Multiobjective optimization and multiobjective optimal control

Current research projects:

The goal of this project is to investigate the capabilities and limitations of local, distributed strategies for swarms of mobile robots. Such strategies consist of protocols run by the individual robots. They are supposed to guide the movements of the robots in such a way that globally a prescribed formation like gathering, forming a line or other shapes is reached from an arbitrary initial configuration of the robots. This research direction is well-established in distributed computing. Our approach is to combine techniques from distributed computing and dynamical systems research in order to enhance the understanding of protocols for such formation tasks. To this end, we analyze the speed of the protocols in terms of runtime complexity in the distributed computing sense as well as stability properties of the prescribed formation with the use of ideas from dynamical systems. While in the distributed computing community often only a worst-case analysis is considered, the tools of dynamical systems allow a more fine-grained analysis of the input configurations by exploring the state space. More concretely, the state space foliation describes the long-term dynamical behavior of input configurations in more detail, i.e. it allows to identify classes of configurations that converge comparably fast or slow and even classes that fail to converge to the prescribed formation. Thus, the combination of both views leads to a more profound understanding of distributed strategies for swarms of mobile robots.

Past research projects:

Simultanes Entwickeln und Testen von Cyber Physical Systems (CPS) am Anwendungsbeispiel eines elektrisch angetriebenen autonomen Fahrzeugs

dSPACE, e.GO Mobile und Institut für Industriemathematik starten Forschungsprojekt

Wie können autonome Fahrzeuge mit Elektroantrieb als Beispiele für komplexe cyber-physische Systeme schneller, kostengünstiger und ressourcenschonender entwickelt werden? Und wie lässt sich die Sicherheit solcher Fahrzeuge auf der Straße erhöhen? Ein Team aus Forschern und Entwicklern von dSPACE, der e.GO Mobile AG und dem Institut für Industriemathematik der Universität Paderborn hat vor einigen Wochen ein Forschungsprojekt gestartet, um diese komplexe Fragestellung zu beantworten. Das Projekt wird im Rahmen des Leitmarktwettbewerbs IKT.NRW mit Mitteln des Landes NRW und der EU gefördert. „Simultanes Entwickeln und Testen von Cyber Physical Systems (CPS) am Anwendungsbeispiel eines elektrisch angetriebenen autonomen Fahrzeugs – SET CPS“ lautet der offizielle Titel des Projektes mit einer Laufzeit von 36 Monaten.

Bei der Entwicklung von Fahrzeugen sorgen Trends wie das automatisierte Fahren oder die Entwicklung alternativer Antriebe, wie zum Beispiel batteriebetriebene Fahrzeuge, für einen sprunghaften Anstieg der Anforderungen an die zugrunde liegenden Systeme. Bei der Entwicklung solcher Fahrzeuge geht es darum, eine Vielzahl an Zielgrößen wie Verbrauch, Reichweite und Fahrkomfort zu optimieren und die Sicherheit des Systems zu garantieren. Um die Entwicklungsprozesse für Hersteller und Zulieferer verlässlich und ökonomisch zu gestalten und Entwicklungszeiten einhalten zu können, machen sich Forscher und Entwickler im Projekt SET CPS jetzt auf die Suche nach neuen Ansätzen.

Im Projekt sollen daher intelligente, simulationsbasierte Verfahren entwickelt werden, die den Entwicklungs- und Testprozess komplexer Fahrzeuge verbessern, systematisieren und den Automatisierungsgrad erhöhen. Dazu werden die Auslegung und der Test enger miteinander verzahnt, um bereits in frühen Entwicklungsphasen einen hohen Qualitätsgrad zu erreichen. Hierzu kommen neueste mathematische Methoden aus der Mehrzieloptimierung zum Einsatz, die einer der Kernkompetenzen des Instituts für Industriemathematik ist. So können miteinander konkurrierende Ziele wie Energieeffizienz, Komfort und Kosten gleichzeitig berücksichtigt und darüber hinaus die Sicherheit des Systems gewährleistet werden. Geplant ist, die neuen Verfahren in die Toolkette von dSPACE zu integrieren und anhand eines Beispiels aus der Fahrzeugentwicklung von e.GO zu evaluieren.

„Als Konsortialführer des Projektes ist es unser Ziel, den nächsten Schritt hin zu einer Entwicklungsumgebung aus einer Hand für autonome Fahrzeuge zu machen“, erklärte Dr. Rainer Rasche, Group Manager Test Automation bei dSPACE. „Die entstehende Toolkette ermöglicht dem Entwickler, die Parameter eines Steuergerätes auf verschiedene, typische Verkehrssituationen auszulegen und gleichzeitig in den simulierten Umgebungen zu testen. So können unsere Kunden ihre Entwicklung beschleunigen.“

Dr. Michael Riesener, Vice President Corporate Research bei der e.GO Mobile AG, sagte: „Das durch SET CPS ermöglichte simultane Entwickeln und Testen neuer Systeme für unsere elektrischen Fahrzeuge befähigt uns weiterhin, schnelle Entwicklungszeiten zu realisieren und die Fahrzeuge noch anforderungsorientierter auszulegen. Aus diesem Grund freuen wir uns darauf, das Forschungsprojekt gemeinsam mit unseren Partnern voranzutreiben.“

Über e.GO Mobile AG

Die e.GO Mobile AG wurde 2015 von Prof. Dr. Günther Schuh als Hersteller von Elektrofahr-zeugen gegründet. Auf dem RWTH Aachen Campus nutzen die mehr als 450 Mitarbeiter das einzigartige Netzwerk des Campus mit seinen Forschungseinrichtungen und ca. 360 Technologieunternehmen. In agilen Teams wird an verschiedenen kostengünstigen und kundenorientierten Elektrofahrzeugen für den Kurzstreckenverkehr gearbeitet. Die Serienproduktion des e.GO Life ist im März 2019 im neuen e.GO Werk in Aachen Rothe Erde angelaufen.

www.e-go-mobile.com

Über IFIM

Das Institut für Industriemathematik wurde an der Universität Paderborn gegründet, um einen direkten Transfer aus der angewandten Mathematik in die Wirtschaft zu vereinfachen. Gemeinsam mit Partnern aus der Industrie, insbesondere dem Mittelstand, werden mathematische Problemstellungen identifiziert und effiziente Lösungsverfahren erarbeitet, die auf dem neuesten Stand der Wissenschaft beruhen. Durch das Zusammenwirken von Wissenschaft und Wirtschaft können sowohl in wissenschaftlicher als auch in wirtschaftlicher und technologischer Hinsicht signifikante Fortschritte erzielt werden.

Über dSPACE

dSPACE entwickelt und vertreibt integrierte Hardware- und Software-Werkzeuge für die Entwicklung und den Test von Steuergeräten. Als Komplettanbieter ist dSPACE ein gefragter Partner und Lösungsanbieter in vielen aktuellen Entwicklungsbereichen der Automobilindustrie, von der Elektromobilität über die automobile Vernetzung bis hin zum autonomen Fahren. Zum Kundenstamm gehören daher auch nahezu alle namhaften Automobilhersteller und -zulieferer. Darüber hinaus werden dSPACE Systeme auch in der Luft- und Raumfahrt sowie in anderen Industriebereichen erfolgreich eingesetzt. Mit mehr als 1.700 Mitarbeitern weltweit ist dSPACE am Stammsitz in Paderborn, mit drei Projektzentren in Deutschland sowie durch Landesgesellschaften in den USA, Großbritannien, Frankreich, Japan, China und Kroatien vertreten.

Informationen zum Förderprogramm unter: https://www.leitmarktagentur.nrw/leitmarktwettbewerbe/

Information-Based Optimization of Surgery Schedules

The health care sector is one of the most important economy branches in Germany which is subject to steadily increasing expenses over the last years. One of the main cost components are hospitals. In particular, operating rooms generate a huge portion of the hospitals expenses. In the future, a more efficient operation room management is needed to reduce operating cost and staff overtime to allow patient therapies of higher quality.

Project Description

The project Information-Based Optimization of Surgery Schedules (IBOSS) focuses on the development of new and efficient methods to improve the individual work- and patient flow in hospitals.  We work closely with our project partner Charité Berlin in order to bring new algorithmic concepts for difficult problems into practice. One part of the project includes the predictive analysis of activity durations to accurately model the involved sub-processes in a hospital. On that basis, we develop algorithms to compute optimized micro- and macro-level surgery schedules. The particular focus lies on the algorithmic treatment of stochastic influences on the planned schedule, such as operational delays and sudden emergencies. Our solution methodologies are based on the following techniques 

  • Optimal learning of classificators in data analysis;
  • Stochastic/robust resource-constrained project scheduling;
  • Multiobjective Optimization and Stochastic Control of Markov Chains;
  • Dynamic interplay between micro- and macro models.

The future goal is to integrate an adaptive self-learning optimization system that automatically recognizes variations and trends in a changing therapy evironment.  A further objective is the implementation of a first computational test and evaluation system for practical usage.

Multiobjective Optimization of Dynamic Operation Room Models

Besides determining an optimal schedule for operations, there are numerous additional factors that can influence the quality of operation planning. These are, for example, allocation of personnel and medication as well as starting times for the individual subtasks. The corresponding decisions can be made with respect to multiple, in general conflicting criteria, amongst which are the quality of the medical treatment, the ability to react to unforeseen events, the satisfaction of personnel as well as patients and economic factors. This requires the computation of the set of optimal compromises between these objectives, the so-called Pareto set.

The goal of the part of the project carried out in Paderborn is therefore to develop a dynamic model of the operating process which is then used in an optimization algorithm running in parallel to the real process. Hence, concurrent objectives which are subject to uncertainties as well as  real-time applicability have to be taken into account. Based on the current priorities, an operation planner can select an optimal compromise from the Pareto set. Furthermore, the results can be utilized to assist and enhance the task of operation scheduling.

Project Homepage: Information-Based Optimization of Surgery Schedules