Mathematisches Institut der Universität Paderborn Prof. I. Burban und S. Opper WiSe 2018/19 Dienstag, 06.11.2018 Blatt 5

Lineare Algebra II

Aufgabe 31.[2+4+4 Punkte] Berechnen Sie das Spektrum sowie die entsprechenden Eigenräume folgender Matrizen aus $\operatorname{Mat}_{n\times n}(\mathbb{C})$:

(1)
$$\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$
 (2) $\begin{pmatrix} 4 & -5 & 7 \\ 1 & -4 & 9 \\ -4 & 0 & 5 \end{pmatrix}$ (3) $\begin{pmatrix} 3 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 0 & 5 & -3 \\ 4 & -1 & 3 & -1 \end{pmatrix}$

Aufgabe 32.[3+2+3 Punkte] Sei K ein beliebiger Körper, $n \in \mathbb{N}$ sowie V, W zwei endlich dimensionale Vektorräume über K.

- (1) Seien $A, B \in \operatorname{Mat}_{n \times n}(K)$. Beweisen Sie, dass $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ gilt.
- (2) Seien $f: V \to W$ und $g: W \to V$ lineare Abbildungen. Zeigen Sie, falls $\dim(V) = \dim(W)$ ist, dann gilt $\operatorname{tr}(gf) = \operatorname{tr}(fg)$.
- (3) Bleibt die Aussage (2) richtig, wenn $\dim(V) \neq \dim(W)$?

Aufgabe 33.[1 + 2 + 4 Punkte] Sei K ein Körper und $n \in \mathbb{N}_{\geq 2}$. Betrachten wir die folgende Menge

$$\mathfrak{sl}_n(K) := \{ X \in \mathsf{Mat}_{n \times n}(K) \mid \operatorname{tr}(X) = 0 \}.$$

- (1) Beweisen Sie, dass $\mathfrak{sl}_n(K)$ ein K–Vektorraum ist und berechnen Sie seine Dimension.
- (2) Sei $Y \in \mathsf{Mat}_{n \times n}(K)$ eine beliebige Matrix. Beweisen Sie, dass

$$\operatorname{ad}_{Y}: \mathfrak{sl}_{n}(K) \longrightarrow \mathfrak{sl}_{n}(K), \quad Z \mapsto \operatorname{ad}_{Y}(Z) := YZ - ZY$$

eine lineare Abbildung ist.

(3) Betrachten wir den Fall $K = \mathbb{C}$, n = 2 und

$$Y = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right).$$

Bestimmen Sie das Spektrum von ady sowie die entsprechenden Eigenräume.

Aufgabe 34.[3 Punkte] Seien K ein Körper und $A \in \mathsf{GL}_n(K)$ für ein $n \in \mathbb{N}$. Beweisen Sie, dass die Mengen aller Eigenvektoren von A und A^{-1} gleich sind. Bitte wenden!

Aufgabe 35 (Bonus).[8 Bonuspunkte] Sei $K = \mathbb{R}$ oder \mathbb{C} und $n \in \mathbb{N}$. Für eine Matrix $A \in \mathsf{Mat}_{n \times n}(K)$ bezeichnen wir

$$||A|| := n \cdot \max_{1 \le i, j \le n} |a_{ij}| \in \mathbb{R}_{\ge 0}.$$

- (1) Dann gelten die folgenden Eigenschaften:
 - ||A|| = 0 genau dann wenn A = 0.
 - Für alle $\lambda \in K$ und $A \in \mathsf{Mat}_{n \times n}(K)$ gilt $||\lambda \cdot A|| = |\lambda| \cdot ||A||$.
 - Für alle $A, B \in \mathsf{Mat}_{n \times n}(K)$ gilt: $||A + B|| \le ||A|| + ||B||$.
 - Für alle $A, B \in \mathsf{Mat}_{n \times n}(K)$ gilt: $||A \cdot B|| \le ||A|| \cdot ||B||$.
- (2) Beweisen Sie, dass für jede Matrix $A \in \mathsf{Mat}_{n \times n}(K)$ die Reihe

$$1 + A + \frac{A^2}{2!} + \dots + \frac{A^l}{l!} + \dots$$

konvergent ist. Die Summe dieser Reihe wird $\exp(A)$ bezeichnet. Hinweis: Man muss zeigen, dass $\forall \varepsilon > 0 \ \exists l_0 \in \mathbb{N} : \forall l \geq l_0 \ \text{gilt:}$

$$\left| \left| \frac{A^l}{l!} + \frac{A^{l+1}}{(l+1)!} + \dots \right| \right| < \varepsilon.$$

Abgabe: Dienstag, 13.11.2018, 9:00 Uhr.