
J. Symbolic Computation (2000) 11, 1{14Computing Local Artin Maps, and Solvability ofNorm EquationsVINCENZO ACCIAROy and J�URGEN KL�UNERSzyDipartimento di Informatica, Universita' degli Studi di Bari,via E. Orabona 4, Bari 70125, Italy.E-mail address: acciaro@di.uniba.itzUniversit�at Heidelberg,Im Neuenheimer Feld 368, 69120 Heidelberg, GermanyE-mail address: klueners@iwr.uni-heidelberg.de(Received 12 October 1998)Let L = K(�) be an abelian extension of degree n of a number �eld K, given by theminimal polynomial of � overK. We describe an algorithm for computing the local Artinmap associated to the extension L=K at a �nite or in�nite prime v of K. We apply thisalgorithm to decide if a nonzero a 2K is a norm from L, assuming that L=K is cyclic.1. IntroductionThe problem of e�ectively constructing local and global Artin maps was posed inH.W. Lenstra (1992). Acciaro and Kl�uners (1999) have shown how to construct the Artinsymbol (p; L=Q) of a rational prime p in Gal(L=Q), with L=Q abelian. Subsequently, thesecond author has shown (Kl�uners, 1997) how to extend this algorithm to construct theArtin symbol (p; L=K) of a prime p of K in Gal(L=K), where K is an arbitrary number�eld and L=K is abelian. In the present paper we exploit this algorithm to construct thelocal Artin maps associated to an abelian extension L=K of degree n, where L = K(�)is given by the minimal polynomialm�(x) of � over K. Although it is possible to de�nethe local Artin map in several ways, we have chosen to use the language of ideles as aconvenient tool to describe the e�ective construction.We apply this algorithm to solve the following problem: Let L = K(�) be a cyclicextension of a number �eld K of degree n, given by the minimal polynomial m�(x) of �over K, and let a 2 K, with a 6= 0; decide if the equationNL=K(�) = a (1.1)admits any solution � in L.Note that we are not interested in �nding a solution �, but simply in determiningwhether a solution exists. Without loss of generality we can assume that � 2 OL, the0747{7171/90/000000 + 00 $03.00/0 c
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2 V. Acciaro and J. Kl�unersring of algebraic integers of L. Our algorithm is based on the well known Hasse NormTheorem, which states that, for a cyclic extension of number �elds, an element of thebase �eld is a global norm if and only if it is a local norm everywhere.Acciaro (1996) described an algorithm to solve the same problem, assuming that n isprime and K is the �eld Q of rationals. In the present paper we remove this constraints,and we use a di�erent technique to attack the problem { namely, by exploiting the localArtin maps associated to the extension L=K.If we assume that a 2Z, the rational integers, and we ask for solutions of (1.1) in thealgebraic integers, we can use an algorithm, due to U. Fincke and M. Pohst (Pohst andZassenhaus, 1989, p. 336), based on methods borrowed from the geometry of numbers,which works for any �nite extension of Q. However, even if (1.1) is not solvable in thealgebraic integers, it may still be solvable in Q(�). A generalization of this algorithm torelative extensions is presented in Fieker (1997). In Fieker's thesis there is a di�erentapproach to solve norm equations based on the computation of S-units; moreover, ispossible to solve the norm equation in arbitrary orders or in the given �eld.The paper is organized as follows. In x3.1 we recall the ideal theoretical de�nition ofthe Artin map for abelian extensions of number �elds. Then, in x3.4 we give the ideletheoretical de�nition. Finally, in x3.5 we give the de�nition of the Artin map for abelianextensions of local �elds, and we show how to compute it. In x4 we show how to applyour algorithms to decide if (1.1) is solvable.The algorithms described in this paper have been implemented using the numbertheory package KASH (Daberkow et al., 1997), developed in Berlin by Prof. M.E. Pohstand his collaborators.For the terminology and the basic concepts of algebraic number theory used in thispaper we refer the reader to Lang (1994).2. NotationIf k is a sub�eld of a �eld K, then [K : k] will denote the degree of the �eld extensionK=k, and K� = Knf0g will denote the multiplicative group of K.Let k be an algebraic number �eld. The symbolOk will denote the ring of integers of k.By a prime of k we mean a class of equivalent valuations of k. Recall that the �nite primesare in one-to-one correspondence with the prime ideals of Ok, and the in�nite primes arein correspondence with the embeddings of k into C , the �eld of complex numbers.The symbols v and w will denote primes of an algebraic number �eld, either nonarchimedean or archimedean.Let v be a �nite prime of k. The symbol kv will denote the completion of k with respectto the v-adic valuation, and Ov the corresponding ring of v-adic integers.Let v be an in�nite prime of k, that is, an embedding v : k ,! C . The symbol kv willdenote the completion of k with respect to the (archimedean) valuation � 7! jv(�)j.3. Global and Local Artin Maps3.1. Global Artin Maps (ideal approach)In the sequel L=K will always be a �nite abelian extension. By dL=K we denote therelative discriminant of L=K as an ideal of OK . Let P be an unrami�ed prime ideal of OLwhich lies above a prime ideal p of OK . We denote by �P the Frobenius automorphism



Local Artin Maps and Norm equations 3of P. Since L=K is abelian, this automorphism depends only on p and is called theArtin automorphism of p; it is denoted by (p; L=K). The Artin map is the multiplicativeextension of this map to the group of fractional ideals IdL=K which are prime to dL=K:(�; L=K) : IdL=K ! Gal(L=K) : a =Ypja pvp(a) 7!Ypja (p; L=K)vp(a)Acciaro and Kl�uners (1999) have shown how to compute the Artin automorphism ofa prime p in the case K = Q. Kl�uners (1997) has extended this algorithm for arbitrarynumber �elds K. Let p be a prime ideal of OK which is unrami�ed in L. Let � be aprimitive element of L=K. Then we know that the Artin automorphism (p; L=K) has thefollowing property: (p; L=K)(�) � �N(p) mod pOL (3.1)where N is the norm function applied to ideals giving integers (see (Lang, 1994, p. 24)for a de�nition).The automorphism � = (p; L=K) is determined by � := �(�) = 1dPn�1i=0 ai�i, whereai 2 OK ; d 2 N. Using (3.1) we compute �1 � �N(p) mod pOL. Using Newton's algorithmwe compute an element �k 2 OK [�] with�k = n�1Xi=0 ai;k�i � � mod pkOLfor a suitable k 2 N. Then we get for 0 � i < n:aid � ai;k mod pk:In the case K = Q we can easily derive bounds for d and ai. Choosing k su�ciently largewe can compute ai and d with an algorithm based on continued fractions (Collins andEncarnaci�on, 1995).In the case K 6= Q the reconstruction of ai and d from ai;k is more complicated. If p isthe only prime ideal lying over p this process is essentially the same.When pOk = p1 � � �pr(p1 = p), we use a combinatorial approach to compute �(�) mod piOL (2 � i � r). Usingthe Chinese Remainder Theorem we can compute �(�) mod pOL. Again we can useNewton's method to compute �(�) mod pkOL. Knowing this, the reconstruction processis analoguous to the case K = Q. For more details we refer to Kl�uners (1997).3.2. IdelesLet us recall �rst some basic facts about the ideles. If v is a �nite prime of K, thenthe symbol Uv will denote the group of units of Ov. If v is an in�nite prime of K, thenthe symbol Uv will denote the multiplicative group K�v of the �eld Kv. Let S be a �niteset of primes of K; the group of S-ideles of K is de�ned to be:JSK = Yv2SK�v �Yv 62S UvThe idele group of K is de�ned to be the union of all the groups JSK, where S runsthrough all �nite sets of primes of K.



4 V. Acciaro and J. Kl�uners 3.3. Admissible cyclesA cycle (or modulus) m of an algebraic number �eld K is a formal �nite product ofprimes (�nite or in�nite) of K. A �nite prime v may occur in m with multiplicity � 1. Ifv is a real in�nite prime, then it may occur in m with multiplicity 1. A complex in�niteprime must not occur in m.The notion of admissible cycle is of great importance in global class �eld theory. Itsde�nition will not be given here; the interested reader can consult Lang (1994). For ourpurposes it is enough to recall the following properties:An admissible cycle for an abelian extension L=K of number �elds is divisible byall the primes of K which ramify in L;There is a smallest admissible cycle f called the conductor of the extension L=K;any admissible cycle c for L=K is a multiple of f;A prime ideal p of OK is rami�ed, if and only if p j f. It is wildly rami�ed, if andonly if p2 j f.Since the relative discriminant dL=K of L=K divides the discriminant disc(m�(x)) ofm�(x), it is easy to obtain an admissible cycle for our extension L=K, as follows.It is clear that disc(m�(x)) 2 OK since � 2 OL. Let c0 = disc(m�(x)) OK . Let c1 bethe formal product of the in�nite primes of K which ramify in L. Then c = c1c0 is anadmissible cycle for L=K.If we factorize c0 = rYi=1peii ;we can easily get a smaller admissible cycle c1~c0, as follows. We denote with pi thecharacteristic of the residue class �eld of pi. If pi > n we know that pi cannot be wildlyrami�ed. We de�ne ~c0 := r0Yi=1 peii rYi=r0+1 pi;where we assume that pi � n (1 � i � r0) and pj > n (r0 < j � r).Now we are interested in computing the in�nite primes of K which ramify in L. If vis a complex in�nite prime it cannot ramify in L. We denote with v a real in�nite primeof K. We denote with ~m� 2 R[x] the image of m� under v. The prime v is unrami�ed ifall zeros of ~m� are in R, otherwise it rami�es. We use Sturm's algorithm (Cohen, 1993,Theorem 4.1.10) for real polynomials to compute the number of real zeros. We remarkthat for L=K normal we get that this number is equal to 0 or [L : K].3.4. Global Artin Maps (idele approach)Let JK denote the idele group of K. If j 2 JK then jv will denote the local componentof j at the prime v (thus jv 2 K�v ), and, as (Lang, 1994, Chapter 7), we write j = (jv).Recall that K� is embedded in JK on the diagonal, by associating to b 2 K� the ideleb (there is no risk of confusion, if we adopt the same name) whose v-th component is b,for all the primes v of K.



Local Artin Maps and Norm equations 5If v is discrete, then we can de�ne the order of j at v to be that integer rv such thatjv = �rvv uv;where �v denotes a prime element of Ov, the ring of integers of Kv, and uv some unit ofOv. Now, by de�nition of ideles, almost all rv are equal to 0, and therefore, if we identifya discrete valuation v of K with the corresponding prime ideal p of OK , the idealYp prime ideal of OK prpis a fractional ideal of K, denoted by (j), and called the associated ideal of j.Let c be an admissible cycle for L=K computed in x3.3. If v j c with multiplicitym(v)for some prime v of K, then we de�ne cv to be the ideal generated by �m(v)v in Ov.If l 2 JK, then we say that l � 1(mod� c) i� for all v j c:If v is in�nite, then lv > 0;If v is �nite, then lv 2 Ov and lv � 1 (mod cv).Lemma 3.1. Let c be an admissible cycle. Then there is an isomorphismJc=Kc �= JK=K�where Jc := fa 2 JK j a � 1 mod� cg and Kc := Jc \K�.Proof. We prove that any idele class (element of JK=K�) has a representative idele inJc for any given c. Given l 2 JK select b 2 K� using the approximation theorem suchthat lb � 1(mod� c). 2Definition 3.1. Let c be a cycle. We denote with I(c) the group of fractional ideals ofoK , which are prime to c. Pc is the set of principal ideals (a) of OK with a 2 Kc. Finally�(c) := �(c; L=K) := fNL=K(A) j A is a fractional ideal of OL prime to cg:We can state the following theorem (Lang, 1994, Theorem 8, p. 150):Theorem 3.1. Let L=K be an abelian extension and c be an admissible cycle for L=K.Then we have an isomorphismJK=K�NL=KJL �= I(c)=Pc�(c):The isomorphism is induced by the isomorphismJc=Kc �= JK=K�;followed by the ideal map l 7! (l) of Jc onto I(c).Following (Lang, 1994, chapter X, x3) we can de�ne the Artin map for ideles. Letl 2 JK be an idele, and let b 2 K� such that lb � 1(mod� c). If a is the associated ideal oflb, then (l; L=K) is de�ned to be (a; L=K). This is well de�ned, since from our de�nitionwe get (b; L=K) = 1 for all b 2 K�.



6 V. Acciaro and J. Kl�uners 3.5. Local Artin MapsIt is possible to de�ne in several ways the local Artin map at a prime v associatedto an abelian extension L=K of number �elds. S. Lang, in his approach to Class FieldTheory (Lang, 1994, Part Two), goes from the global situation to the local one. In thispaper we follow closely Lang's approach.The objective of Local Class Field Theory is to describe all the abelian extensions of alocal �eld. We remark that all local �elds in this paper are �nite extensions of completionsof Q. Recall �rst that the main theorem of Local Class Field Theory establishes a oneto one correspondence between the abelian extensions of a local �eld F and the opensubgroups of �nite index in F �. More precisely, for a �xed local �eld F , to each abelianextension E of F there corresponds uniquely the norm subgroup NE=F (E�) of F �, andconversely, any open subgroup of �nite index in F � is the norm subgroup of some abelianextension E of F . We have the following theorem (Lang, 1994, Thm. 5, p. 221):Theorem 3.2. For a given abelian extension E of a local �eld F , there is a canonicalhomomorphism: (�; E=F ) : F � ! Gal(E=F )called the norm residue symbol, whose kernel is precisely the norm group NE=F (E�). Thenorm residue symbol induces an isomorphism:F �=NE=F (E�) �= Gal(E=F )called the main isomorphism of Local Class Field Theory.Before turning to the construction of the local Artin map associated to an abelian ex-tension of local �elds, recall that if L=K is an abelian extension of number �elds, and wis a prime of L lying above a prime v of K, then Lw=Kv is an abelian extension of local�elds, whose Galois group is isomorphic to the decomposition group of w in Gal(L=K).Since L=K is abelian the decomposition group of w is the same for all primes w lyingover v.It is possible to embed K�v in JK on the v-th component, by identifying an elementav 2 K�v with the idele [av] whose v-th component is av, and having component 1 at allthe other primes of K. Thus, we can consider the local map (�; Lw=Kv) as a restriction toK�v of the global Artin map (�; L=K) de�ned on the idele group of K. The compatibilityof the two maps is guaranteed by the following:Theorem 3.3. If L=K is an abelian extension of number �elds, and w is a prime of Llying above a prime v of K, then the diagramK�v (�;Lw=Kv)�! Gal(Lw=Kv)??y[�] ??y�JK (�;L=K)�! Gal(L=K)is commutative, where � denotes the standard embedding of Gal(Lw=Kv) into Gal(L=K).Proof. This is just a restatement of (Neukirch, 1986, Proposition 6.6, p. 94), usingideles rather then idele classes. 2



Local Artin Maps and Norm equations 7For this reason the norm residue symbol (�; Lw=Kv) = ([�]; L=K) is called local Artinmap, too. 3.6. Computation of the local norm residue symbol.Let av 2 K�v ; we want to compute (av; Lw=Kv). In the following we denote with m(v)the integer such that c = vm(v)~c with v - ~c. We proceed as follows:(i) First, we embed Kv in JK by considering the idele j whose v-th component is avand all the others are equal to 1;(ii) Using the approximation theorem for Dedekind rings, we �nd h 2 K� such that:av � h mod vs, where s = m(v) + ordv(av) andh � 1mod� ~c.(iii) Now, we have jh�1 � 1(mod� c);(iv) Let I be the associated ideal of jh�1, and let Qki=1 psii be its complete factorizationin K;(v) Next, we compute the Artin automorphism (I; L=K) of I by exploiting the multi-plicativity of the Artin symbol, that is(I; L=K) = kYi=1(pi; L=K)siwhere the product in the right hand side is meant to be in Gal(L=K);(vi) By Theorem 3.3, we have (av; Lw=Kv) = ��1(I; L=K).3.7. The uninteresting caseThe computation of the norm residue symbol is trivial when the local extension Lw=Kvis unrami�ed { in particular, this happens when v - c0. In fact, when v is unrami�ed thenGal(Lw=Kv) is cyclic of order f and it is isomorphic to the decomposition group of L=Kat v, which is generated by the (global) Artin map of L=K at v. Let �v denote a primeelement of Kv, and p the prime ideal of OK corresponding to v. Now, if we write anelement av of Kv as av = �ordv(av)v uvfor some v-adic unit uv, it is clear that(av; Lw=Kv) = ��1(p; L=K)ordv(av) (3.2)3.8. The algorithmNow we are able to give the algorithm to compute the local Artin map (av; Lw=Kv)for an element av 2 K�v . As before we denote with m(v) the integer such that c = vm(v)~cwith v - ~c.We can represent an element av of Kv as a convergent series, in the v-adic topology:av = 1Xi=ordv(av) ci �iv



8 V. Acciaro and J. Kl�unerswhere �v denotes a prime element ofKv, and the elements ci are taken from a �xed set ofcoset representatives of the residue class �eld. Without loss of generality, we can assumethat �v; ci 2 K. It will be clear from the description of the algorithm that we need onlyto consider the (�nite) approximation: sXi=ordv(av) ci �ivfor s = m(v) + ordv(av).Algorithm 3.1. (Computation of the local Artin map at a �nite prime v)Input: An abelian extension L=K, a �nite valuation v, a �nite approximationsPi=ordv(av) ci �iv of av 2 K�v , where s = m(v) + ordv(av).Output: (av; Lw=Kv).Step 1: Compute the automorphism group of L=K.Step 2: Compute an admissible cycle c of L=K.Step 3: If v - c then return (p; L=K)ordv(av), where p is the corresponding primeideal to v.Step 4: Let h1 = s�1Pi=ordv(av) ci �iv, with s = m(v) + ordv(av).Step 5: Find an element h 2 K such that h � h1 mod vs and h � 1mod� ~c, usingthe approximation theorem.Step 6: Set a := h p� ordv(h).Step 7: Return (a; L=K)(�1).Proof. Write c as vm(v)~c, with v - ~c. By construction, we have thatav0h�1 � 1 mod vm(v) (3.3)for each v0 6= v and v0 j c, since av0 in this case is de�ned to be 1 (note for the reader: av0is the component of the idele [av] at the prime v0, which is equal to 1).Let s = m(v) + ordv(av). By construction, we have that h1 � av mod vs, and henceh � av mod vs, as well. Thereforeavh�1 � 1 mod vm(v) (3.4)Now, (3.3) and (3.4) imply that avh�1 � 1 mod ~c2We remark that in Step 5 of the above algorithm the in�nite primes are important. Forthe algorithmic solution of this step we need a generalization of the Chinese Remainder



Local Artin Maps and Norm equations 9Theorem. Let ~c = ~c0c1, where ~c0 is a product of �nite primes. In the case K = Q wesimply choose an element h 2 Q such thath � h1 mod vs; h � 1mod� ~c0 and h > 0:In the general case we use the function RayCantoneseRemainder of KASH (Daberkowet al., 1997) which is described in Pauli and Pohst (1997). We give a simple solution tothis problem.(i) Compute h 2 K such that h � h1 mod vs and h � 1mod� ~c0.(ii) Compute the minimal natural number m in the ideal c0vs.(iii) While h 6� 1mod� c1 set h := h+m.(iv) Return h.This algorithm terminates after a �nite number of steps with the correct result. Now wegive an algorithm to compute the local Artin symbol for an in�nite prime. We remarkthat it is easier to decide if the Artin symbol is the identity than to compute it.Algorithm 3.2. (Computation of the local Artin map at an in�nite prime v)Input: An abelian extension L=K, an admissible cycle c of L=K, an in�nite valu-ation v, and av 2 Kv.Output: (av; Lw=Kv).Step 1: If v is complex or av > 0 then return the identity.Step 2: If v - c then return the identity.Step 3: Compute h 2 K such that h � 1mod�~c and h 6� 1mod� v using the approx-imation theorem.Step 4: Set a := hOK .Step 5: Return (a; L=K).4. Application: solvability of norm equationsFundamental to this section is the following theorem (Neukirch, 1986, Corollary 5.2,p. 89):Theorem 4.1. (Hasse Norm Theorem) Let L=K be a cyclic extension of number�elds. An element a 2 L� is a norm from L� if and only if a is a local norm at everyprime (including the in�nite primes) of L.We will deal with the in�nite primes in x4.4. Until then, all the primes considered willbe �nite.Recall that the property of being Galois is preserved by the completions at the �niteprimes. In fact, if L is a �nite Galois extension of an algebraic number �eld K, and w isa prime of L lying above a prime v of K, then Lw=Kv is also Galois, with Galois groupequal to the decomposition group Gw of w.Throughout the following, L will denote a cyclic extension of degree n of K.



10 V. Acciaro and J. Kl�uners4.1. Decomposition of primes not dividing cOur �rst task is to recognize the residue degree f of a �nite prime v - c. We supposethat v does not divide disc(�)OK , otherwise we use the admissible cycle vc instead of c.We compute �� := �N(v) = n�1Xi=0(ai mod v)�i;where ai mod v is the unique representative computed with (Cohen, 1996, Algorithm2.11). Using the same algorithm we compute ��i := �i(�) mod vOL (1 � i � n). Thisis not a problem, since the automorphisms �1; : : : ; �n of L=K are known at this point.After this, we simply compare �� with the ��i to determine the Frobenius automorphismof v. The residue degree is equal to the order of the corresponding �i. Another possibilityfor determining the residue degree of v is to compute the smallest number f such that�N(v)f � 1 mod v. 4.2. The unramified caseIn this section we assume that the �nite prime v does not divide c: it follows that v iscertainly unrami�ed in L.The case when f = 1, that is, when v splits completely in L, is uninteresting, since wehave Lw = Kv, and so any a 2 K�v is the norm of itself in the trivial extension of Kv.Hence we will restrict our attention to the case f > 1. Then Lw is an unrami�edextension of Kv of degree f , and the next theorem characterizes completely the normgroup of Lw=Kv.Theorem 4.2. Let Lw be an unrami�ed extension of Kv of degree f . Let � = �mv uv 2K�v , with uv a unit in Ov, m 2 Z. Then � 2 NLw=Kv (L�w) if and only if f j m. Inparticular, every unit of Ov is the norm of a unit in Lw.Proof. The proof follows easily from (3.2) and from Theorem 3.2. 2Therefore in our case, if m denotes the order of a at v, then a is a local norm at v i�f j m. This implies in particular that the only �nite unrami�ed primes which must betaken into account are those involving the factorization of a, and clearly there is only a�nite number of them. 4.3. The (possibly) ramified caseIn this section we assume that the �nite prime v of K divides c: it follows that v mightramify in L. However, we are not interested in deciding whether v does ramify or not inL. Let w be any prime of L lying above v. By Theorem 3.2 we know that a 2 Nw(L�w)i� (a; Lw=Kv) is the identity in Gal(Lw=Kv), and we know how to compute (a; Lw=Kv).4.4. The infinite primesSince L = K(�) is Galois over K, if we �x a prime (�nite or in�nite) v of K, then theGalois group Gal(L=K) permutes transitively the primes w of L lying above v.



Local Artin Maps and Norm equations 11If Kv = C , then Lw must be C as well, and any element of C is the norm of itself inthe trivial extension of C .If Kv = R and Lw = R, then again any element of R is the norm of itself in the trivialextension of R.Therefore we have to take into account only the in�nite primes v of K which ramifyin L, that is those v dividing c1. In this case we have NC=R(C ) = R+, the nonnegativereals.Since all the primes w of L lying above an in�nite prime v of K are conjugate, weobtain in this way a simple criterion to decide if a is a local norm at each in�nite prime.We have to consider only the sign of a at each rami�ed in�nite prime of K (read: at eachrami�ed embedding of K in C ). 4.5. The AlgorithmNow we are able to give the whole algorithm to decide if a norm equation of a cyclicextension has a solution.Algorithm 4.1. (NormSolvable)Input: A cyclic extension L=K, a 2 K�.Output: True, if there exists � 2 L with NL=K(�) = a, otherwise false.Step 1: Compute the automorphism group of L=K.Step 2: Compute an admissible cycle c of L=K and all v dividing c.Step 3: Compute a factorization of the ideal aOK .Step 4: For all �nite v with ordv(a) > 0 or v j c do:(i) Compute (av; Lw=Kv) using Algorithm 3.1.(ii) If (av; Lw=Kv) is not the identity, then return false.Step 5: If for any rami�ed in�nite prime v we have av < 0 then return false.Step 6: Return true.The correctness of the algorithm follows immediately from Theorem 3.2. We remarkthat in Step 5 it is necessary that we only consider in�nite primes which are rami�ed. Ifwe do not want to compute the rami�cation at the in�nite primes, we can put all in�nitereal primes in c. In this case we have to use Algorithm 3.2 instead of the test av < 0 inStep 5. 5. ExamplesIn this section we give some examples to demonstrate the e�ciency of our algorithm.All computations were done on a Sun-Ultra-2 300 MHz using KASH 1.9 under SunOS5.6.We compare our function for deciding the solvability of norm equations with the func-tion OrderNormEquation in KASH (Daberkow et al., 1997) which is based on the algo-rithm of Fincke and Pohst (Pohst and Zassenhaus, 1989). The comparison is unfair since



12 V. Acciaro and J. Kl�unersthe output of the two functions is di�erent. The �rst function determines whether a so-lution exists, while the second one computes it. Another di�erence is that our algorithmdecides whether there is a solution in the extension �eld, while the second algorithmsearches only for a solution in the given order. Very often it happens that the normequation has no solution { in this case the output of both algorithms is the same.We start with a simple example. Let K = Q and L = Q(�), where � is a root off(x) = x4 + x3 + x2 + x + 1. It is well known that OL = Z[�]. Since OL is a prinicipalideal domain we know that there is a solution of the norm equation in L if and onlyif there is a solution of the norm equation in OL. In the following table we solve thenorm equations for the norms given in the column norms. We give the whole computingtime for the functions NormSolvable and OrderNormEquation. We give the number ofequations which have a solution in L. In the column combination we give the computingtime for a combined algorithm. We �rst check if a solution exists. Only in the case thata solution exists we call OrderNormEquation to compute a solution. We have neglectedthe computing time for the computation of the automorphism group of L=K (0.1s) andthe computation of the unit group (0.3s).norms # of solvable time Norm- time Order- timeequations Solvable NormEquation combination1-100 12 0.1s 13.3s 1.1s1001-1100 7 0.2s 166s 0.5s10001-10100 6 0.3s 1741s 1.8s100001-100100 5 0.4s 8 hours 11sWe can see that the function NormSolvable is very e�cient in practice. From thetimings we can see as well that the function OrderNormEquation is more e�cient if asolution exists { one reason is that the algorithm can stop when a solution is found.Next, let us consider a relative extension. Let � be a zero of x3�2 and K = Q(�). LetL = K(�), where � is a root of x4�4x2+4+2��2�2. We remark that L is a sub�eld ofthe ray class �eld of the modulus 8OK . The function OrderNormEquation is based on analgorithm described in Fieker (1997). In the following we ignore 50 seconds of computingtime which are only needed for solving the �rst norm equation. The computation of theautomorphism group took 0.6 seconds.norms # of solvable time Norm- timeequations Solvable combination(� + 1) | (� + 10) 1 0.8s 2.6s(�2 + 1) | (�2 + 10) 3 1.1s 33.3s(�2 + � + 1) | (�2 + � + 10) 4 1.0 46sThe following polynomial has cyclic Galois group of order 12 over Q(x): y12+15xy11+(90x2 � 54)y10 + (274x3 � 645x)y9 + (441x4 � 2994x2 + 921)y8 + (351x5 � 6756x3 +



Local Artin Maps and Norm equations 138490x)y7 + (108x6 � 7536x4+ 29055x2� 6336)y6 + (�3699x5 + 45057x3� 42396x)y5 +(�540x6 + 30777x4 � 97749x2+ 16392)y4 + (7740x5� 90412x3+ 70296x)y3 + (432x6 �31764x4+89940x2�7200)y2+(�2880x5+41568x3�12576x)y+4800x4�6672x2+784.In the following we specialize x and get polynomials in Z[y]. We give the computingtimes for NormSolvable. The last column gives the time needed for the computation ofthe automorphism group, which is not included in the computing time for NormSolvable.x norms # of solvable time automorphismequations time1 1{100 5 10.5s 0.2s1 100001{100100 0 11.0s2 1{100 1 17.7s 0.3s2 100001{100100 0 15.3s4 1{100 3 72.9s 0.4s4 100001{100100 0 66.5s5 1{100 2 19.2s 0.3s5 100001{100100 0 18.2s6 1{100 2 15.8s 0.4s6 100001{100100 0 10.8s7 1{100 2 18.8s 0.3s7 100001{100100 0 17.6sWe remark that specializing x = 3 yields a reducible polynomial. The di�erent com-puting times are due to the di�erent steps at which the algorithm can decide whetherthe given norm equation is solvable or not. It is much cheaper when an unrami�ed primeindicates that the norm equation is not solvable.We remark that the most expensive step of the algorithm is the factorization of a inStep 7 of Algorithm 3.1. In the last example there are sub�elds of coprime degree whichgenerate the given �eld. In this case the norm equation is solvable if and only if thenorm equation is solvable for these sub�elds. Using this fact the computing time can beimproved by applying the algorithm to the degree 3 and degree 4 sub�elds.AcknowledgmentsThe �rst author wishes to thank Prof. V.L. Plantamura for his constant support.ReferencesAcciaro, V. (1996). Solvability of norm equations over cyclic number �elds of prime degree. Math.
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