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We compute a polynomial with Galois group SL2(11) over (). Furthermore we prove that
SL(11) is the Galois group of a regular extension of (J(¢).

1. Introduction

One way to construct a polynomial which has SL(11) as Galois group is to take a
polynomial with Galois group PSL2(11) and to solve the following embedding problem:

1 — Cy — SLy(11) — PSLo(11) — 1.

This is a central embedding problem. Let N/ be a normal extension with Galois group
PSL5(11). Since all elements of order 2 in PSLo(11) lift to elements of order 4 in SLo(11)
a necessary condition for the solvabilty of this problem is that N is totally real. But
this is not the only obstruction to the embedding problem. Bége (1990) has proved the
following result, which is based on Serre’s criterion (Serre, 1992, chapter 9).

THEOREM 1.1. Let N/Q be a normal extension with Galois group PSLa(l), where l is a
prime number with!l = 3 mod 8 or! =5 mod 8. N is embeddable into an SLy(l) extension

over Q if and only if the following holds:

(i) N is totally real.
(ii) For all odd prime numbers p with even ramification order we have: p has odd inertia
degree if and only if p =1 mod 4.

2. Realization of SLa(11)

Using Theorem 1.1 it is easy to decide whether the given embedding problem is solvable
or not. Malle (2000) has computed a PSL4(11) polynomial of degree 11 over Q(a,t) with
four ramification points with respect to ¢. Specializing a and ¢ in a suitable way he gets
the following totally real polynomial with Galois group PSLa(11):
fz) = 21t — 4210 - 252° 4 8128 + 23727 — 56225 — 10102° + 15742* + 180523 — 158622 —

847x 4 579.

Denote by L the stem field of f. Some computations with KASH (Daberkow et al.,
1997) show that the field discriminant of L is 74843* (where 74843 is prime). Denote by
Op the maximal order of L. The prime ideal factorization of (74843) equals

748430, = p2popipips,
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where the inertia degrees of ps and ps are 2. The other inertia degrees are 1. In the
splitting field N of L/Q no wild ramification can occur. Therefore all prime ideals of On
lying over 74843 have ramification order 2 and inertia degree 2. Using Theorem 1.1, N/Q
is embeddable into an SLs(11) extension because 74843 = 3 mod 4.

Malle remarks that specializing ¢ = —5 in his PSLs(11)-polynomial we get totally real
specializations for —716550 <t < —715599. Specializing a = —5 we get:

g(t,z) = 2t — 74210 +19792° — 2244228 4 9362327 — 6811825 + (¢ + 204139)x° + (-2t —
183370)a* + (¢ + 485462) x> — 227390027 + 2760000z — 1000000.

The Galois group of g is PSL2(11) and the branch cycle type description is (2%, 2%, 2% 6-
3-2), where all ramification points are real. Specializing ¢ = —715599 or ¢t = —715600 we
get that the corresponding extension over Q is not embeddable into an SL(11) extension.
For t = —715601 we get an extension which is only ramified in p = 18496478981 which
is congruent 1 modulo 4. The corresponding prime ideal factorization yields that the
inertia degree is 3 and the ramification degree is 2. Therefore this PSLy(11)-extension is
embeddable into an SLs(11) extension over @.

Since this embedding problem is a Brauer embedding problem and the number of
ramified places is four, a result of Mestre (1994a) is applicable. This result has previously
been applied to prove that SL2(7) and Aut(M;2) are Galois groups of regular extensions
of Q(t) (Mestre, 1994b).

THEOREM 2.1. SLy(11) is a Galois group of a regular extension of Q(1).

ProoF. The polynomial ¢ € Q(¢)[«] is ramified in four places. We know that for one
specialization the embedding problem is solvable. Therefore Theorem 2 of Mestre (1994a)
is applicable, which states that there is a nonconstant rational function R of degree at
most 8 such that the splitting field of g(R(t), ) is embeddable into a regular SL,(11)
extension. O

3. The explicit construction

The Galois correspondence give the following diagram.
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It remains to construct an explicit polynomial with Galois group SL2(11). The smallest
permutation representation of SLo(11) is on 24 points. Denote this permutation group
by . The group G is imprimitive and has one non trivial block system with 12 blocks of
size 2. Suppose we have an irreducible polynomial i € Qla] with Gal(/Nz) = (. Denote the
stem field of h by K. Then K has one non trivial subfield K, which is of degree 12 and
the Galois closure of K has Galois group PSLo(11). The first step of the construction is
to compute this field of degree 12, which can be done using the methods in Kliiners and
Malle (2000). Here we use the polynomial f and get the following polynomial as output:
h(z) = 2'2 + 42! — 202210 — 7502° + 143202% + 5798727 — 4201902 — 20513472° +

3470883z + 2713142623 + 3135468022 + 10440992 — 6047919.

Denote the stem field of h by K. Now we know that there exists an extension K =
K (\/a) such that the splitting field of K /@ has Galois group SLs(11). Since all elements
of order 2 lift to elements of order 4, IN(/K must be ramified in all of the ramified places
of K. We want to look at those fields using class field theory. Assuming the generalized
Riemann hypothesis (GRH) we are able to compute the class group of K. The class
number is 5. We have the following prime ideal factorization:

748430 = PIP3P3.

All these prime ideals have inertia degree 2. Our first try is to compute the ray class
group of PB1P2Ps. Again, assuming GRH, we get that this ray class group is isomorphic
to Cs X Cragas. Therefore there is a degree 2 extension, which is unramified outside
{B1, B2, P3}. We compute the conductor for this degree 2 extension and get that it
equals P1P2P3. Therefore this extension has the necessary properties; i.e. P, P2, and
B3 are ramified in K /K. Using an algorithm of Fieker (2000) we compute this class field
within a few minutes. Using reduction techniques based on the LLL algorithm (Lenstra
et al., 1982) we compute polynomials with smaller coefficients. The minimal polynomial
of a primitive element over Q) is
h(z) := 2?* — 224529272 4+ 1962667863422° — 8560397617587762 1% +
1995808419268964399121° — 25211199262568130149589521* +
1754134871556651126420951113212 — 664841471049673108949324536980621° +
129913638534379596370440336806630512° —
114019645987269785742793956251139247002° +
3248896297854939089157560124855016270080x* —
6328663785064300125485531766419505774289x2 +
222444338707463542725054521552945103424.

4. Computing the Galois group of h
We now have a candidate for an SLa(11) polynomial. Let K be the stem field of .

THEOREM 4.1. The Galois group Gal(/Nz) is isomorphic to SLa(11).

PROOF. It is easy to see that K has a subfield of degree 12. Using the subfield algorithm
(Kliiners, 1998) we get that this subfield is the only non trivial one. For a degree 12 field
we compute the Galois group (Geifller and Kliiners, 2000), which is PSLa(11). From the
subfield structure we know that Gal(/Nl) is a transitive subgroup of the wreath product

C 1 PSLy(11) = €12 % PSLy(11).
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Denote this wreath product by ;. In the following we say that a group has the desired
block structure, if there is only one non trivial block system and the action of the group
on the blocks is isomorphic to PSLa(11). Using MAGMA we compute up to conjugacy
all maximal transitive subgroups of (G1 having the desired block structure. There is only
one subgroup G5 with this property. We get that G5 = C3! x PSL2(11). We repeat this
process with G2 and get two maximal non conjugate (in G3) subgroups of G2 with the
desired block structure. We denote these groups by (s and (4. Repeating this process
with G's and (G4 we get that there are no transitive subgroups with the desired properties.
We detect that G3 and (G4 are conjugate in Saz4. Both groups are isomorphic to SLa(11).

Now we need an invariant which distinguishes SLa(11) from the other groups. Denote
by H; the point stabilizer (of 1) in G (1 < ¢ < 4). The H; are actingon Q@ = {1,...,24}.
If we write  as a digjoint union of orbits of H; (1 < i < 4) we get three orbits of
length 1,1,22 for H, and Hs. For Hs and H4 we get four orbits of lenght 1,1,11,11. It is
well known that these orbit lenghts correspond to the degrees of the irreducible factors
of h € K[z]. Therefore Gal(h) = SLo(11) if and only if h has four factors in K[z]. By
computing the minimal polynomial of a zero of h over K we get a degree 2 factor h of
h. Therefore we have to factor the polynomial h/h € K[x]. Using KASH we get that the
latter polynomial has two factors of degree 11. This proves that Gal(/Nz) = SLy(11). U

Since our embedding problem is a central one we know that we can give all solutions,
if we know one. Let K = K(y/a), then all solutions are given by K(/ra), where r € Q*.
Note that h is an even polynomial, i.e. h(z) = h(2?) with h € Z[z].

COROLLARY 4.1. Let hy := 71(15 -x?). The Galois group of hy over Q(2) is isomorphic to
SLa(11). The Galois group of hy over C(t) is isomorphic to Cy.

ProoF. The proof is immediate from the fact that all extensions of the form K (\/ra)
are solutions of the embedding problem. O
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