SS 2019 Mittwoch, 29.05.2019 Blatt 8

Übungen zur Algebra

Aufgabe 36.[3 Punkte] Sei G eine Gruppe der Ordnung 81, die auf einer Menge M mit |M| = 2018 Elementen operiert. Zeigen Sie, dass es mindestens einen Fixpunkt dieser Wirkung gibt.

Aufgabe 37.[je 2 Punkte] Bestimmen Sie den Normalisator

- (1) der Untergruppe $\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in \mathbb{R}^* \}$ in $GL_2(\mathbb{R})$;
- (2) der Untergruppe $\{\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{R}\}$ in $GL_2(\mathbb{R})$;
- (3) der Untergruppe $\langle (1\ 2\ 3\ 4) \rangle$ in Σ_4 .

Aufgabe 38.[4 Punkte] Seien $n \in \mathbb{N}$ und K ein Körper. Beweisen Sie, dass für das Zentrum von $GL_n(K)$ gilt:

$$\mathcal{Z}(\mathrm{GL}_n(K)) \cong K^*$$

Aufgabe 39. [2+4+1] Punkte Zu einer Primzahl p betrachten wir die Gruppe

$$G = T_3(\mathbb{Z}_p) := \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{Z}_p \right\}.$$

- (1) Beweisen Sie, dass $\mathcal{Z}(G) \cong \mathbb{Z}_p$ ist.
- (2) Zeigen Sie für p=2, dass $T_3(\mathbb{Z}_2)\cong D_4$ ist.
- (3) Geben Sie eine geometische Interpretation von $\mathcal{Z}(D_4)$.

Aufgabe 40.[4 Punkte] Sei p eine Primzahl. Bestimmen Sie die Anzahl aller p-Sylow-Untergruppen von Σ_p . Beweisen Sie damit die Wilson-Kongruenz

$$(p-1)! \equiv -1 \mod p$$

Aufgabe 41.[2+2 Punkte] Sei G eine Gruppe und p eine Primzahl.

- (1) Seien $H \triangleleft G$ eine normale p-Untergruppe und $P \subset G$ eine p-Sylow-Untergruppe von G. Zeigen Sie: $H \triangleleft P$.
- (2) Seien P_1, \ldots, P_t alle p-Sylow-Untergruppen von G und $Q = P_1 \cap \ldots \cap P_t$. Beweisen Sie: $Q \triangleleft G$.

Aufgabe 42.[4 Punkte] Bestimmen Sie (bis auf Isomorphie) alle Gruppen der Ordnung 45.

Bitte wenden!

Aufgabe 43 (Bonus).[3+1+3+2+1+2 Punkte] Sei p eine Primzahl und $n \in \mathbb{N}$.

- (1) Beweisen Sie, dass $|GL_n(\mathbb{Z}_p)| = (p^n 1)(p^n p)(p^n p^2) \cdots (p^n p^{n-1})$ gilt.
- (2) Bestimmen Sie die Ordnung von $SL_n(\mathbb{Z}_p)$.
- (3) Zeigen Sie, dass $\mathrm{SL}_2(\mathbb{Z}_2)\cong\Sigma_3$ gilt und konstruieren Sie diesen Isomorphismus explizit.
- (4) Sei $P = \{\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{Z}_p\}$. Beweisen Sie, dass P eine p-Sylow-Untergruppe in $\mathrm{SL}_2(\mathbb{Z}_p)$ ist, und bestimmen Sie den Normalisator von P in $\mathrm{SL}_2(\mathbb{Z}_p)$.
- (5) Bestimmen Sie die Anzahl der p-Sylow-Untergruppen in $\mathrm{SL}_2(\mathbb{Z}_p)$.
- (6) Zeigen Sie, dass P auch eine p-Sylow-Untergruppe in $GL_2(\mathbb{Z}_p)$ ist, und bestimmen Sie die Anzahl der p-Sylow-Untergruppen in $GL_2(\mathbb{Z}_p)$.

Abgabe: Dienstag, 04.06.2019, 9:00 Uhr.