Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Bildinformationen anzeigen

Antiholomorphic involutions of spherical complex spaces

Annett Püttmann (joint with Dmitri Akhiezer)

Abstract

For a connected complex reductive group G a normal complex G-variety X is called spherical if a Borel subgroup B of G has an open orbit in X. For X affine this is the case if and only if the algebra of regular functions on X is a multiplicity free G-module.

Similarly, a normal complex space X equipped with an action of a connected compact Lie group K by holomorphic transformations is called spherical the holomorphic tangent space at one point of X is generated by a Borel subalgebra. A normal Stein space is spherical if and only if the algebra of holomorphic functions is a multiplicity free K-module.

Faraut and Thomas gave an interesting and simple geometric condition which implies that the algebra of holomorphic functions is multiplicity free, namely, there exists an antiholomorphic involution that maps any K-orbit in X onto itself.

If X is a Stein manifold on which a connected compact Lie group K acts by holomorphic transformations, then the converse is true, i.e., the geometric condition implies that X is spherical. In order to prove this fact we need to understand antiholomorphic involutions of Stein manifolds with K-action that are equivariant with respect to a Weyl involution of K.

Die Universität der Informationsgesellschaft