem 3.2 we know that a € Ny, (L)
iff (a, Ly /Ky) is the identity in Gal(Ly /Ky), and we know how to compute (a, Ly, /Ky).

4.4. THE INFINITE PRIMES

Since L = K(«) is Galois over K, if we fix a prime (finite or infinite) v of K, then the
Galois group Gal(L/K) permutes transitively the primes w of L lying above v.
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If K, = C, then L,, must be C as well, and any element of C is the norm of itself in
the trivial extension of C.

If K, =R and L, = R, then again any element of R is the norm of itself in the trivial
extension of R.

Therefore we have to take into account only the infinite primes v of K which ramify
in L, that is those v dividing ¢o. In this case we have N¢/g(C) = RT, the nonnegative
reals.

Since all the primes w of L lying above an infinite prime v of K are conjugate, we
obtain in this way a simple criterion to decide if a is a local norm at each infinite prime.
We have to consider only the sign of a at each ramified infinite prime of K (read: at each
ramified embedding of K in C).

4.5. THE ALGORITHM
Now we are able to give the whole algorithm to decide if a norm equation of a cyclic

extension has a solution.
ALGoRITHM 4.1. (NormSolvable)

Input: A cyclic extension L/ K, a € K*.

Output: True, if there exists A € L with N/ (\) = a, otherwise false.
Step 1: Compute the automorphism group of L/ K.

Step 2: Compute an admissible cycle ¢ of L/ K and all v dividing ¢.
Step 3: Compute a factorization of the ideal aOg .

Step 4: For all finite v with ord,(a) > 0 or v | ¢ do:

(i) Compute (ay, Ly /Ky) using Algorithm 3.1.
(ii) If (ay, Ly / Ky) is not the identity, then return false.

Step b: If for any ramified infinite prime v we have a, < 0 then return false.
Step 6: Return true.

The correctness of the algorithm follows immediately from Theorem 3.2. We remark
that in Step b it is necessary that we only consider infinite primes which are ramified. If
we do not want to compute the ramification at the infinite primes, we can put all infinite
real primes in c. In this case we have to use Algorithm 3.2 instead of the test a, < 0 in
Step 5.

5. Examples

In this section we give some examples to demonstrate the efficiency of our algorithm.
All computations were done on a Sun-Ultra-2 300 MHz using KASH 1.9 under SunOS
5.6.

We compare our function for deciding the solvability of norm equations with the func-
tion OrderNormEquation in KASH (Daberkow et al., 1997) which is based on the algo-
rithm of Fincke and Pohst (Pohst and Zassenhaus, 1989). The comparison is unfair since
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the output of the two functions is different. The first function determines whether a so-
lution exists, while the second one computes 1t. Another difference is that our algorithm
decides whether there is a solution in the extension field, while the second algorithm
searches only for a solution in the given order. Very often it happens that the norm
equation has no solution — in this case the output of both algorithms is the same.

We start with a simple example. Let K = Q and L = Q(«), where a is a root of
f(x) =2* + 23 + 2% + 2 + 1. It is well known that O = Z[«]. Since O is a prinicipal
ideal domain we know that there is a solution of the norm equation in L if and only
if there is a solution of the norm equation in Op. In the following table we solve the
norm equations for the norms given in the column norms. We give the whole computing
time for the functions NormSolvable and OrderNormFEquation. We give the number of
equations which have a solution in L. In the column combination we give the computing
time for a combined algorithm. We first check if a solution exists. Only in the case that
a solution exists we call OrderNormEquation to compute a solution. We have neglected
the computing time for the computation of the automorphism group of L/K (0.1s) and
the computation of the unit group (0.3s).

norms # of solvable time Norm- time Order- time
equations Solvable NormEquation combination
1-100 12 0.1s 13.3s 1.1s
1001-1100 7 0.2s 166s 0.5s
10001-10100 6 0.3s 1741s 1.8s
100001-100100 5 0.4s 8 hours 11s

We can see that the function NormSolvable is very efficient in practice. From the
timings we can see as well that the function OrderNormFEquation is more efficient if a
solution exists — one reason is that the algorithm can stop when a solution is found.

Next, let us consider a relative extension. Let 3 be a zero of 23 —2 and K = Q(/3). Let
L = K(a), where « is aroot of 2% —42? +4+23 —23?. We remark that L is a subfield of
the ray class field of the modulus 8 Qg . The function OrderNormEquation is based on an
algorithm described in Fieker (1997). In the following we ignore 50 seconds of computing
time which are only needed for solving the first norm equation. The computation of the
automorphism group took 0.6 seconds.

norms 7t of solvable time Norm- time
equations Solvable combination

(B+1) — (B+10) 1 0.8s 2.6s

(8% +1) — (B° +10) 3 1.1s 33.3s

(B> +B+1) — (7 +8+10) 4 1.0 46s

The following polynomial has cyclic Galois group of order 12 over Q(z): y*? + 15zy't +
(9022 — 54)y'0 + (27423 — 6452)y° + (441a? — 299427 + 921)y® + (3512° — 675623 +
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8490z)y” + (10825 — 75362 + 2905522 — 6336)y® + (—36992° + 4505723 — 42396x)y° +
(—=5402° + 307772* — 9774922 + 16392)y* + (774025 — 9041223 + 70296x)y> + (4322° —
3176421 48994027 — 7200)y* + (—28802° + 4156823 — 12576 )y + 4800z — 667222 + 784.

In the following we specialize « and get polynomials in Z[y]. We give the computing
times for NormSolvable. The last column gives the time needed for the computation of
the automorphism group, which is not included in the computing time for NormSolvable.

X norms 7t of solvable time  automorphism
equations time

1 1-100 5 10.5s  0.2s

1 100001-100100 O 11.0s

2 1-100 1 17.7s  0.3s

2 100001-100100 O 15.3s

4 1-100 3 72.9s 0.4s

4 100001-100100 O 66.5s

5 1-100 2 19.2s  0.3s

5 100001-100100 O 18.2s

6 1-100 2 15.8s  0.4s

6 100001-100100 O 10.8s

7 1-100 2 18.8s  0.3s

7 100001-100100 O 17.6s

We remark that specializing # = 3 yields a reducible polynomial. The different com-
puting times are due to the different steps at which the algorithm can decide whether
the given norm equation is solvable or not. It is much cheaper when an unramified prime
indicates that the norm equation is not solvable.

We remark that the most expensive step of the algorithm is the factorization of a in
Step 7 of Algorithm 3.1. In the last example there are subfields of coprime degree which
generate the given field. In this case the norm equation is solvable if and only if the
norm equation is solvable for these subfields. Using this fact the computing time can be
improved by applying the algorithm to the degree 3 and degree 4 subfields.
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