Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Info-Icon This content is not available in English
Show image information
Tuesday, 15.12.2020 | 14.15 - 15.45 Uhr

Oberseminar Geometrische Analysis und Zahlentheorie (online): Jan Frahm (Aarhus University)

Conformally invariant differential operators on Heisenberg groups and minimal representations

Abstract: On Euclidean space, the Fourier transform intertwines partial derivatives and coordinate multiplications. As a consequence, solutions to a constant coefficient PDE $p(D)u=0$ are mapped to distributions supported on the variety $\{p(x)=0\}$. In the context of unitary representation theory of semisimple Lie groups, so-called minimal representations are often realized on Hilbert spaces of solutions to systems of constant coefficient PDEs whose inner product is difficult to describe (the non-compact picture of a degenerate principal series). The Euclidean Fourier transform provides a new realization on a space of distributions supported on a variety where the invariant inner product is simply an $L^2$-inner product on the variety. Recently, similar systems of differential operators have been constructed on Heisenberg groups. In this talk I will explain how to use the Heisenberg group Fourier transform to obtain a similar picture in this context.

Bei Interesse an einer Teilnahme bitten wir vorab mit Tobias Weich per Mail Kontakt aufzunehmen, damit der Teilnahmelink geteilt werden kann.

The University for the Information Society