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Abstract. We establish a link between some heuristic asymptotic for-
mulas (due to Cohen and Lenstra) concerning the moments of the p–part
of the class groups of quadratic fields and formulas giving the frequency
of the values of the p–rank of these class groups.
Furthermore we report on new results for 4–ranks of class groups of
quadratic number fields.

1 Introduction and Notations

In [1], Cohen and Lenstra have built a probabilistic model to guess the frequency
of some algebraic properties of the narrow class group CD of the ring of integers
of the quadratic fields Q(

√
D), where the letter D is reserved to fundamental dis-

criminants, throughout this paper. Their idea was, roughly speaking, to attach
to each abelian group a weight which is the inverse of the number of its auto-
morphisms. These heuristics, the proof of which must lie very deep, are strongly
supported by numerical evidence and explain why, for instance, the odd part
of CD is a cyclic group with a higher frequency than one could think at first
approach. From these heuristics, they deduce several facts and the aim of our
work is to show that some of these deductions imply another ones.

To present the results, we shall use the following notations. The letter p is
reserved to prime numbers. For A a finitely generated abelian group, the p–rank
of A is defined as rkp(A) = dimFp(A/Ap). For an integer k ≥ 0 and t > 1, we
introduce the functions ηk and η∞ defined by

ηk(t) =
∏

1≤j≤k

(
1− t−j

)
and

η∞(t) =
∏
j≥1

(
1− t−j

)
.

If f(D) is a real valued function defined on the set of positive or negative dis-
criminants, we say that f(D) has the average value c0(∈ R), if, as X → +∞, we
have ∑

0<±D<X

f(D) = (c0 + o(1))
∑

0<±D<X

1. (1)



In the particular case, where f(D) is the characteristic function of the set of
discriminants satisfying some indicated property, we say that c0 is the density
of this set.

One of the consequences of the Cohen–Lenstra heuristics is to describe the
distribution of the values of rkp(CD) as D ranges over the set of positive or
negative discriminants, and p a fixed odd prime. These heuristics do not concern
the special prime p = 2. To circumvent this defect, Gerth [4], [5] had the idea
to generalize these heuristics to the group C2

D. He was led to this generalization
by meeting with the densities quoted in Conjectures 2 and 4 (for p = 2) below
again, when studying the sets of D with a fixed number of prime factors and a
fixed value of the 2–rank for C2

D (see [4, (1.5) & (1.6)]). From [1], generalized
by Gerth, we extract the four conjectures, anyone of which is a consequence of
these heuristics.

Conjecture 1. For every positive integer α, for every prime p, the average value
of ∏

0≤i<α

(
prkp(C2

D) − pi
)

is equal to 1, when D ranges over the set of negative fundamental discriminants.

Conjecture 2. For every non-negative integer r, for every prime p, the density
of negative fundamental discriminants D such that rkp(C2

D) = r is equal to

p−r2
η∞(p) ηr(p)−2.

Conjecture 3. For every positive integer α, for every prime p, the average value
of ∏

0≤i<α

(
prkp(C2

D) − pi
)

is equal to p−α, when D ranges over the set of positive fundamental discrimi-
nants.

Conjecture 4. For every non-negative integer r, for every prime p, the density
of positive fundamental discriminant D such that rkp(C2

D) = r is equal to

p−r(r+1)η∞(p)ηr(p)−1ηr+1(p)−1.

For p ≥ 3, Conjectures 1, 2, 3 and 4 are the conjectures (C.6), (C.5), (C.10) and
(C.9) of [1, p. 56 & 57], respectively. Note that for p ≥ 3, we have the equality
rkp(C2

D) = rkp(CD), and, by definition we have rk2(C2
D) = rk4(CD), the 4–rank

of CD.
Very little is known about these conjectures : Conjectures 1 and 3 are trivially

true for any p and α = 0. These conjectures are also proved for p = 3 and α = 1,
this is the famous work of Davenport and Heilbronn [2]. Both authors of this
paper recently proved that Conjectures 1 and 3 are true for p = 2 and any α ≥ 0
(see [3, Theorem 1]) and that they remain true if the narrow class group CD is
replaced by the ordinary class group ClD.



The aim of this paper, roughly speaking, is to prove that if for some p,
Conjecture 1 is true for every α, then Conjecture 3 is also true for this p and
every r. The same implication holds between Conjecture 2 and Conjecture 4.
More precisely, we shall prove

Theorem 1. Let p a prime and assume that for every integer α ≥ 0 the average
value of ∏

0≤i<α

(
prkp(C2

D) − pi
)

is equal to 1, when D ranges over the set of negative fundamental discriminants.
Then for every integer r ≥ 0 the density of the set of negative fundamental
discriminants D such that rkp(C2

D) = r is equal to

p−r2
η∞(p)ηr(p)−2.

and

Theorem 2. Let p a prime and assume that for every integer α ≥ 0 the average
value of ∏

0≤i<α

(
prkp(C2

D) − pi
)

is equal to p−α, when D ranges over the set of positive fundamental discrimi-
nants. Then, for every integer r ≥ 0, the density of the set of positive funda-
mental discriminants D such that rkp(C2

D) = r is equal to

p−r(r+1)η∞(p)ηr(p)−1ηr+1(p)−1.

Since Conjectures 1 and 3 are proved in the particular case p = 2 and for every
α, see Theorem 5 and [3, Theorem 1], we now state the following corollary.

Corollary 1. For ever integer r ≥ 0 the density of the set of negative funda-
mental discriminants such that rk4(CD) = r is equal to

2−r2
η∞(2)ηr(2)−2.

and for positive discriminants, this density is equal to

2−r(r+1)η∞(2)ηr(2)−1ηr+1(2)−1.

We remark that this corollary implies that the probability for a discriminant D
to satisfy rk4(CD) = 0 is twice larger when it is positive than when it is negative.
It would be interesting to have a direct proof of that phenomenon.

Reciprocally, it seems difficult to deduce Conjecture 1 from Conjecture 2
or Conjecture 3 from Conjecture 4 in the form they are written above. Such
implications may require a more precise statement for Conjectures 2 and 4 (for
instance, with a control of the term o(1) in the formulas (1), corresponding to
the densities in question).

In Section 3 we report on results obtained in [3]. We show that Conjectures
1 and 3 are true for all α ≥ 0 in the case p = 2.



1.1 Acknowledgments.

The first author thanks P. Gérard for interesting conversations about §4.2.

2 A transition to moments

In [3] an equivalent form of Conjectures 1 and 3 is proved in terms of the func-
tion N (α, p) which denotes the total number of vector subspaces of Fα

p . This
equivalent form was an important step in our proof of Conjectures 1 and 3, for
p = 2 and appears to be more natural in terms of analytic methods : to study
the values of an arithmetic function f . These methods are more adapted to deal
with the moments fα of this function f rather than with expressions of the
form

∏
0≤i<α

(
f −pi

)
even if these expressions have been introduced to seize the

algebraic properties of an abelian group (see [1, p.50], for the particular case
f(D) = prkp(CD)).

We have
Proposition 1. [3, Prop.1] Let p be a fixed prime and α0 be a fixed positive
integer. Then the average value of∏

0≤i<α

(
prkp(C2

D) − pi
)

is equal to 1, for every 0 ≤ α ≤ α0, when D ranges over the set of negative
fundamental discriminants, if and only if, under the same conditions, the average
value of

pα rkp(C2
D)

is equal to N (α, p), for every 0 ≤ α ≤ α0 .
The same holds for positive discriminants if the above average values 1 and

N (α, p) are replaced by p−α and p−α
(
N (α + 1, p)−N (α, p)

)
, respectively.

We now give expressions of the function N (α, p) in terms of the function η. Since
the number of vector subspaces of dimension ` of Fα

p is equal to

`−1∏
i=0

pα − pi

p` − pi
=

∏̀
i=1

pα−i+1 − 1
pi − 1

= p`(α−`) ηα(p)
η`(p) · ηα−`(p)

,

and since, uniformly in k ≥ 0, we have

1 �p ηk(p) ≤ 1,

we get
Lemma 1. For every integer α ≥ 0 and every p ≥ 2, we have the equalities

N (α, p) = ηα(p)
α∑

`=0

p`(α−`)

η`(p) · ηα−`(p)
,

In particular, the function N (α, p) satisfies

N (α, p) = Op

(
p

α2
4

)
.



3 4–ranks of class groups

The aim of this section is to report on results on 4–ranks of the class group
obtained in [3]. We do not give proofs in this section and refer the reader to [3].

We remark that the 4–rank of an abelian group A is the same as the 2–rank
of A2. Therefore we like to study rk2(C2

D) and rk2(Cl2D), respectively. We remark
that the ordinary class group ClD and the narrow class group CD are the same
when D < 0. For positive discriminants they are the same if and only if the
fundamental unit of Q(

√
D) has norm -1. In order to simplify we will consider

4–ranks of the narrow class group CD.
In order to present our results we need the following definition.

Definition 1. Let (a|b) : Q∗ × Q∗ → {0, 1}, where (a|b) = 1 if and only if the
equation x2 − ay2 − bz2 = 0 has a solution (x, y, z) ∈ Q3 \ {(0, 0, 0)}.

The 4–rank of the narrow class group can be described by the following theorem
which is already implicitly contained in [8, p. 56].

Theorem 3.

2rk4(CD) =
1
2
#{a | a > 0 squarefree, a | D, (a| − b) = 1},

where b ∈ Z is squarefree such that aD = bc2 for a suitable c ∈ Z.

Let us further simplify and concentrate on the case of negative discriminants
which are congruent to 1 modulo 4. Then |D| is squarefree as well as the numbers
a, b occurring in Theorem 3. Furthermore b < 0 in this case and therefore −b > 0.
It is an easy exercise to see that for coprime integers a and b the symbol (a|b) = 1
if and only if a is a square mod b and b is a square mod a. Therefore we get.

Lemma 2. Let D < 0 be a fundamental discriminant with D ≡ 1 mod 4. Then
we have the equality

2rk4(D) =
1
2

#
{
(a, b) | a, b ≥ 1,−D = ab, a is a square mod b

and b is a square mod a
}
.

Now we use the Jacobi symbol
(

a
b

)
(for odd b ≥ 1) to detect if a is a square

mod b with the formula

1
2ω(b)

∏
p|b

(
1 +

(
a

p

))
=

1
2ω(b)

∑
c|b

(a

c

)
.

By Lemma 2, we get

2rk4(CD) =
1

2 · 2ω(−D)

∑
−D=ab

∑
c|b

(a

c

) ∑
d|a

(
b

d

)



which gives us with the change of variables a = D2D3, b = D0D1, c = D0, and
d = D3 the following:

2rk4(D) =
1

2 · 2ω(−D)

∑
−D=D0D1D2D3

(D2

D0

)(D1

D3

)(D3

D0

)(D0

D3

)
,

always under the assumption that D < 0 is congruent to 1 modulo 4.
In [3] we show how to do the summation over all D0, D1, D2, D3 such that

−D0D1D2D3 is a fundamental discriminant. We show that this sum has linear
asymptotics, where the main term can be obtained by choosing (D0 = 1 or
D2 = 1) and (D1 = 1 or D3 = 1). This choice implies that all the four symbols
are 1 and the summation can be easily done. In all the other cases we get
an oscillating sum. By using large sieve techniques and Siegel-Walfisz theorem,
respectively, we are able to show that those oscillating sums are bounded by
Oε(X log(X)−

1
2+ε) for all ε > 0.

For the higher moments, i.e. the average of 2rk4(CD) we use many tricks
described in [7], where geometry over F2 plays a crucial role.

Let us state the main results of [3]. For this we introduce the sums:

S−(X, k, a, b) :=
∑

0<−D<X
D≡a mod b

2k rk4(CD)

and
S+(X, k, a, b) :=

∑
0<D<X

D≡a mod b

2k rk4(CD).

Theorem 4. For every positive integer k and every positive ε the following
equalities are true, where R(X, ε, k) := X(log X)−2−k+ε:

S−(X, k, 1, 4) = N (k, 2)
( ∑

0<−D<X
D≡1 mod 4

1
)

+ Oε,k(R(X, ε, k))

S+(X, k, 1, 4) =
1
2k

(
N (k + 1, 2)−N (k, 2)

)( ∑
0<D<X

D≡1 mod 4

1
)

+ Oε,k(R(X, ε, k))

S−(X, k, 0, 8) = N (k, 2)
( ∑

0<−D<X
D≡0 mod 8

1
)

+ Oε,k(R(X, ε, k))

S+(X, k, 0, 8) =
1
2k

(
N (k + 1, 2)−N (k, 2)

)( ∑
0<D<X

D≡0 mod 8

1
)

+ Oε,k(R(X, ε, k))

S−(X, k, 4, 8) = N (k, 2)
( ∑

0<−D<X
D≡4 mod 8

1
)

+ Oε,k(R(X, ε, k))

S+(X, k, 4, 8) =
1
2k

(
N (k + 1, 2)−N (k, 2)

)( ∑
0<D<X

D≡4 mod 8

1
)

+ Oε,k(R(X, ε, k)).



Now can we apply Proposition 1 and get

Theorem 5. Conjectures 1 and 3 are true for p = 2 and all α ≥ 0.
The results remain true when we replace the narrow class group by the ordi-

nary class group in the definition of S+(X, k, a, b).

4 Proof of Theorem 1.

We consider first the case of negative discriminants and prove Theorem 1. We
postpone the proof of Theorem 2 to §5, where we shall omit details. We follow
some ideas contained in [7, p. 359–362]. Since p ≥ 2 is considered as fixed,
we shall forget the dependence on this number in several quantities. Under the
hypothesis of Theorem 1 and by Proposition 1, we deduce that for each k ≥ 0,
the average value of pk rkp(C2

D) is equal to N (k, p).
For X ≥ 1, let

N(X, r) := ]
{
D ; 0 < −D < X, rkp(C2

D) = r
}
.

For every X ≥ 1 and every k ≥ 0, the definition of N(X, r) and the assertion of
Theorem 1 implies

∞∑
r=0

N(X, r)
X

pk r =
1
X

∑
0<−D<X

pk rkp(C2
D) = N (k, p) + ok(1). (2)

We apply (2) with k replaced by 2k + 1 and appeal to Lemma 1 to write

N(X, r)
X

p(2k+1)r ≤
∞∑

`=0

N(X, `)
X

p(2k+1)` = Ok(1),

from which we deduce that N(X, r)/X goes quickly to 0 as r → +∞ under the
form

N(X, r)
X

�k p−(2k+1)r, (3)

uniformly in X ≥ 1 and r ≥ 0.
For each r, the sequence n 7→ N(n, r)/n is a real sequence in the compact

set [0, 1]. By a diagonal process, there exists real numbers dr ∈ [0, 1] (r ≥ 0) and
an infinite subset M of positive integers such that

N(m, r)/m → dr (m ∈M, m →∞),

for each r ≥ 0. Write (2) in the particular form
∞∑

r=0

N(m, r)
m

pk r = N (k, p) + ok(1), (4)

for m ∈M, note that (3) implies
∞∑

r=0

N(m, r)
m

pk r = Ok(1)



uniformly in m ∈M, then apply the Lebesgue Dominated Convergence Theorem
(see for instance [9, p. 27]) to (4) to finally write, by definition of the dr, the
equality

∞∑
r=0

drp
k r = N (k, p),

which is true for every integer k.
Let (S−) be the infinite linear system

(S−)



x0 +x1 +x2 +x3 + · · · + · · · =N (0, p)

x0 +x1p +x2p
2 +x3p

3 + · · · + · · · =N (1, p)

x0 +x1p
2 +x2p

4 +x3p
6 + · · · + · · · =N (2, p)

x0 +x1p
3 +x2p

6 +x3p
9 + · · · + · · · =N (3, p)

· · ·

in positive unknowns (xi)i≥0. Note that each (dr)r≥0 obtained by the above
diagonal procedure is a solution to (S−). Hence this system has at least one
solution. We shall first give an explicit solution to (S−): the numbers appearing
in Theorem 1 (see Proposition 2), and prove that (S−) has at most one system
of solutions (see Proposition 3). This will imply that for each r ≥ 0, the sequence
N(X, r)/X has only one limit point as X tends to infinty and that this limit
point is p−r2

η∞(p)η−2
r (p).

4.1 A special solution of (S−)

We shall prove

Proposition 2. The sequence of numbers (xr)r≥0 with xr = p−r2
η∞(p)η−2

r (p)
is a solution to (S−).

The proof of this is based on formulas around the theory of partitions. Let p(n)
be the partition function, then classically for any x with |x| < 1 we have the
equality ∑

n≥0

p(n)xn =
1

(1− x)(1− x2)(1− x3) · · ·
= η∞(1/x)−1.

This formula has been extended into

Lemma 3. [6, Thm 351] For any |x| < 1, we have

1
(1− x)(1− x2)(1− x3) · · ·

= 1 +
x

(1− x)2
+

x4

(1− x)2(1− x2)2
+

x9

(1− x)2(1− x2)2(1− x3)2
+ · · ·



In other words, we have the formula η∞(1/x)−1 =
∑∞

k=0
xk2

η2
k(1/x)

. By choosing
x = 1/p, we proved that the sequence (xr) satisfies the first equation of (S−).
We must continue this checking to the other equations of (S−).

We shall first generalize Lemma 3 in

Lemma 4. Let t ≥ 0 be an integer. Then for any |x| < 1, we have

1
(1− x)(1− x2)(1− x3) · · ·

=
∞∑

r=t

xr(r−t)

(1− x)2 · · · (1− xr−t)2(1− xr−t+1) · · · (1− xr)
.

In other words, we have the formula

η∞(1/x)−1 =
∞∑

r=t

xr(r−t)

ηr−t(1/x)ηr(1/x)
.

Proof. This formula for instance is in [1, Cor. 6.7,p.51], where the authors say
that a proof can be given directly or as a consequence of combination of theorems
of their work. For sake of completeness, we give a proof which follows the proof
of [6, Thm 351]. The integer t ≥ 0 is now fixed, and we define the Durfee
rectangle with defect −t of a partition of an integer n as the largest rectangle of
size (r, r − t) that can be inserted in the northwest corner of this partition. For
instance, choose t = 1 and n = 29, and consider

• • • • • • • •
• • • • • • •
• • • •
• • • •
• • •
• •
•

The above drawing explains for the partition

29 = 8 + 7 + 4 + 4 + 3 + 2 + 1,

what is the Durfee rectangle of defect −1. It has size (4, 3). Note that there are
` = 10 points out of this Durfee rectangle, southwards, and this ` appears as
decomposed in partition with summands ≤ r = 4 (10 = 4+3+2+1). Similarly,
eastwards, it remains m = 7 points, written in partition with summands ≤
r − 1 = 3 (7 = 2 + 2 + 2 + 1).

More generally, given a partition of n, with a Durfee rectangle of defect −t,
with dimension (r, r − t), we write n = r(r − t) + ` + m and the number of
partitions of ` in parts ≤ r is the coefficient of x` in

1
(1− x)(1− x2) · · · (1− xr)

.



Similarly, the number of partitions of m in parts ≤ r− t is the coefficient of xm

in
1

(1− x)(1− x2) · · · (1− xr−t)
.

Hence the number of partitions of n, with Durfee rectangle of size (r, r − t) is
the coefficient of xn−r(r−t) in the fraction

1
(1− x)2(1− x2)2 · · · (1− xr−t)2(1− xr−t+1) · · · (1− xr)

.

Summing over all the possible of r ≥ t, we obtain the expected expression of the
function

∑
p(n)xn. ut

We shall also prove

Lemma 5. Let r ≥ k ≥ 0 be integers. Then for every |x| < 1 we have the
equality

xr(r−k)

(1− x)2 · · · (1− xr)2
=

k∑
`=0

n(k, `, 1/x)xr(r−`)

(1− x)2 · · · (1− xr−`)2(1− xr−(`−1)) · · · (1− xr)
,

where

n(k, `, 1/x) =


∏̀
i=1

(1/x)k−i+1 − 1
(1/x)i − 1

, for 0 ≤ ` ≤ k

0, for ` > k.

Proof. Remark first that n(k, `, p) is equal to the number of vector subspaces of
Fk

p with dimension `, and that this function satisfies the recursive formula (see
[3, Lemma 1]):

n(k + 1, `, 1/x) = n(k, `− 1, 1/x) +
1
x`

n(k, `, 1/x). (5)

By multiplication, we see that Lemma 5 is proved if and only if we proved

xr(r−k) =
k∑

`=0

n(k, `, 1/x)xr(r−`)(1− xr−(`−1)) · · · (1− xr),

or equivalently

k∑
`=0

n(k, `, 1/x)xr(k−`)(1− xr−(`−1)) · · · (1− xr) = 1. (6)

Actually, the fact that r is an integer is useless in the proof of (6), and defining
y = xr, we shall prove

k∑
`=0

n(k, `, 1/x)yk−`
(
1− y

x`−1

)
· · ·

(
1− y

x

)
(1− y) = 1, (7)



for every real positive numbers x and y and any positive integer k ≥ 0. The
proof of (7) works by induction on k.

This formula is true for k = 0 and k = 1, since n(0, 0, 1/x) = n(1, 0, 1/x) =
n(1, 1, 1/x) = 1. It is also true for k = 2, since n(2, 0, 1/x) = n(2, 2, 1/x) = 1 and
n(2, 1, 1/x) = 1 + 1/x. Suppose now that (7) is true for some value k ≥ 3. So we
now study

k+1∑
`=0

n(k + 1, `, 1/x)yk+1−`
(
1− y

x`−1

)
· · ·

(
1− y

x

)
(1− y), (8)

and replace the term n(k + 1, `, 1/x) by the recursive formula (5). The contribu-
tion of the second term on the right–hand side of (5) is equal to

k∑
`=0

n(k, `, 1/x)
yk+1−`

x`

(
1− y

x`−1

)
· · ·

(
1− y

x

)
(1− y)

=−
k∑

`=0

n(k, `, 1/x)yk−`
(
1− y

x`

)
· · ·

(
1− y

x

)
(1− y)

+
k∑

`=0

n(k, `, 1/x)yk−`
(
1− y

x`−1

)
· · ·

(
1− y

x

)
(1− y).

By hypothesis, the last sum of the above equation is equal to 1, and the first sum
annihilates with the contribution to (8) of the first term n(k, `− 1, 1/x) coming
from the right–hand side of (5) (make the change of variable ` 7→ `− 1). Hence
(7) is proved, and subsequently (6). The proof of Lemma 5 is complete. ut

We now turn to the proof of Proposition 2. To check that the equation of order
k + 1 of (S−) is satisfied by the values of (xr) given in Proposition 2, we have
to compute, for x = 1/p the quantity

Sk :=
∞∑

r=0

xrp
k r = η∞(p)

∞∑
r=0

xr(r−k)

(1− x)2 · · · (1− xr)2
. (9)

By Lemma 5, this is equal to Sk =

η∞(p)
k∑

`=0

n(k, `, 1/x)
∞∑

r=0

xr(r−`)

(1− x)2 · · · (1− xr−`)2(1− xr−(`−1)) · · · (1− xr)
,

and finally, by Lemma 4, we obtain the equality (still having x = 1/p)

Sk = η∞(p)
k∑

`=0

n(k, `, 1/x)
η∞(1/x)

= N (k, p). (10)

This completes the proof of Proposition 2.



4.2 Unicity of solutions of an infinite linear system.

Let a be a real integer > 1, and (Ck)k≥0 an infinite sequence of positive real
numbers. We are searching for growth conditions on (Ck) to ensure that the
linear system with infinitely many equations

∞∑
s=0

xsa
sk = Ck (k = 0, 1, . . . ) (11)

has at most one solution (xi)i≥0 with xi ≥ 0. Such a system was considered by
Heath–Brown [7, Lemmas 17&18] in the particular case a = 4, with an appeal
to the properties of Vandermonde determinants. We shall rather use Jensen’s
formula (see Lemma 6 below).

A condition on the growth of Ck is obligatory to ensure the unicity of solutions
of (11) in non-negative xs as can be seen in the following example.

Example 1. Let a be a positive integer and Ck = sinh(πak). Then define the
coefficients xs and x′s by the Taylor expansions sinh(πt) =

∑
xst

s, and sin(πt)+
sinh(πt) =

∑
x′st

s. Both sequences (xs) and (x′s) consist of non-negative numbers
and are solutions of (11).

However the particular coefficients Ck chosen before do not satisfy (13) below.

So let (xi)i≥0 be a positive solution to (11). By positivity we deduce the
inequality

xs ≤ a−skCk, (12)

for any s ≥ 0 and k ≥ 0. To push further the computations, we suppose that
there exists an absolute c0 such that

Ck ≤ c0a
k2
2 (k = 0, 1, . . . ). (13)

By choosing k = s in (12), we get

0 ≤ xs ≤ c0a
− s2

2 . (14)

Now let (xs) and (x′s) be two solutions of (11) and consider

f(z) =
∞∑

s=0

(xs − x′s)z
s, (15)

considered as a function of the complex variable z. The radius of convergence of
this power series is +∞, by (14). It is an entire function, which is zero at each
ak (k = 0, 1, . . . ). It also satisfies the inequality

|f(z)| ≤ 2c0

∞∑
s=0

a−
s2
2 |z|s.



In particular, if |z| = ak, for some absolute c′0, we get

|f(z)| ≤ 2c0

∞∑
s=0

a−
s2
2 aks ≤ c′0a

k2
2 . (16)

We shall first prove

Lemma 6. Let ` ≥ 0 be an integer and a ∈ C such that |a| > 1. Furthermore
let g(z) be an entire function which has a zero of order ` at z = 0 and satisfying
g(ak) = 0 for any k ≥ 0. Then for every k ≥ 0 the function g satisfies the
inequality

sup
|z|=|a|k

|g(z)| ≥ |g(`)(0)|
`!

|a|
k(k+1)

2 +k`.

Proof. This is an application of Jensen’s formula (see for instance [9, Thm
15.18]), applied to the function h(z) = z−`g(z). With ρ denoting any zero of
h, we have the relations

|h(0)||a|
k(k+1)

2 = |h(0)|
∏

0≤`≤k

|a|k

|a`|
≤ |h(0)|

∏
ρ, |ρ|≤|a|k

|a|k

|ρ|

= exp
{ 1

2π

∫ π

−π

log
∣∣h(|a|keiθ)

∣∣ dθ
}
≤ sup

|z|=|a|k
|h(z)| = |a|−k` sup

|z|=|a|k
|g(z)|,

which gives the result. ut

Now suppose that we have two distinct solutions (xs) and (x′s) to (11). Let ` be
the least index s such that xs 6= x′s. Hence the function defined in (15) is not
identically equal to 0. Then we apply Lemma 6 to f(z), and by comparing with
(16), we are led to the lower bound a

k2
2 � a

k(k+1+2`)
2 . This is impossible for k

sufficiently large. Hence f ≡ 0. In conclusion we proved

Proposition 3. If the coefficients (Ck) satisfy the conditions (13), then the
infinite linear system (11) has at most one solution in positive (xs)s≥0.

To prove Theorem 1, it remains to combine Proposition 1, 2, 3, and Lemma 1
in order to deduce that, under the hypothesis of this theorem, for each r ≥ 0,
for X → +∞, the function N(X, r)/X has only one limit point which is equal
to p−r2

η∞(p)ηr(p)−2.

5 The case of positive discriminants

The strategy is the same. We study the limit points of the sequence N(X, r)/X,
where N(X, r) is now defined by

N(X, r) := ]
{
D ; 0 < D < X, rkp(C2

D) = r
}
.



These limit points are solutions to (S+) where S+ the infinite linear system

(S+)



x0 +x1 +x2 +x3 + · · · + · · · =M0(p)

x0 +x1p +x2p
2 +x3p

3 + · · · + · · · =M1(p)

x0 +x1p
2 +x2p

4 +x3p
6 + · · · + · · · =M2(p)

x0 +x1p
3 +x2p

6 +x3p
9 + · · · + · · · =M3(p)

· · ·

where we defined

Mk(p) =
1
pk

(
N (k + 1, p)−N (k, p)

)
.

We first notice

Lemma 7. For every k ≥ 1, we have

Mk(p) =
Mk−1(p)

p
+N (k − 1, p).

Proof. This is an easy consequence of the equality

N (k + 1, p) = 2N (k, p) + (pk − 1)N (k − 1, p) (k ≥ 1).

which is proved in [3, Lemma 3]. ut

We are now in position to prove

Proposition 4. The sequence of numbers (xr)r≥0 with

xr = p−r(r+1)η∞(p)ηr(p)−1ηr+1(p)−1

is a solution of (S+).

Proof. By linear combination and by Lemma 7, we see that (S+) is equivalent
to the system (Σ+) defined by

(Σ+)



x0 +x1 +x2 + · · · = M0(p)

x0(1− p−1) +x1(p− p−1) +x2(p2 − p−1) + · · · = N (0, p)

x0(1− p−1) +x1(p2 − 1) +x2(p4 − p) + · · · = N (1, p)

x0(1− p−1) +x1(p3 − p) +x2(p6 − p3) + · · · = N (2, p)
· · ·

where the line of order k + 1 (k ≥ 1) is given by

∞∑
r=0

xr

(
pkr − p(k−1)r−1

)
= N (k − 1, p). (17)



The first line is satisfied with the above choice of the (xr), since we have the
equality

∞∑
r=0

xr = η∞(p)
∞∑

r=0

(1/p)r(r+1)

ηr(p)ηr+1(p)
= η∞(p)

∞∑
r=1

(1/p)r(r−1)

ηr−1(p)ηr(p)

= η∞(p)η∞(p)−1 = 1 = M0(p)

by Lemma 4.
To study the line of order k + 1 (k ≥ 1) of (Σ+), we write the equalities

∞∑
r=0

xr

(
pkr − p(k−1)r−1

)
= η∞(p)

∞∑
r=0

(1/p)r(r+1) · (1/p)−k r(1− (1/p)r+1)
(1− (1/p))2 · · · (1− (1/pr))2(1− (1/pr+1))

= Sk−1,

where Sk−1 is the expression introduced in (9) to study the linear system (S−).
By (10), we know that this is equal to N (k − 1, p). This ends the proof of (17)
for all the values of k, hence (Σ+) and (S+) are satisfied with the chosen values
of xr. The proof of Proposition 4 is now complete.

ut

5.1 Unicity of solutions.

By definition of Mk(p) and by Lemma 1, we get the relation

Mk(p) = O(p
k2
4 −

k
2 ).

Hence Mk(p) satisfy the conditions (13). By Proposition 3, the infinite linear
(S+) system has at most one solution. As for the case of negative discriminants,
we deduce that, for any r ≥ 0, the function N(X, r)/X has only one limit point
as X → +∞. By Proposition 4, these limit points have the values announced in
Theorem 2. The proof of this theorem is complete.
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3. Fouvry, E., Klüners, J.: On the 4–rank of class groups of quadratic number fields.
Preprint, (2006)

4. Gerth III, F.: The 4-class ranks of quadratic fields. Invent. Math. 77(3),489–515
(1984)



5. Gerth III, F.: Extension of conjectures of Cohen and Lenstra. Exposition. Math.
5(2),181–184 (1987)

6. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford
University Press (1975)

7. Heath–Brown, D.R.: The size of Selmer groups for the congruent number problem
II. Inv. Math., 118, 331–370, (1994)

8. Redei, L.: Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren
Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper. J. Reine
Angew. Math. 171, 55–60 (1934)

9. Rudin, W.: Real and Complex Analysis, second edition. McGraw–Hill Book Com-
pany, (1974)


