
A Polynomial with Galois Group SL2(11)J�URGEN KL�UNERSUniversit�at Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, GermanyWe compute a polynomial with Galois group SL2(11) overQ. Furthermorewe prove thatSL2(11) is the Galois group of a regular extension of Q(t).1. IntroductionOne way to construct a polynomial which has SL2(11) as Galois group is to take apolynomial with Galois group PSL2(11) and to solve the following embedding problem:1! C2 ! SL2(11)! PSL2(11)! 1:This is a central embedding problem. Let N=Q be a normal extension with Galois groupPSL2(11). Since all elements of order 2 in PSL2(11) lift to elements of order 4 in SL2(11)a necessary condition for the solvabilty of this problem is that N is totally real. Butthis is not the only obstruction to the embedding problem. B�oge (1990) has proved thefollowing result, which is based on Serre's criterion (Serre, 1992, chapter 9).Theorem 1.1. Let N=Q be a normal extension with Galois group PSL2(l), where l is aprime number with l � 3 mod 8 or l � 5 mod 8. N is embeddable into an SL2(l) extensionover Q if and only if the following holds:(i) N is totally real.(ii) For all odd prime numbers p with even rami�cation order we have: p has odd inertiadegree if and only if p � 1 mod 4.2. Realization of SL2(11)Using Theorem 1.1 it is easy to decide whether the given embedding problem is solvableor not. Malle (2000) has computed a PSL2(11) polynomial of degree 11 over Q(a; t) withfour rami�cation points with respect to t. Specializing a and t in a suitable way he getsthe following totally real polynomial with Galois group PSL2(11):f(x) = x11�4x10�25x9+81x8+237x7�562x6�1010x5+1574x4+1805x3�1586x2�847x+ 579:Denote by L the stem �eld of f . Some computations with KASH (Daberkow et al.,1997) show that the �eld discriminant of L is 748434 (where 74843 is prime). Denote byOL the maximal order of L. The prime ideal factorization of (74843) equals74843OL = p21p2p23p24p5;



2 J. Kl�unerswhere the inertia degrees of p4 and p5 are 2. The other inertia degrees are 1. In thesplitting �eld N of L=Q no wild rami�cation can occur. Therefore all prime ideals of ONlying over 74843 have rami�cation order 2 and inertia degree 2. Using Theorem 1.1, N=Qis embeddable into an SL2(11) extension because 74843 � 3 mod 4.Malle remarks that specializing a = �5 in his PSL2(11)-polynomial we get totally realspecializations for �716550 � t � �715599. Specializing a = �5 we get:g(t; x) := x11�74x10+1979x9�22442x8+93623x7�68118x6+(t+204139)x5+(�2t�183370)x4+ (t+ 485462)x3� 2273900x2+ 2760000x� 1000000.The Galois group of g is PSL2(11) and the branch cycle type description is (24; 24; 24; 6�3 �2), where all rami�cation points are real. Specializing t = �715599 or t = �715600 weget that the corresponding extension overQ is not embeddable into an SL2(11) extension.For t = �715601 we get an extension which is only rami�ed in p = 18496478981 whichis congruent 1 modulo 4. The corresponding prime ideal factorization yields that theinertia degree is 3 and the rami�cation degree is 2. Therefore this PSL2(11)-extension isembeddable into an SL2(11) extension over Q.Since this embedding problem is a Brauer embedding problem and the number oframi�ed places is four, a result of Mestre (1994a) is applicable. This result has previouslybeen applied to prove that SL2(7) and Aut(M12) are Galois groups of regular extensionsof Q(t) (Mestre, 1994b).Theorem 2.1. SL2(11) is a Galois group of a regular extension of Q(t).Proof. The polynomial g 2 Q(t)[x] is rami�ed in four places. We know that for onespecialization the embedding problem is solvable. Therefore Theorem 2 of Mestre (1994a)is applicable, which states that there is a nonconstant rational function R of degree atmost 8 such that the splitting �eld of g(R(t); x) is embeddable into a regular SL2(11)extension. 2 3. The explicit constructionThe Galois correspondence give the following diagram.
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A Polynomial with Galois Group SL2(11) 3It remains to construct an explicit polynomial with Galois group SL2(11). The smallestpermutation representation of SL2(11) is on 24 points. Denote this permutation groupby G. The group G is imprimitive and has one non trivial block system with 12 blocks ofsize 2. Suppose we have an irreducible polynomial ~h 2 Q[x] with Gal(~h) = G. Denote thestem �eld of ~h by ~K. Then ~K has one non trivial sub�eld K, which is of degree 12 andthe Galois closure of K has Galois group PSL2(11). The �rst step of the construction isto compute this �eld of degree 12, which can be done using the methods in Kl�uners andMalle (2000). Here we use the polynomial f and get the following polynomial as output:h(x) := x12 + 4x11 � 202x10 � 750x9 + 14320x8 + 57987x7 � 420190x6 � 2051347x5 +3470883x4+ 27131426x3+ 31354680x2+ 1044099x� 6047919.Denote the stem �eld of h by K. Now we know that there exists an extension ~K =K(p�) such that the splitting �eld of ~K=Q has Galois group SL2(11). Since all elementsof order 2 lift to elements of order 4, ~K=K must be rami�ed in all of the rami�ed placesof K. We want to look at those �elds using class �eld theory. Assuming the generalizedRiemann hypothesis (GRH) we are able to compute the class group of K. The classnumber is 5. We have the following prime ideal factorization:74843OK = P21P22P23:All these prime ideals have inertia degree 2. Our �rst try is to compute the ray classgroup of P1P2P3. Again, assuming GRH, we get that this ray class group is isomorphicto C5 � C74842. Therefore there is a degree 2 extension, which is unrami�ed outsidefP1;P2;P3g. We compute the conductor for this degree 2 extension and get that itequals P1P2P3. Therefore this extension has the necessary properties, i.e. P1;P2; andP3 are rami�ed in ~K=K. Using an algorithm of Fieker (2000) we compute this class �eldwithin a few minutes. Using reduction techniques based on the LLL algorithm (Lenstraet al., 1982) we compute polynomials with smaller coe�cients. The minimal polynomialof a primitive element over Q is~h(x) := x24 � 224529x22+ 19626678634x20� 856039761758776x18+19958084192689643991x16� 252111992625681301495895x14+1754134871556651126420951113x12� 6648414710496731089493245369806x10+12991363853437959637044033680663051x8�11401964598726978574279395625113924700x6+3248896297854939089157560124855016270080x4�6328663785064300125485531766419505774289x2+222444338707463542725054521552945103424:4. Computing the Galois group of ~hWe now have a candidate for an SL2(11) polynomial. Let ~K be the stem �eld of ~h.Theorem 4.1. The Galois group Gal(~h) is isomorphic to SL2(11).Proof. It is easy to see that ~K has a sub�eld of degree 12. Using the sub�eld algorithm(Kl�uners, 1998) we get that this sub�eld is the only non trivial one. For a degree 12 �eldwe compute the Galois group (Gei�ler and Kl�uners, 2000), which is PSL2(11). From thesub�eld structure we know that Gal(~h) is a transitive subgroup of the wreath productC2 o PSL2(11) �= C122 o PSL2(11).



4 J. Kl�unersDenote this wreath product by G1. In the following we say that a group has the desiredblock structure, if there is only one non trivial block system and the action of the groupon the blocks is isomorphic to PSL2(11). Using MAGMA we compute up to conjugacyall maximal transitive subgroups of G1 having the desired block structure. There is onlyone subgroup G2 with this property. We get that G2 �= C112 o PSL2(11). We repeat thisprocess with G2 and get two maximal non conjugate (in G2) subgroups of G2 with thedesired block structure. We denote these groups by G3 and G4. Repeating this processwith G3 and G4 we get that there are no transitive subgroups with the desired properties.We detect that G3 and G4 are conjugate in S24. Both groups are isomorphic to SL2(11).Now we need an invariant which distinguishes SL2(11) from the other groups. Denoteby Hi the point stabilizer (of 1) in Gi (1 � i � 4). The Hi are acting on 
 = f1; : : : ; 24g.If we write 
 as a disjoint union of orbits of Hi (1 � i � 4) we get three orbits oflength 1,1,22 for H1 and H2. For H3 and H4 we get four orbits of lenght 1; 1; 11; 11. It iswell known that these orbit lenghts correspond to the degrees of the irreducible factorsof ~h 2 ~K[x]. Therefore Gal(~h) �= SL2(11) if and only if ~h has four factors in ~K[x]. Bycomputing the minimal polynomial of a zero of ~h over K we get a degree 2 factor ĥ of~h. Therefore we have to factor the polynomial ~h=ĥ 2 ~K[x]. Using KASH we get that thelatter polynomial has two factors of degree 11. This proves that Gal(~h) �= SL2(11). 2Since our embedding problem is a central one we know that we can give all solutions,if we know one. Let ~K = K(p�), then all solutions are given by K(pr�), where r 2 Q�.Note that ~h is an even polynomial, i.e. ~h(x) = �h(x2) with �h 2Z[x].Corollary 4.1. Let ~ht := �h(t � x2). The Galois group of ~ht over Q(t) is isomorphic toSL2(11). The Galois group of ~ht over C (t) is isomorphic to C2.Proof. The proof is immediate from the fact that all extensions of the form K(pr�)are solutions of the embedding problem. 2ReferencesB�oge, S. (1990). Witt-Invariante und ein gewisses Einbettungsproblem. J. reine angew. Math., 410:153{159.Daberkow, M., Fieker, C., Kl�uners, J., Pohst, M., Roegner, K., Wildanger, K. (1997). KANT V4. J.Symb. Comput., 24(3):267{283.Fieker, C. (2000). Computing class �elds via the Artin map. to appear in Math.Comput.Gei�ler, K., Kl�uners, J. (2000). Galois group computation of polynomials of degree up to 15. J. Symb.Comput.. same issue.Kl�uners, J. (1998). On computing sub�elds - a detailed description of the algorithm. Journal de Th�eoriedes Nombres de Bordeaux, 10:243{271.Kl�uners, J., Malle, G. (2000). Explicit Galois realization of transitive groups up to degree 15. J. Symb.Comput.. same issue.Lenstra, A. K., Lenstra Jr., H. W., Lov�asz, L. (1982). Factoring polynomials with rational coe�cients.Math.Ann., 261:515{534.Malle, G. (2000). Some multi-parameter polynomials with given Galois group. J. Symb. Comput.. sameissue.Mestre, J. (1994a). Annulation, par changement de variable, d'�el�ements deBr2(k(x)) ayant quatre poles.C.R.Acad.Sci.Paris, 319:529{532.Mestre, J. (1994b). Construction d'extensions r�eguli�eres de Q(t) �a groupes de Galois SL2(F7) et ~M12 .C.R.Acad.Sci.Paris, 319:781{782.Serre, J.-P. (1992). Topics in Galois Theory. Research Notes in Mathematics. Jones and BartlettPublishers.


