Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Resonance chains: On Schottky surfaces the resonances of the Laplacian often form interesting chains (See Borthwick-Weich J. Spec. Theor 6(2) (2016) or Weich Comm.Math.Phys. 337(2) (2015)) Bildinformationen anzeigen

Resonance chains: On Schottky surfaces the resonances of the Laplacian often form interesting chains (See Borthwick-Weich J. Spec. Theor 6(2) (2016) or Weich Comm.Math.Phys. 337(2) (2015))

Oberseminar "Geometrische Analysis und Zahlentheorie"

In dem Oberseminar  "Geometrische Analysis und Zahlentheorie" werden aktuelle Forschungsresultate auf den Gebieten der geometrischen Analysis und der Zahlentheorie präsentiert und diskutiert.

Das Seminar findet aufgrund der Corona Pandemie aktuel als virtuelles Oberseminar via zoom statt (in der Regel jeweils Dienstags 14:15-15:45). Bei Interesse an  einer Teilnahme (sei es regelmäßig oder  auch nur an einem bestimmten Vortrag) bitten wir vorab mit Tobias Weich per Mail Kontakt aufzunehmen, damit der Teilnahmelink geteilt werden kann.

Seminarprogramm

Wintersemester 2020/21

27.10.2020

NN

Titel:

tba

Abstract:

tba                                                                                                      

03.11.2020

Beatrice Pozzetti (Universität Heidelberg)

Titel:

Orbit growth rate and Hausdorff dimensions for Anosov representations
Abstract:

Anosov representations are a robust and well studied class of discrete subgroups of non-compact simple Lie groups, which generalize many geometric features of hyperbolic manifolds to higher rank locally symmetric spaces. After a gentle introduction motivating the study of this class of groups, I will discuss joint work with Andres Sambarino and Anna Wienhard in which we establish a relation between a suitably chosen growth rate in the symmetric space and the Riemannian Hausdorff dimension of the minimal invariant subset in a flag manifold.                                                                                                    

10.11.2020

Clemens Weiske (Aarhus University)

Titel:

Symmetry breaking operators and unitary branching laws

Abstract:

Let $\pi$ be a unitary irreducible representation of a real reductive Lie group $G$. Naturally the restriction $\pi|_H$ to a reductive subgroup $H$ defines a unitary representation of $H$ and decomposes into a direct integral of unitary irreducible $H$-representations. We introduce a method to prove such a direct integral decomposition for unitary representations inside principal series representations, which expands classical Plancherel theorems for homogenous $H$-spaces to branching laws. This is done by an analytic continuation procedure in meromorphic parameters of certain $G$ and $H$-intertwining operators, namely symmetry breaking operators and Knapp--Stein operators. We will study examples where $G$ and $H$ are of real rank one.                                                                                                                                                                                                                                                                                                                                                                  

17.11.2020

Frederic Naud (Institut Mathematique Jussieu, Paris)

Titel:

Spectral gaps of random hyperbolic surfaces
Abstract:

We will introduce and review the notion of spectral gap related to the Laplace operator, both for compact and geometrically finite hyperbolic surfaces. We will then define a notion of random covers above a given hyperbolic surface and state some new results pertaining to the spectral gap in the large degree regime.                                                                                                                                                                                                                                                                           

24.11.2020

Stefan Hante (Universität Halle)

Titel:

Geometric time integration of a flexible Cosserat beam model

Abstract:

Cosserat beam models are used in industry as well as in academia to describe long and slender flexible structures like cables, hoses, rotor blades, etc. In my talk I will show how we can exploit the Lie group structure of the configuration space in order to discretize the beam model in space. Furthermore, I will introduce a numerical algorithm that can be used to approximately solve the remaining differential equation on a Lie group as well as touch on its numerical analysis. I will show computational tests as well as some industrial applications.                                                                                                                                                                                                                                                                     

01.12.2020

Nils Matthes (University of Oxford)

Titel:

Meromorphic modular forms and their iterated integrals

Abstract:

Meromorphic modular forms are generalizations of modular forms which are allowed to have poles. Part of the motivation for their study comes from recent work of Li–Neururer, Pasol–Zudilin, and others, which shows that integrals of certain meromorphic modular forms have integer Fourier coefficients – an arithmetic phenomenon which does not seem to exist for holomorphic modular forms. In this talk we will study iterated integrals of meromorphic modular forms and describe some general algebraic independence results, generalizing results of Pasol–Zudilin. If time permits we will also mention an algebraic geometric interpretation of meromorphic modular forms which generalizes the classical fact that modular forms are sections of a certain line bundles.                                                                                                                                                                                                                                                                                                                                                             

08.12.2020

Mihajlo Cekic (Universite Paris-Sud, Orsay)

Titel:

tba

Abstract:

tba                                                                                                                                                                                                                                                                                                                                                                                   

15.12.2020

Jan Frahm (Aarhus University)

Titel:

Conformally invariant differential operators on Heisenberg groups and minimal representations

Abstract: 

tba                                                                                                                                                                         

12.01.2021

NN

Titel:

tba

Abstract:

tba                                                                                                                                                                                                                                                                                   

19.01.2021

NN

Titel:

tba

Abstract:

tba                                                                                                                                                                                                                                                                                   

26.01.2021

NN

Titel:

tba

Abstract:

tba                                                                                                                                                                                                                                                                                  

02.02.2021

NN

Titel:

tba

Abstract:

tba                                                                                                                                                                                                                                                                                   

09.02.2021

NN

Titel:

tba

Abstract:

tba                                                                                                                                                                                                                                                                                   

 

Sommersemester 2020
07.04.2020

N.N.

Titel:  

tba

Abstract:

                                                                                                       

14.04.2020

Tobias Weich (Paderborn)

Titel:

Ruelle-Taylor Resonanzen für Anosov Wirkungen höheren Rangs

Abstract:

 In diesem Vortrag soll erklärt werden wie man mittels der Theorie des Taylor Spektrums kommutierender Operatoren sowie mikrolokaler Analysis einer Anosov Wirkung höheren Rangs ein intrinsisches diskretes Resonanzsspektrum zuordnen kann.                                                                                                         

21.04.2020

Lasse Wolf (Paderborn)

Titel

Quantum-Classical correspondance in higher rank

Abstract:

 tba

                                                                                                                                            

28.04.2020

Beatrice Pozzetti (Heidelberg)                                  

Titel:

tba

Abstract:

canceled due to Corona restrictions                                                                                                                               

05.05.2020

Margit Rösler (Paderborn)

Titel:

Riesz-Distributionen im Dunkl-Setting vom Typ A

Abstract:

Nach einem klassischen Resultat von Gindikin ist eine Riesz-Distribution auf einem symmetrischen Kegel genau dann ein positivies Maß, wenn ihr Index zur Wallachmenge gehört. Gegenstand dieses Vortrags ist ein Analogon dieser Aussage im Rahmen der rationalen Dunkl-Theorie zu Wurzelsystemen vom Typ A. Die verallgemeinerte Wallachmenge ist dabei durch die Multiplizität der Dunkl-Operatoren parametrisiert. Wir erläutern auch die Rolle dieser verallgemeinerten Wallachmenge im Zusammenhang mit der Existenz positiver Vertauschungsoperatoren.

12.05.2020

Kai-Uwe Bux (Bielefeld)

Titel

Coarse Topological Group Invariants

Abstract:

It is hopeless to classify infinite groups up to isomorphism. There are several invariants one can use to chart the vast area inhabited by such groups. I shall discuss several numerical group invariants coming from topology, homology, and geometry: *

  • finiteness properties 

  • (co)homologicial and geometric dimensions 

  • isoperimetric inequalities

I shall illustrate these concepts (with a focus on finiteness properites). Groups of matrices provide a good source of examples.                                                                                                                              

19.05.2020

Jungwon Lee (Sorbonne Université)

Titel

Dynamics of continued fractions and conjecture of Mazur-Rubin

Abstract:

Mazur and Rubin established several conjectural statistics for modular symbols. We show that the conjecture holds on average. We plan to introduce the approach based on spectral analysis of transfer operator associated to a certain skew-product Gauss map and consequent result on mod p non-vanishing of modular L-values with Dirichlet twists (joint with Hae-Sang Sun).
                                                                                                                               

26.05.2020

Thomas Mettler (Frankfurt)

Titel

Lagrangian minimal surfaces, hyperbolicity and dynamics

Abstract:

The Beltrami—Klein model leads to a natural generalisation of hyperbolic surfaces in terms of so-called properly convex projective surfaces. In my talk I will relate these properly convex projective surfaces to certain Lagrangian minimal surfaces. This gives rise to a new class of dynamical systems and I will discuss some of their properties. In parts, this talk is based on joint work with Maciej Dunajski and Gabriel Paternain.                                                                                                                                  

02.06.2020

Gabriel Rivière (Nantes)

Titel

Poincaré series and linking of Legendrian knots

Abstract:

 Given two points on a compact Riemannian surface with variable negative curvature, one can consider the lengths of all the geodesic arcs joining these two points and form a natural zeta function associated with these lengths (the so-called Poincaré series). I will explain that this Poincaré series has a meromorphic continuation to the whole complex plane. Then, I will show that the value at 0 is given by the inverse of the Euler characteristic by interpreting this value at 0 as the linking of two Legendrian knots. If time permits, I will explain how the results can be extended when one consider the geodesic arcs orthogonal to two closed geodesics. (joint work with Nguyen Viet Dang)                                                                                                    

09.06.2020

N.N.

Titel:

tba

Abstract:                                                                                                             
16.06.2020

Sven Möller (Rutgers University)

Titel:

Dimension Formulae and Generalised Deep Holes of the Leech
Lattice Vertex Operator Algebra

Abstract:

Conway, Parker and Sloane (and Borcherds) showed that there is a natural bijection between the Niemeier lattices (the 24 positive-definite, even, unimodular lattices of rank 24) and the deep holes of the Leech lattice, the unique Niemeier lattice without roots.

We generalise this statement to vertex operator algebras (VOAs), i.e. we show that all 71 holomorphic VOAs (or meromorphic 2-dimensional conformal field theories) of central charge 24 correspond to generalised deep holes of the Leech lattice VOA.

The notion of generalised deep hole occurs naturally as an upper bound in a dimension formula we obtain by pairing the character of the VOA with a certain vector-valued Eisenstein series of weight 2.

(This is joint work with Nils Scheithauer.)                                                                                                                                  

23.06.2020

Michael Voit (TU Dortmund)

   
Titel:

Limit theorems for Calogero-Moser-Sutherland particle models in the freezing regime

Abstract:

Calogero-Moser-Sutherland models are described by some root system and some coupling constants. They are closely related with several random matrix models and, for some cases, with Brownian motions on Grassmann manifolds.
In this talk we discuss some limit results when the the coupling constants tend to infinity. Here the limits can be described  in terms of deterministic limit dynamical systems and zeroes of classical orthogonal polynomials. We also present some results when the number of particles tends to infinity.                                                                                                                         

30.06.2020

Lennart Gehrmann (Essen)

Titel:

Big principal series and L-invariants

Abstract:

By a result of Bertolini, Darmon and Iovita the Orton L-invariant of a modular form equals the derivative of the U_p-eigenvalue of a p-adic family passing through it. In this talk I will give a new, more conceptual proof of the result. One advatange of the method is that it can be generalized to automorphic forms on higher rank groups. This is joint work with Giovanni Rosso.                                                                                                                            

07.07.2020

Elmar Schrohe (Hannover)

Titel: Degenerate Elliptic Boundary Value Problems with Non-smooth Coefficients
Abstract:

Abstract (as pdf file)

14.07.2020

N.N.

Titel:

tba

Abstract:

tba                                                                                                                                   

Wintersemester 2019/20
08.10.2019

Nguyen Thi Dang (Universität Heidelberg)

Titel:  

Topological mixing of the Weyl chamber flow

Abstract:

Let G be a semisimple Lie group without compact factors. Consider A a maximal split torus and a maximal compact subgroup K for which the Cartan decomposition holds. Denote by M the centralizer subgroup of A in K . Let Γ be a discrete subgroup of G, acting properly discontinuously on G/K . In the case of G = PSL(2, R), the right action of A on Γ\G identies with the action of the geodesic ow on the unit tangent bundle of Γ\H2 . The latter has been well studied and satises many chaotic properties such as topological mixing in its non-wandering set. My talk addresses the case when A is of higher dimension and Γ is not a lattice. First I will introduce the main topological property: topological mixing. Then I will state a joint result with Olivier Glorieux, a necessary and sucient condition for topological mixing of actions of one parameter subgroups φt of A on Γ\G/M . Then I will introduce a few key tools: the Benoist limit cone and Hopf coordinates of G/M . Finally, I will give the main ideas behind the proof of the topological mixing Theorem. Time permitting, I will present a generalization of this Theorem for the right action of φt on Γ\G when M is abelian and connected.                                                                                                                     

15.10.2019

Maxime Ingremeau (Université de Nice Sophia-Antipolis)

Titel:

Around Berry’s random waves conjecture

Abstract:

40 years ago, the physicist Michael Berry suggested that eigenfunctions of the Laplacian on manifolds of negative curvature should be well described, in the high-frequency limit, by some random function, given by an isotropic monochromatic Gaussian field. After recalling various mathematical interpretations of this conjecture, we will discuss how Bourgain’s arithmetic « derandomization technique » allow to prove the conjecture for eigenfunctions on the two-dimensional torus. We will show that the conjecture holds in a weak form for some families of quasi-modes, namely, long-time evaluated Lagrangian distributions on manifolds of negative curvature.                                                                                                                   

22.10.2019

Lasse Wolf (Universität Paderborn)

Titel

Spectral Asymptotics for kinetic Brownian Motion on hyperbolic surfaces

Abstract:

The kinetic Brownian motion on the sphere bundle of a Riemannian manifold M is a stochastic process that models a random perturbation of the geodesic flow. If M is a orientable compact constant negatively curved surface, we show that in the limit of infinitely large perturbation the L2-spectrum of the infinitesimal generator of a time rescaled version of the process converges to the Laplace spectrum of the base manifold. In addition, we give explicit error estimates for the convergence to equilibrium. The proofs are based on noncommutative harmonic analysis of SL2(R).                                                                                                                              

   
29.10.2019 Fabian Januszewski                                              
Titel: Rationalität von L-Werten
Abstract:

Dieser Vortrag ist der erste in einer Serie von zwei Vorträgen über spezielle Werte von L-Funktionen. In diesem ersten Vortrag über Rationalität von L-Werten wird auf die konzeptionelle Motivation und Resultate eingegangen. Im Kontext letzterer spielen (g,K)-Moduln eine wichtige Rolle.                                                                                                                                    

05.11.2019

N.N

Titel: tba
Abstract:

tba                                                                                                                   

 

12.11.2019

N.N.

Titel

tba

Abstract:

tba                                                                                                                                 

19.11.2019

N.N.

Titel tba
Abstract:

tba
                                                                                                                               

26.11.2019

N.N.

Titel tba
Abstract:

tba                                                                                                                                   

03.12.2019 Markus Schwagenscheidt, Universität zu Köln
Titel Generating series involving meromorphic modular forms
Abstract:

To each non-zero discriminant D one can associate a modular form f_k,D of weight 2k, which is a cusp form if D > 0 and a meromorphic modular form if D < 0. It is well known that the two-variable generating series obtained by summing up the cusp forms f_k,D with D > 0 is modular in both variables. It yields the Kohnen-Zagier kernel function for the Shimura correspondence. Furthermore, the generating series of traces of geodesic cycle integrals of f_k,D for fixed D > 0 is a cusp form of half-integral weight 1/2+k. In this talk we explain how the two-variable generating series of the meromorphic modular forms f_k,D for D < 0 as well as the generating series of traces of cycle integrals of f_k,D for fixed D < 0 can be completed to real-analytic modular forms. Furthermore, we explain some rationality results for the traces of cycle integrals of the meromorphic modular forms f_k,D for D < 0.                                                                                                        

10.12.2019 Julia Budde, Universität Paderborn
Titel: Wellenfrontmengen unitärer Darstellungen
Abstract: Wir geben eine Einführung in Definition und elementare Eigenschaften von Wellenfrontmengen unitärer Darstellungen von Lie Gruppen.                                                                                                             
17.12.2019 N.N.
Titel: tba
Abstract:

tba                                                                                                                                   

07.01.2019 Martin Raum, Chalmers University of Technology
Titel: Congruences of modular forms on arithmetic progressions
Abstract:

One purpose of modular forms, and more generally, weakly holomorphic
modular forms is to aid or even enable the analysis of certain
generating series, namely modular generating series. A common question
asked for coefficients $c(n)$ of a generating series is which patterns
of divisibility they satisfy. Among the most accessible patterns, there
is divisibility on arithmetic progressions: $c(an + b)$ is divisible by
a given positive integer $\ell$ for all $n$. The theory of modular forms
modulo primes yields a good handle on such question as long as $a$ and
$b$ are remain fixed and $\ell$ is prime.

In this talk, we showcase a new technique that allows us to answer in
the affirmative the question of whether there is a connection among
congruences for varying $b$ and fixed $a$. As a result, we discover
surprisingly strong restrictions on maximal arithmetic progressions that
admit a congruence. We primarily build upon results by Deligne-Rapoport
on the arithmetic compactification of the moduli of elliptic curves. We
reduce the original problem to a very concrete one in the modular
representation theory of finite groups of Lie type and their covers,
which in our motivating setting can be solved by a calculation.                                                                                                                              

14.01.2019 Julia Budde
Titel: Wellenfrontmengen von Darstellungen Nilpotenter Lie Gruppen
Abstract:

tba                                                                                                                                   

21.01.2019 Jens Funke, Durham University
Titel: Theta series and (singular) theta lifts
Abstract:

In this talk we give an introduction to theta series and theta lifts and its representation-theoretic background. We then explain singular theta lifts of Borcherds type and employ the reductive dual pair U(p, q) × U(1, 1) to construct two different kinds of Green forms for codimension q-cycles in Shimura varieties associated to unitary groups. In particular, we establish an adjointness result between the singular theta lift and the Kudla-Millson theta lift and discuss further applications in the context of the Kudla Program.

This is joint work with Eric Hofmann.

                                                                                                                                 

28.01.2019 N.N.
Titel: tba
Abstract:

tba                                                                                                                                   

 

Sommersemester 2019
10.04.2019

Claudia Alfes-Neumann -- Universität Paderborn

Titel:  Harmonic weak Maass forms and Harish-Chandra modules
Abstract:

In this talk we review results of Bringmann and Kudla on the classification of harmonic Maass forms. In their paper they gave a classification of the Harish-Chandra modules generated by the pullback (to SL_2(R)) of harmonic weak Maass forms for congruence subgroups of SL_2(Z).

ACHTUNG:  Gemeinsames Oberseminar mit AG Algebra Vortrag findet in  D1 320 statt und startet schon um 14h.

17.04.2019

Jan Frahm (geb Möllers) -- Universität Erlangen-Nürnberg

Titel:

Periodenintegrale, L-Funktionen und Multiplizität Eins

Abstract:

Einer automorphen Form auf der oberen Halbebene kann man durch Ihre Fourierkoeffizienten eine L-Funktion zuordnen. Allgemeiner kann man zwei automorphen Formen auf der oberen Halbebene die sogenannte Rankin-Selberg L-Funktion zuordnen, die durch Faltung der Fourierkoeffizienten gegeben ist. Diese Konstruktion lässt sich auf Paare automorpher Formen auf GL(m) und GL(n) verallgemeinern und hängt eng zusammen mit der Restriktion automorpher Formen von  GL(m) auf GL(n) (m\geq n) und Periodenintegralen. Im Vortrag wird dieser Zusammenhang erklärt und die Beziehung zur Restriktion (unendlich-dimensionaler) Darstellungen von GL(m) auf GL(n) hergestellt. Dadurch wird es möglich Abschätzungen für Rankin-Selberg L-Funktionen mit darstellungstheoretischen Methoden zu erreichen, insbesondere mit der Multiplizität Eins Eigenschaft.

24.04.2019

Polyxeni Spilioti -- Universität Tübingen

Titel

Dynamical zeta functions, trace formulae
and applications

Abstract:

The dynamical zeta functions of Ruelle and Selberg are functions of a complex variable s and are associated with the geodesic flow on the unit sphere bundle of a compact hyperbolic manifold. Their representation  by Euler-type products traces back  to the Riemann zeta function. In this talk, we will present  trace formulae and Lefschetz formulae, and the machinery that they provide to study the analytic properties of the dynamical zeta functions and their relation to spectral invariants. In addition, we will present other applications of the Lefschetz formula, such as the prime geodesic theorem for locally symmetric spaces of higher rank.                                                                                                                                 

01.05.2019

Feiertag

08.05.2019 Joachim Hilgert -- Universität Paderborn                                                 
Titel: Satake-Kompaktifizierung
Abstract:

tba                                                                                                                                   

15.05.2019

Valentin Blomer -- Universität Göttingen

Titel: Spurformeln in der Analytischen Zahlentheorie
Abstract:

Mit der Poissonschen Summationsformel als Ausgangspunkt werden spektrale Summationsformeln auf lokal-symmetrischen Räumen vorgestellt zusammen mit einer Reihe arithmetischer und analytischer Anwendungen.

 

22.05.2019

Anna von Pippich -- TU Darmstadt

Titel

The special value Z'(1) of the Selberg zeta function

Abstract:

In this talk, we report on an explicit formula for the special value at s=1 of the derivative of the Selberg zeta function for the modular group Gamma=PSL_2 (Z). The formula is a consequence of a generalization of the arithmetic Riemann--Roch theorem of Deligne and Gillet-Soule to the case of the trivial sheaf on Gamma\H, equipped with the hyperbolic metric.

The proof uses methods of zeta regularisation and relies on Mayer-Vietoris type formulas  for determinants of Laplacian. This is joint work with Gerard Freixas.

 

Achtung: Der Vortrag findet von 12:30-14h im Raum N 3.211 statt.

                                                                                                                                  

29.05.2019

Michael Baake -- Universität Bielefeld

Titel Spectral aspects of point sets and their dynamical systems
Abstract:

The plan of this talk is to recall some properties around
the diffraction and dynamical spectra of cut and project
and inflation point sets, with some emphasis on cases with
mixed spectrum and some examples of number-theoretic origin.
                                                                                                                               

05.06.2019

Anna Wienhard -- Universität Heidelberg

Titel Vortrag entfällt
Abstract:

tba                                                                                                                                   

12.06.2019 Christopher Voll
Titel Zeta functions of groups and rings -- uniformity at the edge of the wilderness
Abstract:

In asymptotic group theory, zeta functions have become important tools to study the asymptotic and finer arithmetic properties of the distribution of finitary invariants of infinite groups. Defined as Dirichlet generating series, they encode, for instance, the numbers of finite-index subgroups or finite-dimensionsional representations of a given infinite group.

Zeta functions associated to arithmetic groups often enjoy Euler products, indexed by the (Archimedean and non-Archimedean) places of number fields. The non-Archimedean factors tend to be rational functions. To understand how these functions vary with the place is among the fundamental challenging questions in the field.

I will report on recent work with Angela Carnevale and Michael Schein: we prove a conjecture of Grunewald, Segal, and Smith on the variation of local normal subgroup zeta functions of finitely generated free class-2-nilpotent groups under base extension with number rings. Our result establishes that, in this setup, the variation is "uniform on primes of fixed decomposition type" in the relevant number field.

ACHTUNG:  Es finden an diesem Tag aufgrund der Lesewoche zwei Vorträge 11:00-12:30 (in J 2.213) und 14:00-15:30 (E 2.304) statt.                                                                         

19.06.2019 Kein Seminar
26.06.2019 Jasmin Matz
Titel: Asymptotics of traces of Hecke operators
Abstract: The distribution of spectral parameters in families of automorphic
representations has many applications, such as density estimates for
exceptional eigenvalues or low-lying zeros in families of L-functions.
I want to talk about joint work with T. Finis in which we prove an
effective equidistribution result for Satake parameters of spherical
automorphic forms on many split reductive groups with growing Laplace
eigenvalue. Compared to previously known results for GL(n), we can
improve the bounds for the remainder terms. As a special case we also
obtain the Weyl law on the associated locally symmetric space together
with an upper bound for the remainder.
03.07.2019 N.N.
Titel: tba
Abstract:

tba                                                                                                                                   

10.07.2019

Fällt aus wegen

PBMath Sommerschule

Organisatoren

Jun.-Prof. Dr. Claudia Alfes-Neumann

Zahlentheorie und automorphe Formen

Claudia Alfes-Neumann
Telefon:
+49 5251 60-2663
Büro:
D2.241

Sprechzeiten:

Nach Vereinbarung.

Prof. Dr. Fabian Januszewski

Algebra und Zahlentheorie

Telefon:
+49 5251 60-2610
Büro:
D2.231

Telefon:
+49 5251 60-2630
Büro:
D2.234

Sprechzeiten:

Nach Vereinbarung

Prof. Dr. Margit Rösler

Harmonische Analysis

Margit Rösler
Telefon:
+49 5251 60-3067
Fax:
+49 5251 60-3516
Büro:
D2.201

Sprechzeiten:

zur Zeit vorrangig per email und telefonisch. Bitte schildern Sie mir Ihr Anliegen zunächst per email! Bei Bedarf kann auch ein Zoom-Treffen vereinbart werden. 

 

Jun.-Prof. Dr. Tobias Weich

Spektral Analysis

Leiter der AG Spektralanalysis

Tobias Weich
Telefon:
+49 5251 60-2621
Büro:
D2.207

Sprechzeiten:

Nach Terminvereinbarung per Mail

Die Universität der Informationsgesellschaft