SIMPLE-MINDED SUBCATEGORIES AND T-STRUCTURES

OLAF M. SCHNÜRER

CONTENTS

1.	Introduction	1
2.	Notation	1
3.	Filtrations and cofiltrations	1
4.	Simple-minded subcategories and t-structures	3
References		6

1. INTRODUCTION

Let \mathcal{T} be a triangulated category. The aim of this short note is to establish a bijection between the set of bounded t-structures on \mathcal{T} whose heart is a finite-length category and the set of full simple-minded subcategories of \mathcal{T} (see Definition 4.1). A t-structure as above corresponds to the full subcategory of \mathcal{T} whose objects are the simple objects of its heart.

The results presented here are essentially contained in [AN09, KN13, KY14, RR17, SY19] with special emphasis on [AN09]. We do not give precise references to these sources later on. This note was originally written around 2013 when we were not aware of [AN09]. Our motivation was to generalize some results of [Sch11]. This note may also be helpful for understanding [EQ16, Theorem 2.17]. The main results are Theorems 4.4 and 4.6.

2. NOTATION

Let \mathcal{T} be a triangulated category. Let \mathcal{U} be a full subcategory of \mathcal{T} . We denote by tria(\mathcal{U}) (resp. thick(\mathcal{U})) the smallest strict full triangulated (resp. thick) subcategory of \mathcal{T} that contains \mathcal{U} .

We denote by $\operatorname{susp}(\mathcal{U})$ (resp. $\operatorname{susp}^{-}(\mathcal{U})$) the smallest strict full subcategory containing $\mathcal{U} \cup \{0\}$ which is closed under extensions and positive (resp. negative) shifts (it is in particular closed under finite direct sums). Its closure under direct summands will be denoted $\operatorname{susp}^{\oplus}(\mathcal{U})$ (resp. $\operatorname{susp}^{-,\oplus}(\mathcal{U})$).

3. FILTRATIONS AND COFILTRATIONS

Let \mathcal{T} be a triangulated category.

Definition 3.1. Let M be an object of \mathcal{T} , and let S_1, S_2, \ldots, S_m be objects of \mathcal{T} . An (S_1, \ldots, S_m) -filtration of M is a finite sequence

$$0 = M_0 \xrightarrow{0=f_0} M_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{m-2}} M_{m-1} \xrightarrow{f_{m-1}} M_m = M$$

in \mathcal{T} such that each morphism f_{i-1} fits into a triangle

$$M_{i-1} \xrightarrow{f_{i-1}} M_i \to S_i \to [1]M_{i-1}$$

for $1 \leq i \leq m$; in other words a/any cone of f_{i-1} is isomorphic to S_i . (Note that $M_1 \cong S_1$.)

An (S_1, \ldots, S_m) -cofiltration of M is a finite sequence

$$M = M^0 \xrightarrow{g^0} M^1 \xrightarrow{g^1} \cdots \xrightarrow{g^{m-2}} M^{m-1} \xrightarrow{g^{m-1}} M^m = 0$$

in \mathcal{T} such that each morphism g^{i-1} fits into a triangle

$$S_i \to M^{i-1} \xrightarrow{g^{i-1}} M^i \to [1]S_i,$$

for $1 \leq i \leq m$. (Note that $S_m \cong M^{m-1}$.) (If m = 0 then M = 0 in both cases.)

We sometimes refer to the S_i appearing in an (S_1, \ldots, S_m) -(co)filtration of M as the **subquotients** of the (co)filtration.

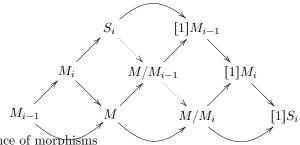
Lemma 3.2. Let M be an object of \mathcal{T} , and let S_1, S_2, \ldots, S_m be objects of \mathcal{T} . Then M has an (S_1, \ldots, S_m) -filtration if and only if it has an (S_1, \ldots, S_m) -cofiltration.

Moreover, the cone of $M_j \xrightarrow{f_{m-1}\cdots f_j} M$ has an (S_{j+1},\ldots,S_m) -filtration, for any $0 \leq j \leq m$.

Proof. We start with an (S_1, \ldots, S_m) -filtration of M as above. For any $0 \le i \le m$ let

$$M_i \xrightarrow{f_{m-1} \cdots f_i} M \to M/M_i \to [1]M_i$$

be a triangle (here M/M_i is just suggestive notation). If i > 0, the octahedral axiom applied to $M_{i-1} \rightarrow M_i \rightarrow M$ provides an octahedral diagram



Hence we obtain a sequence of morphisms

$$M \xrightarrow{\sim} M/M_0 \to M/M_1 \to M/M_2 \to \dots \to M/M_{m-1} \to M/M_m = 0$$

and triangles

$$S_i \to M/M_{i-1} \to M/M_i \to [1]S_i$$

This means that M has a (S_1, \ldots, S_m) -cofiltration.

Similarly, one passes from a cofiltration to a filtration.

This argument also shows that the cone M/M_j of $M_j \xrightarrow{f_{m-1}\cdots f_j} M$ has an (S_{j+1},\ldots,S_m) -cofiltration and hence an (S_{j+1},\ldots,S_m) -filtration.

We now explain when it is possible to swap two consecutive subquotients.

Lemma 3.3 (Swapping consecutive subquotients). Let M be an object of \mathcal{T} , and let S_1, S_2, \ldots, S_m be objects of \mathcal{T} . Let

$$0 = M_0 \xrightarrow{0=f_0} M_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{m-2}} M_{m-1} \xrightarrow{f_{m-1}} M_m = M$$

be an (S_1, \ldots, S_m) -filtration of M, with $m \ge 2$, and let $1 \le i < m$. Assume that one of the following two conditions is satisfied (the first condition clearly implies the second one)

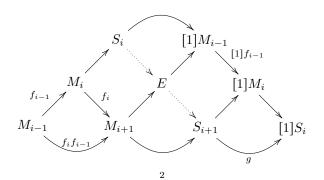
- Hom $(S_{i+1}, [1]S_i) = 0$
- If $M_{i-1} \xrightarrow{f_{i-1}} M_i \to S_i \to [1]M_{i-1}$ and $M_i \xrightarrow{f_i} M_{i+1} \to S_{i+1} \to [1]M_i$ is a/any choice of triangles (cf. Definition 3.1), then the composition $S_{i+1} \to [1]M_i \to [1]S_i$ vanishes.

Then *M* has an $(S_1, ..., S_{i-1}, S_{i+1}, S_i, S_{i+2}, ..., S_m)$ -filtration.

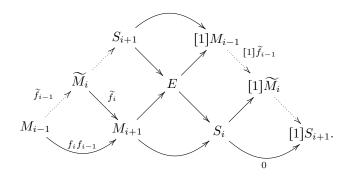
Proof. By assumption each morphism f_{j-1} fits into a triangle

$$M_{j-1} \xrightarrow{f_{j-1}} M_j \to S_j \to [1]M_{j-1},$$

for $1 \leq j \leq m$. Consider the octahedron



By assumption we have g = 0. Hence we can assume that $E = S_i \oplus S_{i+1}$ and that the two dotted arrows in the above octahedron are the obvious inclusion and projection morphisms. The octahedral axiom applied to the composition $M_{i+1} \to E \to S_i$, where the second map is the projection, yields an octahedron



Hence by replacing the part $M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1}$ of the filtration of M by $M_{i-1} \xrightarrow{\widetilde{f}_{i-1}} \widetilde{M}_i \xrightarrow{\widetilde{f}_i} M_{i+1}$ we obtain the filtration we want.

Definition 3.4. Let \mathcal{U} be a full subcategory of \mathcal{T} , and let (d_1, \ldots, d_m) be a sequence of integers. A (d_1, \ldots, d_m) - \mathcal{U} -(co)filtration of an object M is a $([d_1]U_1, \ldots, [d_m]U_m)$ -(co)filtration where U_1, \ldots, U_m are objects of \mathcal{U} .

Lemma 3.5. An object of \mathcal{T} is in tria(\mathcal{U}) if and only if it has a (d_1, \ldots, d_m) - \mathcal{U} -(co)filtration, for some sequence (d_1, \ldots, d_m) of integers.

Proof. All objects having such a (co)filtration certainly are in tria(\mathcal{U}). Moreover, the subcategory of these objects is a strict full triangulated subcategory (use [BBD82, Lemma 1.3.10]). Hence it is equal to tria(\mathcal{U}).

4. SIMPLE-MINDED SUBCATEGORIES AND T-STRUCTURES

Let \mathcal{T} be a triangulated category.

Definition 4.1. A simple-minded subcategory of \mathcal{T} is a strict full subcategory \mathcal{S} of \mathcal{T} that satisfies the following three conditions.

- (S1) No object of \mathcal{S} is (isomorphic to) zero.
- (S2) Any non-zero morphism between two objects of \mathcal{S} is an isomorphism.
- (S3) Hom(S, [i]S') = 0 for all $S, S' \in S$ and all i < 0.

We say that a simple-minded subcategory S of T is **full** if tria(S) = T.

Let S be a simple-minded subcategory of T. Note that conditions (S1) and (S2) imply that the endomorphism ring of each object of S is a division ring, so in particular each object of S is indecomposable.

Our aim is to construct a t-structure on tria(\mathcal{S}) (which will turn out to coincide with thick(\mathcal{S})). We first show that any object of tria(\mathcal{S}) has a nice filtration.

Lemma 4.2. Given an object M of tria(S) there is a decreasing sequence $d_1 \ge d_2 \ge \cdots \ge d_m$ of integers such that M has a (d_1, \ldots, d_m) -S-filtration.

Here is an illustration in case m = 4:

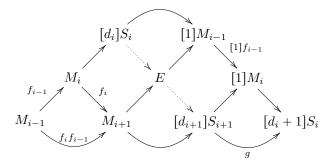
Proof. We already know by Lemma 3.5 that M has a (d_1, \ldots, d_m) -S-filtration

(4.1)
$$0 = M_0 \xrightarrow{0=f_0} M_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{m-2}} M_{m-1} \xrightarrow{f_{m-1}} M_m = M_m$$

so there are objects $S_1, \ldots, S_m \in \mathcal{S}$ such that

(4.2)
$$M_{i-1} \xrightarrow{f_{i-1}} M_i \to [d_i]S_i \to [1]M_{i-1}$$

are triangles. Assume now that there exists an integer i with $1 \le i < m$ such that $d_i < d_{i+1}$. Consider the octahedron



If g = 0 we can swap our filtration of M to a $([d_1]S_1, \ldots, [d_{i+1}]S_{i+1}, [d_i]S_i, \ldots, [d_m]S_m)$ -filtration by Lemma 3.3.

Assume now that g is non-zero. Then condition (S3) together with $d_i < d_{i+1}$ show that $d_{i+1} = d_i + 1$, and condition (S2) implies that g is an isomorphism. Hence E is zero and $f_i f_{i-1} : M_{i-1} \to M_{i+1}$ is an isomorphism. As a consequence, if $i+2 \leq m$, we can replace the filtration (4.1) by the shorter filtration

$$0 = M_0 \xrightarrow{0=f_0} \cdots \xrightarrow{f_{i-2}} M_{i-1} \xrightarrow{f_{i+1}f_if_{i-1}} M_{i+2} \xrightarrow{f_{i+2}} \cdots \xrightarrow{f_{m-1}} M_m = M_m$$

Otherwise we have i + 1 = m. Then in case m = 2 (and i = 1) the claim is trivially true since $0 = M_0 \xrightarrow{\sim} M_2 = M$, and otherwise we can replace the filtration (4.1) by the shorter filtration

$$0 = M_0 \xrightarrow{0=f_0} \cdots \xrightarrow{f_{i-3}} M_{i-2} \xrightarrow{f_i f_{i-1} f_{i-2}} M_{i+1} = M$$

So, under the assumption $g \neq 0$, we have deleted in all cases the two subquotients $[d_i]S_i$ and $[d_{i+1}]S_{i+1}$ of our original filtration.

Now it is clear how we can rearrange resp. modify the filtration of M in finitely many steps till it has the form we want.

Lemma 4.3. Let (4.1) be a (d_1, \ldots, d_m) -S-filtration of an object $M \in \mathcal{T}$ with $d_1 \ge d_2 \ge \cdots \ge d_m$. We fix triangles (4.2) with $S_i \in S$ for all i and assume that $m \ge 1$. Then both morphisms $M_1 \xrightarrow{f_{m-1} \ldots f_2 f_1} M$ and $M \to [d_m]S_m$ are non-zero.

Proof. We fit $f_{m-1} \ldots f_2 f_1 : M_1 \to M$ into a triangle

$$M_1 \to M \to M/M_1 \to [1]M_1$$

and assume that $M_1 \to M$ vanishes. Then $M/M_1 \cong M \oplus [1]M_1$, in particular $[1]M_1 \cong [d_1 + 1]S_1$ is a direct summand of M/M_1 . By Lemma 3.2 we know that M/M_1 has a $([d_2]S_2, \ldots, [d_m]S_m)$ -filtration. By assumption (S3) we have for all $2 \leq i \leq m$ (and also for i = 1)

$$\operatorname{Hom}([d_1+1]S_1, [d_i]S_i) = \operatorname{Hom}(S_1, [\underbrace{d_i - d_1 - 1}_{<0}]S_i) = 0.$$

This implies that $\text{Hom}([d_1+1]S_1, M/M_1)$ vanishes. Since $[d_1+1]S_1$ is a direct summand of M/M_1 , this implies that S_1 vanishes; this contradicts condition (S1).

Assume now that the map α in the triangle

$$M_{m-1} \xrightarrow{f_{m-1}} M \xrightarrow{\alpha} [d_m] S_m \to [1] M_{m-1}$$

vanishes. Then M_{m-1} is isomorphic to $[d_m-1]S_m \oplus M$. Obviously M_{m-1} has a $([d_1]S_1, \ldots, [d_{m-1}]S_{m-1})$ -filtration. For all $1 \leq i \leq m-1$ (and also for i=m) we have

$$Hom([d_i]S_i, [d_m - 1]S_m) = Hom(S_i, [\underline{d_m - d_i - 1}]S_m) = 0$$

by condition (S3). Hence $\text{Hom}(M_{m-1}, [d_m - 1]S_m)$ vanishes which yields a contradiction as above. \Box

Let $n \in \mathbb{Z}$. We denote by $\mathcal{D}^{\leq n}$ (resp. $\mathcal{D}^{\geq n}$) the full subcategory of \mathcal{T} consisting of objects that have a (d_1, \ldots, d_m) - \mathcal{S} -filtration for some $m \in \mathbb{N}$ and some sequence $d_1 \geq d_2 \geq \cdots \geq d_m$ of integers such that $-d_m \leq n$ (resp. $-d_1 \geq n$). By convention, the last condition is empty if m = 0. Note that the zero object is both in $\mathcal{D}^{\leq n}$ and in $\mathcal{D}^{\geq n}$.

Note that $\mathcal{D}^{\leq n} = [-n]\mathcal{D}^{\leq 0}$ and $\mathcal{D}^{\geq n} = [-n]\mathcal{D}^{\geq 0}$.

Theorem 4.4. Let S be a simple-minded subcategory of a triangulated category T.

(a) We have $tria(\mathcal{S}) = thick(\mathcal{S})$, and

$$t_{\mathcal{S}} := (\operatorname{susp}(\mathcal{S}), \operatorname{susp}^{-}(\mathcal{S}))$$

defines a bounded (and hence non-degenerate) t-structure $t_{\mathcal{S}}$ on this category. We have $\operatorname{susp}(\mathcal{S}) = \operatorname{susp}(\mathcal{S})^{\bigoplus} = \mathcal{D}^{\leq 0}$ and $\operatorname{susp}^{-}(\mathcal{S}) = \operatorname{susp}^{-,\bigoplus}(\mathcal{S}) = \mathcal{D}^{\geq 0}$.

(b) The heart $\heartsuit(t_{\mathcal{S}})$ of this t-structure $t_{\mathcal{S}}$ is a finite-length category and its simple objects are precisely the objects of \mathcal{S} .

Proof. Part (a): We claim that $t := (\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ defines a t-structure on tria(\mathcal{S}).

The condition $\operatorname{Hom}(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 1}) = 0$ follows from assumption (S3). The conditions $\mathcal{D}^{\leq 0} \subset \mathcal{D}^{\leq 1}$ and $\mathcal{D}^{\geq 1} \subset \mathcal{D}^{\geq 0}$ are obvious.

Finally, let $M \in \text{tria}(S)$ be given. We want to construct a "truncation triangle" for M and can certainly assume that $M \neq 0$. Lemma 4.2 provides a decreasing sequence of integers $d_1 \ge d_2 \ge \cdots \ge d_m$ (where $m \ge 1$) such that M has a (d_1, \ldots, d_m) -S-filtration (4.1). Let $i \in \{0, \ldots, m\}$ be maximal such that $-d_j \le 0$ for all $1 \le j \le i$. If we fit the morphism $M_i \xrightarrow{f_{m-1} \ldots f_i} M$ into a triangle

$$M_i \to M \to B \to [1]M_i,$$

then $M_i \in \mathcal{D}^{\leq 0}$ and $B \in \mathcal{D}^{\geq 1}$ by Lemma 3.2. This shows that t is a t-structure on tria(S).

This t-structure is obviously bounded: For M as above we have $M \in \mathcal{D}^{\geq -d_1} \cap \mathcal{D}^{\leq -d_m}$. This also implies that t is a non-degenerate t-structure.

The main theorem of [LC07] now shows that $tria(\mathcal{S})$ is Karoubian and hence $tria(\mathcal{S}) = thick(\mathcal{S})$.

Note that $\mathcal{S} \subset \mathcal{D}^{\leq 0} \subset \operatorname{susp}(\mathcal{S}) \subset \operatorname{susp}(\mathcal{S})$. Since any left aisle of a t-structure is closed under extensions, positive shifts and direct summands, the last two inclusions are equalities. Similarly we obtain $\mathcal{D}^{\geq 0} = \operatorname{susp}^{-}(\mathcal{S}) = \operatorname{susp}^{-}(\mathcal{S})$. So $t = t_{\mathcal{S}}$. This proves part (a).

Part (b): We claim that any object of the heart $\heartsuit(t)$ of our t-structure $t = t_S$ on thick(S) = tria(S) is a finite extension of objects of S.

Let M be in $\mathfrak{O}(t)$ with $M \neq 0$. Lemmata 4.2 and 4.3 yield a (d_1, \ldots, d_m) -S-filtration of M with $d_1 \geq d_2 \geq \cdots \geq d_m$ (and subquotients $S_1, \ldots, S_m \in S$) and non-zero morphisms $[d_1]S_1 \to M$ and $M \to [d_m]S_m$ for objects S_1 and S_m in S. This implies that $d_1 \leq 0$ (since otherwise $[d_1]S_1 \in \mathcal{D}^{\leq -1}$ has no non-zero morphism to $M \in \mathcal{D}^{\geq 0}$) and $d_m \geq 0$ (since otherwise $[d_m]S_m \in \mathcal{D}^{\geq 1}$ receives no non-zero morphism from $M \in \mathcal{D}^{\leq 0}$). Hence $0 = d_1 = d_2 = \cdots = d_m$. This shows our claim.

We show that the simple objects are precisely the objects of \mathcal{S} .

Let $0 \neq M \in \mathfrak{O}(t)$ be filtered as above. Recall that short exact sequences in the heart correspond bijectively to triangles with terms in the heart. Then we have a short exact sequence $M_{m-1} \to M \to S_m$ in $\mathfrak{O}(t)$. Recall that S_m is nonzero by condition (S1). Hence if M is simple then $M \to S_m$ must be an isomorphism (and m = 1). Hence any simple object of the heart is in S.

Conversely, let $S \in S$. Let $M \to S$ be a non-zero subobject in $\heartsuit(t)$. We have seen above that M has a $(0, \ldots, 0)$ -S-filtration. This yields a morphism $S_1 \to M$ with $S_1 \in S$ whose cone is in $\heartsuit(t)$ by Lemma 3.2. This means that $S_1 \to M$ is a subobject. The composition $S_1 \to M \to S$ of monomorphisms in the heart is then a monomorphism. Since $S_1 \neq 0$ by (S1), this monomorphism is non-zero and hence an isomorphism by assumption (S2). In particular $M \to S$ is an isomorphism, so S is a simple object of the heart. Hence any object of S is a simple object of the heart.

It is now clear that $\heartsuit(t)$ is a finite-length category.

Corollary 4.5. Let $n \in \mathbb{Z}$. Then

$$\mathcal{D}^{\leq n} = \{ M \in \operatorname{thick}(\mathcal{S}) \mid \operatorname{Hom}(M, [-l]S) = 0 \text{ for all } S \in \mathcal{S} \text{ and } l > n \},\$$
$$\mathcal{D}^{\geq n} = \{ M \in \operatorname{thick}(\mathcal{S}) \mid \operatorname{Hom}([-l]S, M) = 0 \text{ for all } S \in \mathcal{S} \text{ and } l < n \}.$$

Proof. Using [BBD82, 1.3.4] this is immediate from Theorem 4.4.

Theorem 4.6. Let \mathcal{T} be a triangulated category. Mapping a full simple-minded subcategory \mathcal{S} of \mathcal{T} to the t-structure $t_{\mathcal{S}} = (\operatorname{susp}(\mathcal{S}), \operatorname{susp}^{-}(\mathcal{S}))$ from Theorem 4.4 defines a bijection between the sets of

(a) full simple-minded subcategories of \mathcal{T} and

(b) bounded t-structures on \mathcal{T} whose heart is a finite-length category.

The inverse map maps a bounded t-structure t with finite-length heart to the full subcategory Simples($\heartsuit(t)$) of \mathcal{T} formed by the simple objects of its heart $\heartsuit(t)$.

Proof. Theorem 4.4 shows that the map $\mathcal{S} \mapsto t_{\mathcal{S}}$ is well-defined and satisfies $\operatorname{Simples}(\mathfrak{O}(t_{\mathcal{S}})) = \mathcal{S}$.

Conversely, let $t = (t^{\leq 0}, t^{\geq 0})$ be a bounded t-structure on \mathcal{T} with finite-length heart. Then $\mathcal{S} :=$ Simples($\heartsuit(t)$) certainly satisfies the conditions (S1) and (S2) of Definition 4.1, and condition (S3) follows from Hom $(t^{\leq 0}, t^{\geq 1}) = 0$. Since t is bounded and $\heartsuit(t)$ is finite-length it is clear that tria($\mathcal{S}) = \mathcal{T}$. This shows that \mathcal{S} is a full simple-minded subcategory of \mathcal{T} . Obviously we have susp $(\mathcal{S}) \subset t^{\leq 0}$ and susp $^{-}(\mathcal{S}) \subset t^{\geq 0}$. So the two aisles of $t_{\mathcal{S}}$ are contained in the corresponding aisles of t. This implies that $t = t_{\mathcal{S}} = t_{\text{Simples}(\heartsuit(t))}$.

References

- [AI12] Takuma Aihara and Osamu Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633–668. MR 2927802
- [AN09] Salah Al-Nofayee, Simple objects in the heart of a t-structure, J. Pure Appl. Algebra 213 (2009), no. 1, 54–59. MR 2462984
- [BBD82] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171.
- [EQ16] Ben Elias and You Qi, An approach to categorification of some small quantum groups II, Adv. Math. 288 (2016), 81–151. MR 3436383
- [KL10] Steffen Koenig and Yuming Liu, Simple-minded systems in stable module categories, 2010, arXiv:1009.1427.
- [KN13] Bernhard Keller and Pedro Nicolás, Weight structures and simple dg modules for positive dg algebras, Int. Math. Res. Not. IMRN (2013), no. 5, 1028–1078. MR 3031826
- [KY14] Steffen Koenig and Dong Yang, Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras, Doc. Math. 19 (2014), 403–438. MR 3178243
- [LC07] Jue Le and Xiao-Wu Chen, Karoubianness of a triangulated category, J. Algebra 310 (2007), no. 1, 452–457.
- [RR17] Jeremy Rickard and Raphaël Rouquier, Stable categories and reconstruction, J. Algebra 475 (2017), 287–307. MR 3612472
- [Sch11] Olaf M. Schnürer, Perfect derived categories of positively graded DG algebras, Appl. Categ. Structures 19 (2011), no. 5, 757–782.
- [SY19] Hao Su and Dong Yang, From simple-minded collections to silting objects via Koszul duality, Algebr. Represent. Theory 22 (2019), no. 1, 219–238. MR 3908901