SIMPLE-MINDED SUBCATEGORIES AND T-STRUCTURES

OLAF M. SCHNÜRER

CONTENTS

1. INTRODUCTION

Let $\mathcal T$ be a triangulated category. The aim of this short note is to establish a bijection between the set of bounded t-structures on $\mathcal T$ whose heart is a finite-length category and the set of full simple-minded subcategories of $\mathcal T$ (see Definition [4.1\)](#page-2-1). A t-structure as above corresponds to the full subcategory of $\mathcal T$ whose objects are the simple objects of its heart.

The results presented here are essentially contained in [\[AN09,](#page-5-1) [KN13,](#page-5-2) [KY14,](#page-5-3) [RR17,](#page-5-4) [SY19\]](#page-5-5) with special emphasis on [\[AN09\]](#page-5-1). We do not give precise references to these sources later on. This note was originally written around 2013 when we were not aware of $[AND9]$. Our motivation was to generalize some results of $\lceil \text{Sch11} \rceil$. This note may also be helpful for understanding $\lceil \text{EQ16} \rceil$, Theorem 2.17. The main results are Theorems [4.4](#page-4-0) and [4.6.](#page-5-8)

2. NOTATION

Let T be a triangulated category. Let U be a full subcategory of T. We denote by tria (\mathcal{U}) (resp. thick (U)) the smallest strict full triangulated (resp. thick) subcategory of T that contains U.

We denote by susp (\mathcal{U}) (resp. susp (\mathcal{U})) the smallest strict full subcategory containing $\mathcal{U} \cup \{0\}$ which is closed under extensions and positive (resp. negative) shifts (it is in particular closed under finite direct sums). Its closure under direct summands will be denoted susp $\mathcal{D}(\mathcal{U})$ (resp. susp^{-, $\mathcal{D}(\mathcal{U})$}).

3. Filtrations and cofiltrations

Let $\mathcal T$ be a triangulated category.

Definition 3.1. Let M be an object of T, and let S_1, S_2, \ldots, S_m be objects of T. An (S_1, \ldots, S_m) **filtration** of M is a finite sequence

$$
0 = M_0 \xrightarrow{0=f_0} M_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{m-2}} M_{m-1} \xrightarrow{f_{m-1}} M_m = M
$$

in $\mathcal T$ such that each morphism f_{i-1} fits into a triangle

$$
M_{i-1} \xrightarrow{f_{i-1}} M_i \to S_i \to [1]M_{i-1},
$$

for $1 \leq i \leq m$; in other words a/any cone of f_{i-1} is isomorphic to S_i . (Note that $M_1 \cong S_1$.)

An (S_1, \ldots, S_m) -cofiltration of M is a finite sequence

$$
M = M^{0} \xrightarrow{g^{0}} M^{1} \xrightarrow{g^{1}} \cdots \xrightarrow{g^{m-2}} M^{m-1} \xrightarrow{g^{m-1}} M^{m} = 0
$$

in $\mathcal T$ such that each morphism g^{i-1} fits into a triangle

$$
S_i \to M^{i-1} \xrightarrow{g^{i-1}} M^i \to [1]S_i,
$$

for $1 \leq i \leq m$. (Note that $S_m \cong M^{m-1}$.) (If $m = 0$ then $M = 0$ in both cases.)

We sometimes refer to the S_i appearing in an (S_1, \ldots, S_m) -(co)filtration of M as the subquotients of the (co)filtration.

Lemma 3.2. Let M be an object of T, and let S_1, S_2, \ldots, S_m be objects of T. Then M has an $p(S_1, \ldots, S_m)$ -filtration if and only if it has an (S_1, \ldots, S_m) -cofiltration.

Moreover, the cone of $M_j \xrightarrow{f_{m-1}\cdots f_j} M$ has an (S_{j+1}, \ldots, S_m) -filtration, for any $0 \leq j \leq m$.

Proof. We start with an (S_1, \ldots, S_m) -filtration of M as above. For any $0 \leq i \leq m$ let

$$
M_i \xrightarrow{f_{m-1}\cdots f_i} M \to M/M_i \to [1]M_i
$$

be a triangle (here M/M_i is just suggestive notation). If $i > 0$, the octahedral axiom applied to $M_{i-1} \rightarrow$ $M_i \to M$ provides an octahedral diagram

$$
M \xrightarrow{\sim} M/M_0 \to M/M_1 \to M/M_2 \to \cdots \to M/M_{m-1} \to M/M_m = 0
$$

and triangles

$$
S_i \to M/M_{i-1} \to M/M_i \to [1]S_i.
$$

This means that M has a (S_1, \ldots, S_m) -cofiltration.

Similarly, one passes from a cofiltration to a filtration.

This argument also shows that the cone M/M_j of $M_j \xrightarrow{f_{m-1}\cdots f_j} M$ has an (S_{j+1}, \ldots, S_m) -cofiltration and hence an (S_{j+1}, \ldots, S_m) -filtration.

We now explain when it is possible to swap two consecutive subquotients.

Lemma 3.3 (Swapping consecutive subquotients). Let M be an object of T, and let S_1, S_2, \ldots, S_m be objects of $\mathcal T$. Let

$$
0 = M_0 \xrightarrow{0=f_0} M_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{m-2}} M_{m-1} \xrightarrow{f_{m-1}} M_m = M
$$

be an (S_1, \ldots, S_m) -filtration of M, with $m \geq 2$, and let $1 \leq i \leq m$. Assume that one of the following two conditions is satisfied (the first condition clearly implies the second one)

- Hom $(S_{i+1}, [1]S_i) = 0$
- If $M_{i-1} \stackrel{f_{i-1}}{\longrightarrow} M_i \to S_i \to [1]M_{i-1}$ and $M_i \stackrel{f_i}{\longrightarrow} M_{i+1} \to S_{i+1} \to [1]M_i$ is a/any choice of triangles (cf. Definition [3.1\)](#page-0-3), then the composition $S_{i+1} \rightarrow [1] M_i \rightarrow [1] S_i$ vanishes.
- Then M has an $(S_1, ..., S_{i-1}, S_{i+1}, S_i, S_{i+2}, ..., S_m)$ -filtration.

Proof. By assumption each morphism f_{j-1} fits into a triangle

$$
M_{j-1} \xrightarrow{f_{j-1}} M_j \to S_j \to [1]M_{j-1},
$$

for $1 \leq j \leq m$. Consider the octahedron

By assumption we have $g = 0$. Hence we can assume that $E = S_i \oplus S_{i+1}$ and that the two dotted arrows in the above octahedron are the obvious inclusion and projection morphisms. The octahedral axiom applied to the composition $M_{i+1} \to E \to S_i$, where the second map is the projection, yields an octahedron

Hence by replacing the part $M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1}$ of the filtration of M by $M_{i-1} \xrightarrow{\tilde{f}_{i-1}} \widetilde{M}_i \xrightarrow{\tilde{f}_i} M_{i+1}$ we obtain the filtration we want.

Definition 3.4. Let U be a full subcategory of T, and let (d_1, \ldots, d_m) be a sequence of integers. A (d_1,\ldots,d_m) - \mathcal{U} -(co)filtration of an object M is a $([d_1]U_1,\ldots,[d_m]U_m)$ -(co)filtration where U_1,\ldots,U_m are objects of U .

Lemma 3.5. An object of $\mathcal T$ is in tria(U) if and only if it has a (d_1,\ldots,d_m) -U-(co)filtration, for some sequence (d_1, \ldots, d_m) of integers.

Proof. All objects having such a (co)filtration certainly are in tria (\mathcal{U}) . Moreover, the subcategory of these objects is a strict full triangulated subcategory (use [BBD82, Lemma 1.3.10]). Hence it is equal to $tria(\mathcal{U}).$ П

4. SIMPLE-MINDED SUBCATEGORIES AND T-STRUCTURES

Let $\mathcal T$ be a triangulated category.

Definition 4.1. A simple-minded subcategory of $\mathcal T$ is a strict full subcategory $\mathcal S$ of $\mathcal T$ that satisfies the following three conditions.

- (S1) No object of S is (isomorphic to) zero.
- (S2) Any non-zero morphism between two objects of S is an isomorphism.
- (S3) Hom $(S, [i]S') = 0$ for all $S, S' \in S$ and all $i < 0$.

We say that a simple-minded subcategory S of T is full if $\text{tria}(S) = T$.

Let S be a simple-minded subcategory of T. Note that conditions (S1) and (S2) imply that the endomorphism ring of each object of S is a division ring, so in particular each object of S is indecomposable.

Our aim is to construct a t-structure on tria(S) (which will turn out to coincide with thick(S)). We first show that any object of tria(S) has a nice filtration.

Lemma 4.2. Given an object M of tria(S) there is a decreasing sequence $d_1 \geq d_2 \geq \cdots \geq d_m$ of integers such that M has a (d_1, \ldots, d_m) -S-filtration.

Here is an illustration in case $m = 4$:

Proof. We already know by Lemma 3.5 that M has a (d_1, \ldots, d_m) -S-filtration

(4.1)
$$
0 = M_0 \xrightarrow{0=f_0} M_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{m-2}} M_{m-1} \xrightarrow{f_{m-1}} M_m = M,
$$

so there are objects $S_1, \ldots, S_m \in \mathcal{S}$ such that

$$
(4.2) \t\t\t M_{i-1} \xrightarrow{f_{i-1}} M_i \to [d_i]S_i \to [1]M_{i-1}
$$

are triangles. Assume now that there exists an integer i with $1 \leq i \leq m$ such that $d_i \leq d_{i+1}$. Consider the octahedron

If $g = 0$ we can swap our filtration of M to a $([d_1]S_1,\ldots,[d_{i+1}]S_{i+1},[d_i]S_i,\ldots,[d_m]S_m)$ -filtration by Lemma 3.3.

Assume now that g is non-zero. Then condition (S3) together with $d_i < d_{i+1}$ show that $d_{i+1} = d_i + 1$, and condition (S2) implies that q is an isomorphism. Hence E is zero and $f_i f_{i-1} : M_{i-1} \to M_{i+1}$ is an isomorphism. As a consequence, if $i + 2 \leq m$, we can replace the filtration (4.1) by the shorter filtration

$$
0 = M_0 \xrightarrow{0=f_0} \cdots \xrightarrow{f_{i-2}} M_{i-1} \xrightarrow{f_{i+1}f_i f_{i-1}} M_{i+2} \xrightarrow{f_{i+2}} \cdots \xrightarrow{f_{m-1}} M_m = M.
$$

Otherwise we have $i + 1 = m$. Then in case $m = 2$ (and $i = 1$) the claim is trivially true since $0 = M_0 \stackrel{\sim}{\rightarrow} M_2 = M$, and otherwise we can replace the filtration (4.1) by the shorter filtration

$$
0 = M_0 \xrightarrow{0=f_0} \cdots \xrightarrow{f_{i-3}} M_{i-2} \xrightarrow{f_i f_{i-1} f_{i-2}} M_{i+1} = M
$$

So, under the assumption $q \neq 0$, we have deleted in all cases the two subquotients $[d_i]S_i$ and $[d_{i+1}]S_{i+1}$ of our original filtration.

Now it is clear how we can rearrange resp. modify the filtration of M in finitely many steps till it has the form we want. \Box

Lemma 4.3. Let (4.1) be a (d_1, \ldots, d_m) -S-filtration of an object $M \in \mathcal{T}$ with $d_1 \geq d_2 \geq \cdots \geq d_m$. We $fix\ triangles\ (4.2)\ with\ S_i\in\mathcal{S}$ for all i and assume that $m\geqslant 1$. Then both morphisms $M_1\xrightarrow{f_{m-1}...f_2f_1}M$ and $M \to [d_m] S_m$ are non-zero.

Proof. We fit $f_{m-1} \dots f_2 f_1 : M_1 \to M$ into a triangle

$$
M_1 \to M \to M/M_1 \to [1]M_1
$$

and assume that $M_1 \to M$ vanishes. Then $M/M_1 \cong M \oplus [1]M_1$, in particular $[1]M_1 \cong [d_1 + 1]S_1$ is a direct summand of M/M_1 . By Lemma 3.2 we know that M/M_1 has a $([d_2]S_2,\ldots,[d_m]S_m)$ -filtration. By assumption (S3) we have for all $2 \leq i \leq m$ (and also for $i = 1$)

$$
Hom([d_1 + 1]S_1, [d_i]S_i) = Hom(S_1, [\underbrace{d_i - d_1 - 1}_{< 0}]S_i) = 0.
$$

This implies that $Hom([d_1+1]S_1, M/M_1)$ vanishes. Since $[d_1+1]S_1$ is a direct summand of M/M_1 , this implies that S_1 vanishes; this contradicts condition (S1).

Assume now that the map α in the triangle

$$
M_{m-1} \xrightarrow{f_{m-1}} M \xrightarrow{\alpha} [d_m] S_m \to [1] M_{m-1}
$$

vanishes. Then M_{m-1} is isomorphic to $[d_m-1]S_m \oplus M$. Obviously M_{m-1} has a $([d_1]S_1, \ldots, [d_{m-1}]S_{m-1})$ filtration. For all $1 \leq i \leq m-1$ (and also for $i = m$) we have

$$
Hom([d_i]S_i, [d_m - 1]S_m) = Hom(S_i, [\underbrace{d_m - d_i - 1}_{< 0}]S_m) = 0
$$

by condition [\(S3\).](#page-2-5) Hence $\text{Hom}(M_{m-1},[d_m - 1]S_m)$ vanishes which yields a contradiction as above. \square

Let $n \in \mathbb{Z}$. We denote by $\mathcal{D}^{\leq n}$ (resp. $\mathcal{D}^{\geq n}$) the full subcategory of $\mathcal T$ consisting of objects that have a (d_1, \ldots, d_m) -S-filtration for some $m \in \mathbb{N}$ and some sequence $d_1 \geq d_2 \geq \cdots \geq d_m$ of integers such that $-d_m \leq n$ (resp. $-d_1 \geq n$). By convention, the last condition is empty if $m = 0$. Note that the zero object is both in $\mathcal{D}^{\leq n}$ and in $\mathcal{D}^{\geq n}$.

Note that $\mathcal{D}^{\leq n} = [-n]\mathcal{D}^{\leq 0}$ and $\mathcal{D}^{\geq n} = [-n]\mathcal{D}^{\geq 0}$.

Theorem 4.4. Let S be a simple-minded subcategory of a triangulated category \mathcal{T} .

(a) We have $\text{tria}(\mathcal{S}) = \text{thick}(\mathcal{S})$, and

$$
t_{\mathcal{S}} := (\text{sup}(\mathcal{S}), \text{sup}^-(\mathcal{S}))
$$

defines a bounded (and hence non-degenerate) t-structure t_S on this category. We have susp (S) = $\text{sup}(\mathcal{S})^{\oplus} = \mathcal{D}^{\leq 0} \text{ and } \text{sup}^-(\mathcal{S}) = \text{sup}^{-,\oplus}(\mathcal{S}) = \mathcal{D}^{\geq 0}.$

(b) The heart $\mathcal{O}(t_S)$ of this t-structure t_S is a finite-length category and its simple objects are precisely the objects of S.

Proof. Part [\(a\):](#page-4-1) We claim that $t := (\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ defines a t-structure on tria(S).

The condition $\text{Hom}(D^{\leq 0}, D^{\geq 1}) = 0$ follows from assumption [\(S3\).](#page-2-5) The conditions $D^{\leq 0} \subset D^{\leq 1}$ and $\mathcal{D}^{\geq 1} \subset \mathcal{D}^{\geq 0}$ are obvious.

Finally, let $M \in \text{tria}(\mathcal{S})$ be given. We want to construct a "truncation triangle" for M and can certainly assume that $M \neq 0$. Lemma [4.2](#page-2-6) provides a decreasing sequence of integers $d_1 \geq d_2 \geq \cdots \geq d_m$ (where $m \geq 1$) such that M has a (d_1, \ldots, d_m) -S-filtration [\(4.1\)](#page-3-0). Let $i \in \{0, \ldots, m\}$ be maximal such that $-d_j \leq 0$ for all $1 \leq j \leq i$. If we fit the morphism $M_i \xrightarrow{f_{m-1} \ldots f_i} M$ into a triangle

$$
M_i \to M \to B \to [1]M_i,
$$

then $M_i \in \mathcal{D}^{\leq 0}$ and $B \in \mathcal{D}^{\geq 1}$ by Lemma [3.2.](#page-1-1) This shows that t is a t-structure on tria(S).

This t-structure is obviously bounded: For M as above we have $M \in \mathcal{D}^{\geq -d_1} \cap \mathcal{D}^{\leq -d_m}$. This also implies that t is a non-degenerate t -structure.

The main theorem of [\[LC07\]](#page-5-10) now shows that $\text{tria}(\mathcal{S})$ is Karoubian and hence $\text{tria}(\mathcal{S}) = \text{thick}(\mathcal{S})$.

Note that $S \subset \mathcal{D}^{\leq 0} \subset \text{sup}(\mathcal{S}) \subset \text{sup}(\mathcal{S})$. Since any left aisle of a t-structure is closed under extensions, positive shifts and direct summands, the last two inclusions are equalities. Similarly we obtain $\mathcal{D}^{\geq 0} = \text{sup}^-(\mathcal{S}) = \text{sup}^{-,\oplus}(\mathcal{S})$. So $t = t_{\mathcal{S}}$. This proves part [\(a\).](#page-4-1)

Part [\(b\):](#page-4-2) We claim that any object of the heart $\heartsuit(t)$ of our t-structure $t = t_S$ on thick $(\mathcal{S}) = \text{tria}(\mathcal{S})$ is a finite extension of objects of S .

Let M be in $\heartsuit(t)$ with $M \neq 0$. Lemmata [4.2](#page-2-6) and [4.3](#page-3-2) yield a (d_1, \ldots, d_m) -S-filtration of M with $d_1 \geqslant d_2 \geqslant \cdots \geqslant d_m$ (and subquotients $S_1, \ldots, S_m \in \mathcal{S}$) and non-zero morphisms $[d_1]S_1 \to M$ and $M \to [d_m]S_m$ for objects S_1 and S_m in S. This implies that $d_1 \leq 0$ (since otherwise $[d_1]S_1 \in \mathcal{D}^{\leq -1}$ has no non-zero morphism to $M \in \mathcal{D}^{\geq 0}$ and $d_m \geq 0$ (since otherwise $[d_m] S_m \in \mathcal{D}^{\geq 1}$ receives no non-zero morphism from $M \in \mathcal{D}^{\leq 0}$. Hence $0 = d_1 = d_2 = \cdots = d_m$. This shows our claim.

We show that the simple objects are precisely the objects of S .

Let $0 \neq M \in \mathcal{O}(t)$ be filtered as above. Recall that short exact sequences in the heart correspond bijectively to triangles with terms in the heart. Then we have a short exact sequence $M_{m-1} \to M \to S_m$ in $\mathcal{O}(t)$. Recall that S_m is nonzero by condition [\(S1\).](#page-2-2) Hence if M is simple then $M \to S_m$ must be an isomorphism (and $m = 1$). Hence any simple object of the heart is in S.

Conversely, let $S \in \mathcal{S}$. Let $M \to S$ be a non-zero subobject in $\heartsuit(t)$. We have seen above that M has a $(0, \ldots, 0)$ -S-filtration. This yields a morphism $S_1 \to M$ with $S_1 \in S$ whose cone is in $\heartsuit(t)$ by Lemma [3.2.](#page-1-1) This means that $S_1 \to M$ is a subobject. The composition $S_1 \to M \to S$ of monomorphisms in the heart is then a monomorphism. Since $S_1 \neq 0$ by [\(S1\),](#page-2-2) this monomorphism is non-zero and hence an isomorphism by assumption [\(S2\).](#page-2-3) In particular $M \to S$ is an isomorphism, so S is a simple object of the heart. Hence any object of S is a simple object of the heart.

It is now clear that $\heartsuit(t)$ is a finite-length category.

Corollary 4.5. Let $n \in \mathbb{Z}$. Then

$$
\mathcal{D}^{\leq n} = \{ M \in \text{thick}(\mathcal{S}) \mid \text{Hom}(M, [-l]S) = 0 \text{ for all } S \in \mathcal{S} \text{ and } l > n \},\
$$

$$
\mathcal{D}^{\geq n} = \{ M \in \text{thick}(\mathcal{S}) \mid \text{Hom}([-l]S, M) = 0 \text{ for all } S \in \mathcal{S} \text{ and } l < n \}.
$$

Proof. Using [\[BBD82,](#page-5-9) 1.3.4] this is immediate from Theorem [4.4.](#page-4-0)

Theorem 4.6. Let $\mathcal T$ be a triangulated category. Mapping a full simple-minded subcategory S of $\mathcal T$ to the t-structure $t_{\mathcal{S}} = (\text{supp}(\mathcal{S}), \text{supp}(\mathcal{S}))$ from Theorem [4.4](#page-4-0) defines a bijection between the sets of

(a) full simple-minded subcategories of $\mathcal T$ and

(b) bounded t-structures on $\mathcal T$ whose heart is a finite-length category.

The inverse map maps a bounded t-structure t with finite-length heart to the full subcategory Simples($\heartsuit(t)$) of $\mathcal T$ formed by the simple objects of its heart $\heartsuit(t)$.

Proof. Theorem [4.4](#page-4-0) shows that the map $S \rightarrow t_S$ is well-defined and satisfies Simples($\mathcal{O}(t_S)$) = S.

Conversely, let $t = (t^{\leq 0}, t^{\geq 0})$ be a bounded t-structure on $\mathcal T$ with finite-length heart. Then $\mathcal S :=$ Simples($\heartsuit(t)$) certainly satisfies the conditions [\(S1\)](#page-2-2) and [\(S2\)](#page-2-3) of Definition [4.1,](#page-2-1) and condition [\(S3\)](#page-2-5) follows from Hom $(t^{\leq 0}, t^{\geq 1}) = 0$. Since t is bounded and $\heartsuit(t)$ is finite-length it is clear that tria $(\mathcal{S}) = \mathcal{T}$. This shows that S is a full simple-minded subcategory of T. Obviously we have $\text{sup}(\mathcal{S}) \subset t^{\leq 0}$ and $susp^{-}(\mathcal{S}) \subset t^{\geqslant 0}$. So the two aisles of $t_{\mathcal{S}}$ are contained in the corresponding aisles of t. This implies that $t = t_{\mathcal{S}} = t_{\text{Simples}(\heartsuit(t))}.$

REFERENCES

- [AI12] Takuma Aihara and Osamu Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633–668. MR 2927802
- [AN09] Salah Al-Nofayee, Simple objects in the heart of a t-structure, J. Pure Appl. Algebra 213 (2009), no. 1, 54–59. MR 2462984
- [BBD82] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171.
- [EQ16] Ben Elias and You Qi, An approach to categorification of some small quantum groups II, Adv. Math. 288 (2016), 81–151. MR 3436383
- [KL10] Steffen Koenig and Yuming Liu, Simple-minded systems in stable module categories, 2010, arXiv:1009.1427.
- [KN13] Bernhard Keller and Pedro Nicolás, Weight structures and simple dg modules for positive dg algebras, Int. Math. Res. Not. IMRN (2013), no. 5, 1028–1078. MR 3031826
- [KY14] Steffen Koenig and Dong Yang, Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras, Doc. Math. 19 (2014), 403–438. MR 3178243
- [LC07] Jue Le and Xiao-Wu Chen, Karoubianness of a triangulated category, J. Algebra 310 (2007), no. 1, 452–457.
- [RR17] Jeremy Rickard and Raphaël Rouquier, Stable categories and reconstruction, J. Algebra 475 (2017), 287-307. MR 3612472
- [Sch11] Olaf M. Schnürer, *Perfect derived categories of positively graded DG algebras*, Appl. Categ. Structures 19 (2011), no. 5, 757–782.
- [SY19] Hao Su and Dong Yang, From simple-minded collections to silting objects via Koszul duality, Algebr. Represent. Theory 22 (2019), no. 1, 219–238. MR 3908901