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Abstract. In this paper, we develop a geometric approach to study derived tame finite
dimensional associative algebras, based on the theory of non-commutative nodal curves.
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1. Introduction

Let k be an algebraically closed field such that char(k) 6= 2. For λ ∈ k \ {0, 1}, let

Yλ = V
(
zy2 − x(x− z)(x− λz)

)
⊂ P2

be the corresponding elliptic curve and Yλ
ı−→ Yλ be the involution, given by the rule

(x : y : z)
ı7→ (x : −y : z). Let Tλ be the tubular canonical algebra of type ((2, 2, 2, 2);λ)

[43], i.e. the path algebra of the following quiver

(1)

◦
a1

wwoooooooooooooo

a2��~~~~~~~

a3 ��@@@@@@@
a4

''OOOOOOOOOOOOOO

◦

b1 ''OOOOOOOOOOOOOO ◦
b2

��@@@@@@@ ◦
b3

��~~~~~~~
◦

b4wwoooooooooooooo

◦
modulo the relations b1a1− b2a2 = b3a3 and b1a1−λb2a2 = b4a4. According to Geigle and
Lenzing [23, Example 5.8], there exists an exact equivalence of derived categories

(2) Db
(
CohG(Yλ)

)
−→ Db(Tλ-mod),

where G = 〈ı〉 ∼= Z2 and CohG(Yλ) is the category of G-equivariant coherent sheaves on
Yλ. It is well-known that Db

(
CohG(Yλ)

)
and Db(Tλ-mod) have tame representation type;

see [3, 28, 37]. At this place one can ask the following natural

Question. Is there any link between Db
(
CohG(Yλ)

)
and Db(Tλ-mod) when the parameter

λ ∈ k takes the “forbidden” value 0?

Let E := Y0 = V
(
zy2 − x2(x − z)

)
⊂ P

2 be the plane nodal cubic and T := T0 be

the corresponding degenerate tubular algebra. Both derived categories Db
(
CohG(E)

)
and

Db(T -mod) are known to be representation tame. Moreover, it follows from our previous
papers [11, 12] that the indecomposable objects in both categories can be described by very
similar combinatorial patterns. However, since gl.dim

(
CohG(E)

)
=∞ and gl.dim(T ) = 2,

the derived categories Db
(
CohG(E)

)
and Db(T -mod) can not be equivalent. Nevertheless,

it turns out that the following result is true:

Proposition (see Remark 6.6). There exists a commutative diagram of triangulated
categories and functors

(3)

Db(T -mod)
P // // Db

(
CohG(E)

)

PerfG(E)
3 SE

ffMMMMMMMMMMM * 
 I

77ooooooooooo

where PerfG(E) is the perfect derived category of CohG(E), I is the canonical inclusion
functor, E is a fully faithful functor and P is an appropriate Verdier localization functor.
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The main goal of this work is to extend the above result to a broader class of derived
tame algebras. Let us start with a pair of tuples ~p =

(
(p+

1 , p
−
1 ), . . . , (p+

r , p
−
r )
)
∈
(
N2
)r

and
~q = (q1, . . . , qs) ∈ Ns, where r, s ∈ N0 (either of this tuples is allowed to be empty). For any
1 ≤ i ≤ r and 1 ≤ j ≤ s, consider the following sets: Ξ±i :=

{
x±i,1, . . . , x

±
i,p±i

}
and Ξ◦j :={

wj,1, . . . , wj,qj
}
. Let ≈ be a symmetric relation (not necessarily an equivalence) on the

set Ξ :=
(
(Ξ+

1 ∪ Ξ−1 ) ∪ · · · ∪ (Ξ+
r ∪ Ξ−r )

)
∪
(
Ξ◦1 ∪ · · · ∪ Ξ◦s

)
such that for any ξ ∈ Ξ,

there exists at most one ξ′ ∈ Ξ such that ξ ≈ ξ′. Then the datum (~p, ~q,≈) defines a
derived tame finite dimensional k-algebra Λ = Λ(~p, ~q,≈), obtained from the canonical
algebras Γ(p+

1 , p
−
1 ), . . . ,Γ(p+

r , p
−
r ),Γ(2, 2, q1), . . . ,Γ(2, 2, qs) by a certain “gluing/blowing-

up process” determined by the relation ≈. In the case when s = 0 (i.e. when the tuple ~q is
void), the algebra Λ is skew-gentle [24]. If additionally ξ 6≈ ξ for all ξ ∈ Ξ, the algebra Λ
is gentle [2]. Instead of defining Λ(~p, ~q,≈) now, we refer to Definition 5.6 below and give
here two examples explaining characteristic features of these class of algebras.

Example. Let ~p = (3, 2), ~q be void (i.e. r = 1 and s = 0) and ≈ be given by the rule
x+

1,1 ≈ x−1,1 and x+
1,3 ≈ x−1,2. Then the corresponding gentle algebra Λ(~p,≈) is the path

algebra of the following quiver

(4)

◦
u1

��@@@@@@@
x+1,2 // ◦

x+1,3

��@@@@@@@

◦

x+1,1
??~~~~~~~

x−1,1 ''OOOOOOOOOOOOOO • ◦
u2

**

v2

44 •

◦

v1

OO

x−1,2

77oooooooooooooo

subject to the relations: u1x
+
1,1 = 0 = v1x

−
1,1 and u2x

+
1,3 = 0 = v2x

−
1,2.

Example. Let ~p =
(
(1, 1), (1, 1)

)
, ~q = (2) and ≈ be given by the rule: x+

1,1 ≈ w1,1,

x−1,1 ≈ x
+
2,1 and w1,2 ≈ w1,2. Then the corresponding algebra Λ(~p, ~q,≈) is the path algebra

of the following quiver

(5)

•

◦
x−1,1
��

x+1,1
��

◦
w1,1

��

t1,1

��

z1,1

��

◦
x+2,1
��

x−2,1
��

◦
u2

��????????

u1

77ooooooooooooooooooooooooooooo ◦

z1,2 ((

◦
w1,2

��

v2

uujjjjjjjjjjjjjjjjjjjj ◦

t1,2vv

◦

v1

ggNNNNNNNNNNNNNNNNNNNNNNNNNNNN

• ◦
v+3

vv

v−3

((• •
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modulo the relations: 
z1,2z1,1 + w1,2w1,1 + t1,2t1,1 = 0
v±3 w1,2 = 0
u1x

−
1,1 = 0 = v1x

+
2,1

u2x
+
1,1 = 0 = v2w1,1.

Let (~p, ~q,≈) be a datum as in the definition of Λ(~p, ~q,≈), additionally satisfying a certain
admissibility condition. It turns out that it defines (uniquely up to Morita equivalence) a
tame non-commutative projective nodal curve X = X(~p, ~q,≈). Converesely, any tame non-
commutative projective nodal curve is Morita equivalent to X(~p, ~q,≈) for an appropriate
admissible datum (~p, ~q,≈), see [21]. The main result of this paper is the following.

Theorem (see Corollary 5.5). Let (~p, ~q,≈) be an admissible datum, X be the correspond-
ing tame non-commutative nodal curve and Λ be the corresponding k-algebra. Next,
let Y be the Auslander curve of X (which is another tame non-commutative projective

nodal curve) and X̃ ν−→ X be the hereditary cover of X. Then there exists the following
commutative diagram of triangulated categories and exact functors:

(6)

Db
(
Coh(X̃)

)
ν∗

wwooooooooooo � _

Ẽ
��

Db
(
Coh(X)

)
Db
(
Coh(Y)

)Poooo T // Db(Λ-mod)

Perf(X)
� ?

E

OO

5 UI

ggPPPPPPPPPPPP

where T is an equivalence of triangulated categories, E and Ẽ are fully faithful functors, I is
the canonical inclusion, P is an appropriate Verdier localization functor and ν∗ is induced

by the forgetful functor Coh(X̃) −→ Coh(X).

This theorem generalizes an earlier results of the authors [13], where X was a commutative
tame nodal curve (i.e. a chain or a cycle of projective lines [20, 11]).

In [35], Lekili and Polishchuk proved a version of the homological mirror symmetry for
punctured Riemann surfaces. According to their work, for any (in appropriate sense
graded) compact Riemann surface Σ with finitely many punctures x1, . . . , xn ∈ Σ, there
exists either a stacky chain or a stacky cycle of projective lines V (actually, not uniquely
determined) and equivalences of triangulated categories

Db
(
Coh(V)

) ∼= // WFuk(
◦
Σ)

Perf(V)
∼= //

?�

OO

Fuk(
◦
Σ)

� ?

OO
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where Fuk(
◦
Σ) (respectively, WFuk(

◦
Σ)) is the Fukaya category (respectively, the wrapped

Fukaya category) of the punctured Riemann surface
◦
Σ= Σ \

{
x1, . . . , xn

}
(which is also

viewed as a Riemann surface with boundary). The proof of [35, Theorem B] was based on

properties of a partially wrapped Fukaya category PWFuk(
◦
Σ, ~m) introduced by Haiden,

Katzarkov and Kontsevich [27], where ~m ∈ Nn is the vector describing the numbers of

marked points on the boundary components of
◦
Σ. The partially wrapped Fukaya category

PWFuk(
◦
Σ, ~m) has the following two key features (see [27, Sections 3.4 and 3.5]):

• It is related with the wrapped Fukaya category via an appropriate localization

functor PWFuk(
◦
Σ, ~m) // // WFuk(

◦
Σ).

• There exists a (graded) gentle algebra Λ = Λ(
◦
Σ, ~m) of finite global dimension such

that we have an equivalence of triangulated categories Db(Λ) −→ PWFuk(
◦
Σ, ~m),

where Db(Λ) stands for the derived category of Λ viewed as a graded dg-algebra
with trivial differential. In the when the grading of Λ is trivial, Db(Λ) is equivalent
to the conventional derived category Db(Λ-mod).

Given a punctured Riemann surface
◦
Σ, Lekili and Polishchuk describe a stacky cycle/chain

of projective lines V as well as a marking ~m of the boundary of
◦
Σ and grading of

◦
Σ, for

which there exists the following commutative diagram of categories and functors

(7)

Db
(
Coh(W)

)
//

����

PWFuk(
◦
Σ, ~m)

����

Db
(
Coh(V)

)
// WFuk(

◦
Σ)

Perf(V) //
?�

OO

;;

Fuk(
◦
Σ),

� ?

OO

cc

where all horizontal arrows are equivalences of triangulated categories. The first equiva-

lence Db
(
Coh(W)

)
−→ PWFuk(

◦
Σ, ~m) is defined as the composition of two equivalences of

triangulated categories

(8) Db
(
Coh(W)

)
−→ Db(Λ-mod) −→ PWFuk(

◦
Σ, ~m),

both given by appropriate tilting complexes in Db
(
Coh(W)

)
and PWFuk(

◦
Σ, ~m), respec-

tively. We are going to explain how a stacky cycle/chain of projective lines V can be
naturally viewed as a tame non-commutative nodal curve. In these terms, W is the Aus-
lander curve of V and the left-hand side of (7) is a subpart of the diagram (6).

Let Y be the Auslander curve of an arbitrary tame non-commutative nodal curve X(~p,≈)
(in this notation, the vector ~q is void for the admissible datum (~p, ~q,≈)), which need not
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be a stacky cycle or chain of projective lines. Let Λ = Λ(~p,≈) be the corresponding gentle

algebra. Then there exists a graded punctured marked Riemann surface (
◦
Σ, ~m) as well as

equivalences of triangulated categories as in diagram (8); see [27, 36] for further details.
From this perspective, our work provides further examples for the homological mirror
symmetry for partially wrapped Fukaya categories of marked punctured and appropriately
graded Riemann surfaces.

At this place we want to stress that the introduced class of algebras Λ(~p, ~q,≈) does not
exhaust (even up to derived equivalence) all derived tame algebras which are derived
equivalent to an appropriate non-commutative tame projective nodal curve. For example,
in the paper [8, Theorem 2.1] it was observed that on a chain of projective lines there
exists a tilting bundle whose endomorphism algebra is a gentle algebra of infinite global
dimension. In this paper, we have found another class of gentle algebras which are derived
equivalent to appropriate non-commutative tame projective nodal curves. For any n ∈ N,
let Υn be the path algebra of the following quiver

(9)

•

a+1
��

a−1
��

•

a+2
��

a−2
��

•

a+n
��

a−n
��

•

b+1
��

b−1

''NNNNNNNNNNNNN •

b+2
��

b−2

''OOOOOOOOOOOOOO . . . •

b+n
��

b−n
oo•

c+1
��

c−1
��

•

c+2
��

c−2
��

. . . •

c+n
��

c−n
��

• • . . . •

modulo the relations

b±i a
∓
i = 0, c−i b

+
i = 0 and c+

i+1b
−
i = 0 for 1 ≤ i ≤ n.

Since HH3(Υn) 6= 0, the algebra Υn can not be derived equivalent to any gentle algebra
of the form Λ(~p,≈). On the other hand, we prove that Db(Υn-mod) is equivalent to the
derived category of coherent sheaves on the so–called Zhelobenko non-commutative cycle
of projective lines; see Theorem 6.9.

Acknowledgement. We are thankful to Christoph Geiß for giving us a hint of the construc-
tion of the derived equivalence from Proposition 6.5 as well as to Yanki Lekili for explaining
us connections between gentle algebras and various versions of the Fukaya category of a
Riemann surface. The first-named author is also indebted to Nicolo Sibilla for communi-
cating him the statement of Proposition 6.7 as well as for helpful discussions. The work
of the first-named author was partially supported by the DFG project Bu-1866/4-1. The
results of this paper were mainly obtained during the stay of the second-named author at
Max-Planck-Institut für Mathematik in Bonn.
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2. Some algebraic prerequisities

2.1. Brief review of the theory of minors. Throughout this subsection, let R be
a commutative noetherian ring. For any R-algebra C, we denote by C◦ the opposite
R-algebra, by C-mod (respectively, by mod-C) the category of finitely generated left (re-
spectively, right) C-modules and by C-Mod (respectively, Mod-C) the category of all left
(respectively, right) C-modules. For any C-module X we denote by add(X) the additive
closure of X, i.e. the full subcategory of C-Mod consisting of all direct summands of all
finite direct sums of X.

In what follows, B is an R-algebra, which is finitely generated as R-module.

Definition 2.1. Let P be a finitely generated projective left B-module. Then the R-
algebra A :=

(
EndB(P )

)◦
is called a minor of B; see [18, 15].

It is clear that P is a (B-A)-bimodule and we have an exact functor

G = HomB(P, − ) : B-Mod
G−→ A-Mod.

In the case P is a projective generator of the category B-Mod (meaning that for any object
X of B-Mod there exists an epimorphism Pn � X for some n ∈ N), Morita theorem asserts
that the functor G is an equivalence of categories.

It is not difficult to prove the following result.

Lemma 2.2. Consider the dual (right) B-module P∨ := HomB(P,B). The following
statements hold.

• The canonical morphism P −→ P∨∨ = HomB(P∨, B) is an isomorphism of left
B-modules. Moreover, the canonical morphism of R-algebras

EndB(P ) −→
(
EndB(P∨)

)◦
is an isomorphism too.
• For any object X of B-Mod, the canonical morphism of left A-modules

P∨ ⊗B X −→ HomB(P,X), l ⊗ x 7→
(
y 7→ l(y) · x

)
is an isomorphism, i.e. we have an isomorphism of functors G ∼= − ⊗B P∨. As a
consequence, P∨ is a flat (actually, even projective) right B-module.
• In particular, the canonical morphism

P∨ ⊗B P −→ HomB(P, P ), l ⊗ y 7→
(
x 7→ l(y) · x

)
is an isomorphism of

(
A-A

)
-bimodules.

Using Lemma 2.2, one can deduce the following results.

Theorem 2.3. Consider the functors F := P ⊗A − and H := HomA(P∨, − ) from A-Mod
to B-Mod. Then the following statements hold.

• The functors (F,G,H) form an adjoint triple, i.e. (F,G) and (G,H) form adjoint
pairs.
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• The functors F and H are fully faithful, whereas G is essentially surjective.

• Let IP := Im
(
P ⊗A P∨

ev−→ B
)
. Then IP is a (B-B)-bimodule and

ker(G) :=
{
X ∈ B-Mod

∣∣ IPX = 0
}
.

In other words, the kernel of the exact functor G can be identified with the essential
image of the (fully faithful) restriction functor B̄-Mod −→ B-Mod, where B̄ =
B/IP . Moreover, the functor G induces an equivalence of categories

B-Mod/ker(G) −→ A-Mod.

• The same results remain true, when we consider G, F and H as functors between
the categories B-mod and A-mod of finitely generated modules.
• The essential image of the functor F : A-mod −→ B-mod is the category

P -mod :=
{
X ∈ B-mod

∣∣ there exists P1 −→ P0 −→ X −→ 0 with P0, P1 ∈ add(P )
}
.

It turns out that the relation between B-Mod, A-Mod and B̄-Mod becomes even more
transparent, when we pass to the setting of derived categories.

Theorem 2.4. Let DG : D(B-Mod) −→ D(A-Mod) be the derived functor of (an exact)
functor G, LF : D(A-Mod) −→ D(B-Mod) be the left derived functor of (a right exact
functor) F and RH : D(A-Mod) −→ D(B-Mod) be the right derived functor of (a left exact
functor) H. Then the following results hold.

• (LF,DG,RH) is an adjoint triple of functors.
• The functors LF and RH are fully faithful, whereas DG is essentially surjective.
• The essential image of LF is equal to the left orthogonal category

⊥B̄ :=
{
X• ∈ Ob

(
D(B-Mod)

) ∣∣ Hom(X•, B̄[i]
)

= 0 for all i ∈ Z
}

of B̄ (viewed as a left B-module). Similarly, the essential image of RH is equal to
the right orthogonal category B̄⊥.
• We have a recollement diagram

(10) DB̄(B-Mod) I // D(B-Mod)

I!
mm

I∗qq
DG // D(A-Mod)

RH

ll

LF
rr

,

where DB̄(B-Mod) is the full subcategory of D(B-Mod) consisting of those com-
plexes whose cohomologies belong to B̄-Mod.
• Assume that the (B-B)-bimodule IP is flat viewed as a right B-module.

– Then the functor D
(
B̄-Mod

)
−→ DB̄(B-Mod) is an equivalence of triangu-

lated categories.
– We have: gl.dimB ≤ max

{
gl.dimB̄ + 2, gl.dimA

}
.
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– Finally, suppose that gl.dimB̄ < ∞ and gl.dimA < ∞. Then we have a
recollement diagram

(11) Db(B̄-Mod) I // Db(B-Mod)

I!
mm

I∗qq
DG // Db(A-Mod)

RH

mm

LFqq
.

Remark 2.5. In the case P = Be for an idempotent e ∈ B, most of the results from
this subsection are due to Cline, Parshall and Scott [17]. The “abelian” theory of minors
attached to an arbitrary finitely generated projective B-module P was for the first time
suggested in [18]. Detailed proofs of Theorems 2.3 and 2.4 can also be found in [15].

2.2. Generalities on orders. From now on, let R be an excellent reduced ring of Krull
dimension one and

(12) K := Quot(R) ∼= K1 × · · · ×Kr

be the corresponding total ring of fractions, where K1, . . . ,Kr are fields.

Definition 2.6. An R-algebra A is an R-order if the following conditions hold.

• A is a finitely generated torsion free R-module.
• AK := K ⊗R A is a semisimple K-algebra having finite length as a K-module.

Lemma 2.7. Let R be as above, R′ ⊆ R be a finite ring extension and A be an R-algebra.
Then A is an R-order if and only if A is an R′-order. Moreover, if K := Quot(R) then
we have: AK ∼= AK′.

Proof. It is clear that A is finitely generated and torsion free over R if and only if it is
finitely generated and torsion free over R′. Next, note that the ring extension R′ ⊆ R
induces a finite ring extension K ′ ⊆ K of the corresponding total rings of fractions.
Moreover, Chinese remainder theorem implies that the multiplication map K ′⊗R′R −→ K
is an isomorphism. Therefore, for any finitely generated R-module M , the natural map
K ′ ⊗R′ M −→ K ⊗R M is an isomorphism of K ′-modules. In particular, we get an
isomorphism of K ′-algebras AK′ −→ AK . �

Definition 2.8. Let A be a ring.

• A is a one-dimensional order (or just an order) provided its center R = Z(A) is a
reduced excellent ring of Krull dimension one, and A is an Rorder.
• Let K := Quot(R). Then AK := K ⊗R A is called the rational envelope of A.

• A ring Ã is called an overorder of A if A ⊆ Ã ⊆ AK and Ã is finitely generated as
(a left) A-module.

Note that for any overorder Ã of A, the map K ⊗R Ã −→ AK is automatically an isomor-

phism. Hence, AK = ÃK and Ã is an order over R.

Theorem 2.9. Let H be a hereditary order (i.e. gl.dimH = 1) and R = Z(H) be the
center of H. Then the following results are true.

• We have: R ∼= R1 × · · · ×Rr, where Ri is a Dedekind domain for all 1 ≤ i ≤ r.
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• Let Ki be the quotient field of Ri. Then we have: HK
∼= Υ1×· · ·×Υr, where Υi is a

finite dimensional central simple Ki-algebra. Moreover, we have a decomposition
H = H1 × · · · × Hr, where each factor Hi is a hereditary order whose rational
envelope is Υi.

• If H̃ is an overorder of H then H̃ is hereditary too.
• If H ′ is a minor of H then H ′ is a hereditary order too.

• Assume that R is semilocal. Let J be the radical of H and Ĥ = lim←−
k

(
H/Jk

)
be the

radical completions of H. Then Ĥ is a hereditary order.

Proofs of all these results can be for instance found in [39, 40].

Theorem 2.10. Let k be an algebraically closed field and K be either k((w)) or the function
field of an algebraic curve over k. Let Υ be a finite dimensional central simple algebra
over K. Then Υ ∼= Matt(K) for some t ∈ N.

Proof. This is a restatement of the fact that the Brauer group of the field K is trivial; see
for instance [26, Proposition 6.2.3, Theorem 6.2.8 and Theorem 6.2.11]. �

The following result is well-known; see [40].

Lemma 2.11. Let R be a discrete valuation ring, m be its maximal ideal, k := R/m the
corresponding residue field and K the field of fractions of R. For any sequence of natural
numbers ~p =

(
p1, . . . , pr

)
, consider the R-algebra

(13) H(R, ~p) :=



R . . . R m . . . m . . . m . . . m
...

. . .
...

...
...

...
...

R . . . R m . . . m . . . m . . . m
R . . . R R . . . R . . . m . . . m
...

...
...

. . .
...

...
...

R . . . R R . . . R . . . m . . . m
...

...
...

...
. . .

...
...

R . . . R R . . . R . . . R . . . R
...

...
...

...
...

. . .
...

R . . . R R . . . R . . . R . . . R



⊂ Matp(K),

where the size of the i-th diagonal block is (pi × pi) for each 1 ≤ i ≤ r and p := |~p| =
p1 + · · ·+ pr. Then H(R, ~p) is a hereditary R-order.

In what follows, H(R, ~p) will be called standard hereditary R-order of type ~p. For any

M ∈ H(R, ~p) and any pair 1 ≤ i, j ≤ r, we denote by M (i,j) the corresponding block of

M , which is a matrix of size pi × pj . In particular, M (i,i)(0) ∈ Matpi(k). In the simplest
case when ~p = ~pr := (1, . . . , 1︸ ︷︷ ︸

r times

), we shall use the notation Hr(R) := H
(
R, ~pr

)
.
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Theorem 2.12. Let k be an algebraically closed field, R = kJwK and K = k((w)). Then
the following results are true.

• Assume that H is a hereditary R-order in the central simple K-algebra Matp(K).
Then there exists S ∈ Matp(K) such that H = AdS

(
H(R, ~p)

)
:= S ·H(R, ~p) · S−1

for some tuple ~p = (p1, . . . , pr) such that p = |~p|. Moreover, such a tuple ~p is
uniquely determined up to a permutation.
• Let H be a hereditary R-order. Then we have: H ∼= H1 × · · · ×Hs, where each Hi

is some standard R-order for any 1 ≤ i ≤ s.
• For any vector ~p, the orders H(R, ~p) and Hr(R) are Morita equivalent.

Proofs of these results can be found in [40].

3. Nodal orders

Nodal orders are appropriate non-commutative generalizations of the commutative nodal
ring D := kJu, vK/(uv).

3.1. Definition and basic properties of nodal orders.

Definition 3.1. An order A is called nodal if its center is a semilocal excellent ring and
there exists a hereditary overorder H ⊇ A such that the following conditions are satisfied.

• J := rad(A) = rad(H).
• For any finitely generated simple left A-module U we have: lA(H ⊗A U) ≤ 2.

Remark 3.2. In what follows, hereditary orders will be considered as special cases of
nodal orders. Next, it is clear that an order A is nodal if and only if its radical completion

Â is nodal. Moreover, it is not difficult to show that for a nodal order A, the hereditary
overorder H from Definition 3.1 is in fact uniquely determined and admits the following
intrinsic description:

H =
{
x ∈ AK

∣∣xJ ⊆ J} ∼= EndA(J),

where J is viewed as a right A-module and AK is the rational envelope of A. For a nodal
order A, the order H will be called the hereditary cover of A.

Remark 3.3. The classical commutative nodal ring D = kJu, vK/(uv) is a nodal order in

the sense of Definition 3.1. Indeed, we have an embedding D ⊆ D̃ := kJuK × kJvK and

rad(D) = rad(D̃) = (u, v). Moreover, dimk

(
D̃ ⊗D k

)
= 2. Thus D̃ is the hereditary cover

of D.

Nodal orders were introduced by the second-named author in [19]. In that work it was
shown that the category of finite length modules over a (non-hereditary) nodal order is
representation tame and conversely an order of nonwild representation type is automati-
cally nodal. In our previous joint work [10] we proved that even the derived category of a
nodal order has tame representation type.

Theorem 3.4. Let A be a nodal order. Then the following statements are true.

• Any overorder of A is nodal.
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• Any minor of A is nodal. In particular, if A′ is Morita equivalent to A then A′ is
a nodal order too.
• Let G be a finite group acting on A. If |G| is invertible in A then the skew group

product A ∗G is a nodal order.

Proofs of the above statements can be found or easily deduced from the results of [19].

3.2. Combinatorics of nodal orders. Let k be an algebraically closed field. It turns
out that nodal orders over the discrete valuation ring kJxK can be completely classified.

Definition 3.5. Let Ω be a finite set and ≈ be a symmetric but not necessarily reflexive
relation on Ω such that for any ω ∈ Ω there exists at most one ω′ ∈ Ω (possibly, ω′ = ω)
such that ω ≈ ω′ (note that ≈ is automatically transitive). We say that ω ∈ Ω is

• simple if ω 6≈ ω′ for all ω′ ∈ Ω;
• reflexive if ω ≈ ω;
• tied if there exists ω′ 6= ω ∈ Ω such that ω ≈ ω′.

It is clear that any element of Ω is either simple, or reflexive, or tied with respect to the
relation ≈.

Given (Ω,≈) as above, we define two new sets Ω‡ and Ω̃‡ by the following procedures.

• We get Ω‡ from Ω by replacing each reflexive element ω ∈ Ω by a pair of new
simple elements ω+ and ω−. The tied elements of Ω‡ are the same as for Ω.

• The set Ω̃‡ is obtained from Ω‡ by replacing each pair of tied elements
{
ω′, ω′′

}
by

a single element
{
ω′, ω′′

}
.

A map Ω‡
wt‡−→ N is called a weight function provided wt‡(ω′) = wt‡(ω′′) for all ω′ ≈ ω′′

in Ω‡. It is clear that wt‡ descends to a map Ω̃‡
wt‡−→ N. A weight function Ω‡

wt‡−→ N

determines a map (also called weight function) Ω
wt−→ N given by the rule wt(ω) :=

wt‡(ω+) +wt‡(ω−) for any reflexive point ω ∈ Ω. Abusing the notation, we shall drop the
symbol ‡ in the notation of wt‡ and write wt for all weight functions introduced above.

Remark 3.6. The simplest weight function Ω‡
wt◦−→ N is given by the rule wt◦(ω) = 1 for

all ω ∈ Ω‡.

Let (Ω,≈) be as in Definition 3.5 and Ω
σ−→ Ω be a permutation. Then we have a

decomposition

(14) Ω = Ω1 t · · · t Ωt,

where σ(Ωi) = Ωi and the restricted permutation σ
∣∣
Ωi

is cyclic for any 1 ≤ i ≤ t. In a

similar way, we get a decomposition Ω‡ = Ω‡1 t · · · t Ω‡t .

Definition 3.7. Let Ω be a finite set and Ω
σ−→ Ω a permutation. A marking m of (Ω, σ)

is a choice of an element ωi ∈ Ωi for any 1 ≤ i ≤ t, where Ωi are given by (14).
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Note that a choice of marking m makes each set Ωi totally ordered:

(15) ωi < σ(ωi) < · · · < σli−1(ωi),

where li := |Ωi|. Let ≈ be a relation on Ω as in Definition 3.5 and Ω‡
wt−→ N be a weight

function. Then for any 1 ≤ i ≤ t, we get a vector

(16) ~pi :=
(
wt(ωi),wt(σ(ωi)), . . . ,wt(σ

li−1(ωi))
)
∈ Nli .

Definition 3.8. Let (Ω,≈, σ) be a datum as in Definition 3.7, m be a marking of (Ω, σ)

and Ω‡
wt−→ N be a weight function. For any 1 ≤ i ≤ t, let Hi := H(R, ~pi) be the

corresponding standard hereditary order (13). Then we put:

(17) H = H
(
R, (Ω, σ,≈,m,wt)

)
:= H1 × · · · ×Ht.

It is clear that H is a hereditary order, whose rational envelope is the semisimple algebra

(18) Λ := Mats1(K)× · · · ×Matst(K),

where K is the fraction field of R and si =
∣∣~pi∣∣ for 1 ≤ i ≤ t.

Remark 3.9. According to the definition (13) of a standard hereditary order, any matrix
belonging to Hi is endowed with a division into vertical and horizontal stripes labelled by
the elements of the set Ωi. Moreover, for any reflexive element ω ∈ Ωi, the corresponding

vertical and horizontal stripes have further subdivisions labelled by the elements ω± ∈ Ω‡i .

Definition 3.10. Let R be a discrete valuation ring and
(
Ω, σ,≈,m,wt

)
be a datum as

above. Then we have a ring A = A
(
R, (Ω, σ,≈,m,wt)

)
⊆ H defined as follows:

A :=


(X1, . . . Xt) ∈ H

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X
(ω′, ω′)
i′ (0) = X

(ω′′, ω′′)
i′′ (0) for all

1 ≤ i′, i′′ ≤ t
ω′ ∈ Ωi′ , ω

′′ ∈ Ωi′′

ω′ ≈ ω′′, ω′ 6= ω′′

X
(ω+, ω−)
i (0) = 0 and X

(ω−, ω+)
i (0) = 0 for all

1 ≤ i ≤ t
ω ∈ Ωi

ω ≈ ω


.

The proof of the following results is straightforward.

Theorem 3.11. Let R be a discrete valuation ring,
(
Ω, σ,≈,m,wt

)
a datum as in Def-

inition 3.7 and A = A
(
R, (Ω, σ,≈,m,wt)

)
the corresponding ring from Definition 3.10.

Then the following statements hold.

• The ring A is connected if and only if there exists a surjection

{1, . . . ,m} τ−→ {1, . . . , t}
for some m as well as elements υi ∈ Ωτ(i) for 1 ≤ i ≤ m−1 such that each υi ≈ υ′i
for some υ′i ∈ Ωτ(i+1). If A is connected and R = kJwK then the center of A is
isomorphic to kJw1, . . . , wtK/(wiwj , 1 ≤ i 6= j ≤ t).
• The ring A is an order whose rational envelope is the semisimple algebra Λ given

by (18). The order H defined by (17) is an overorder of A.
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• Let m̃ be any other marking of (Ω, σ) and Ã = A
(
R, (Ω, σ,≈, m̃,wt)

)
be the cor-

responding order. Then there exists S ∈ Λ such that Ã = AdS(A), i.e. the orders

Ã and A are conjugate in Λ. It means that the order A
(
R, (Ω, σ,≈,m,wt)

)
does

not depend (up to a conjugation) on the choice of marking of (Ω, σ), so in what
follows it will be denoted by A

(
R, (Ω, σ,≈,wt)

)
.

• The orders A
(
R, (Ω, σ,≈,wt)

)
and A

(
R, (Ω, σ,≈,wt◦)

)
are Morita equivalent.

• Let

(19) J :=

{
(X1, . . . Xt) ∈ A

∣∣∣∣ X(ω, ω)
i (0) = 0 for all

1 ≤ i ≤ t
ω ∈ Ωi

}
.

Then we have: J = rad(A) = rad(H). Moreover, the natural map

H −→ EndA(J), X 7→ (Y 7→ XY )

is an isomorphism, where J is viewed as a right A-module.
• For any ω ∈ Ω, let H̄ω := Matmω(k), where mω = wt(ω). Similarly, for any

γ ∈ Ω̃‡, let Āγ := Matmγ (k), where mγ = wt(γ). Then we have a commutative
diagram:

(20)

A/J
∼= //

_�

��

∏
γ∈Ω̃‡

Āγ

� _

ı
��

H/J
∼= //

∏
ω∈Ω

H̄ω

where the components of the embedding ı are defined as follows.

– Let ω ∈ Ω be a simple element and γ be the corresponding element of Ω̃‡.
Then the corresponding component Āγ −→ H̄ω of ı is the identity map.

– Let ω ∈ Ω be reflexive. Then the corresponding component of the map ı is
given by the rule:

Āω+ × Āω− −→ H̄ω, (X,Y ) 7→
(
X 0
0 Y

)
.

– Finally, let ω′, ω′′ ∈ Ω be a pair of tied elements and γ := {ω′, ω′′} be the

corresponding element of Ω̃‡. Then the corresponding component of ı is the
diagonal embedding

Āγ −→ H̄ω′ × H̄ω′′ , X 7→ (X,X).

• The order A
(
R, (Ω, σ,≈,wt)

)
is nodal and H

(
R, (Ω, σ,≈,wt)

)
is its hereditary

cover.
• Let (Ω, σ,≈,wt), (Ω′, σ′,≈′,wt′) be two data as in Definition 3.7. If R is complete

then we have:

A
(
R, (Ω, σ,≈,wt)

) ∼= A
(
R, (Ω′, σ′,≈′,wt′)

)
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if and only if there exists a bijection Ω
ϕ−→ Ω′ such that the diagram

Ω
σ //

ϕ

��

Ω
wt

��????????

ϕ

��

N

Ω′
σ′ // Ω

wt′

??��������

is commutative and ω1 ≈ ω2 in Ω if and only if ϕ(ω1) ≈ ϕ(ω2) in Ω′.

Remark 3.12. For the weight function Ω‡
wt◦−→ N, given by the rule wt◦(ω) = 1 for all

ω ∈ Ω‡, we shall write A
(
R, (Ω, σ,≈)

)
:= A(R,Ω, σ,≈,wt◦) or simply A(Ω, σ,≈) in the

case when it is clear which ring R is meant.

In the examples below we take R = kJwK.

Example 3.13. Let Ω = {1, 2}, σ is identity and 1 ≈ 2. Then we have:

A(Ω, σ,≈) ∼= D := kJx, yK/(xy).

As already mentioned, the hereditary cover of D is D̃ := kJxK× kJyK.

Example 3.14. Let Ω = {1, 2, 3}, σ = ( 1 2 3
1 3 2 ) and 1 ≈ 2. Then we have:

H = H(Ω, σ,≈) = kJxK×
(
kJyK (y)
kJyK kJyK

)
and

(21) A = A(Ω, σ,≈) =
{

(X,Y ) ∈ H
∣∣∣ X(0) = Y (11)(0)

}
.

Note that A ∼= EndD(kJxK⊕D), where D = kJx, yK/(xy). Alternatively, one can identify
A with the arrow completion of the path algebra of the following quiver with relations:

(22) •a ::

b
** •

c

jj ba = 0, ac = 0,

The order given by (21) will be called Zhelobenko order, since it appeared for the first time
in a work of Zhelobenko [50] dedicated to the study of admissible finite length represen-
tations of the Lie group SL2(C).

Example 3.15. Let Ω = {1, 2, 3, 4}, σ = ( 1 2 3 4
2 1 4 3 ) and 2 ≈ 3. Then we have:

(23) A = A(Ω, σ,≈) ∼=
(
D D̃

I D̃

)
∼= EndD(D ⊕ I),
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where D = kJx, yK/(xy), I = (x, y) and D̃ = kJxK × kJyK. The order A is isomorphic to
the arrow completion of the following quiver with relations:

(24) −
u−

** ?
v−

kk
v+

33 +

u+
tt v±u∓ = 0.

Following the terminology of our previous work [13], A will be called the Auslander order
of D, or just Auslander order.

Example 3.16. Let Ω = {1} with 1 ≈ 1 (of course, σ = id in this case). Then we have:

(25) A = A(Ω, σ,≈) ∼=
(
kJwK (w)
(w) kJwK

)
.

The hereditary cover H of A ist just the matrix algebra Mat2
(
kJwK

)
.

Example 3.17. Let Ω = {1, 2}, σ = ( 1 2
2 1 ) and 2 ≈ 2. Then we have:

(26) A = A(Ω, σ,≈) ∼=

 kJwK (w) (w)
kJwK kJwK (w)
kJwK (w) kJwK

 .

Note that A is isomorphic to the arrow completion of the following quiver with relations:

(27) −
a−

** ?
b−

kk
b+

33 +

a+
tt a+b+ = a−b−.

The order (26) appeared for the first time in the 1970 ICM talk of I. Gelfand [25] in the
context of the study of admissible finite length representations of the Lie group SL2(R).
In what follows, it will be called Gelfand order. The hereditary cover of A is

H = H(Ω, σ,≈) ∼=

 kJwK (w) (w)
kJwK kJwK kJwK
kJwK kJwK kJwK

 .

Theorem 3.18. Let k be an algebraically closed field, R = kJwK,K = k((w)) and

Λ = Mats1(K)× · · · ×Matst(K)

for some s1, . . . st ∈ N. If A is a nodal order whose rational envelope is Λ then there exists
a datum (Ω, σ,≈,wt) and S ∈ Λ such that A = AdS

(
A(Ω, σ,≈,wt)

)
, where A(Ω, σ,≈,wt)

is the nodal order from Definition 3.10.

Proof. Let A ⊂ Λ be a nodal order, whose rational envelope is Λ and A� be a basic
order Morita equivalent to A. Then A� is also nodal, see Theorem 3.4. Let H� be the
hereditary cover of A�. Then H� ∼= H(R, ~p1) × · · · × H(R, ~pr), where each component
H(R, ~pi) is a standard hereditary order given by (13). Let J� = rad(A�) = rad(H�) be
the common radical of A� and H�, Ā� = A�/J� and H̄� = H�/J�. Since A� is basic
and Ā� is semisimple, Ā�γ is isomorphic to a product of several copies of the field k. By
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the definition of nodal orders, the embedding of semisimple algebras Ā�
ı
↪→ H̄� has the

following property: for any simple Ā�-module U we have: lĀ�
(
H̄� ⊗Ā� U

)
≤ 2. From this

property one can easily deduce that

• Each simple component of H̄� is either k or Mat2(k). In other words, for any
1 ≤ i ≤ r, each entry of the vector ~pi is either 1 or 2.

• The embedding Ā�
ı
↪→ H̄� splits into the product of the following components:

k
id−→ k, k

diag−→ k× k or (k× k)
diag−→ Mat2(k).

Let 1 ≤ i ≤ r and ~pi =
(
pi,1, . . . , pi,ki

)
. Then we put:

Ωi :=
{

(i, 1), . . . , (i, ki)
}
, Ω := Ω1 t · · · t Ωr and σ(i, j) := (i, j + 1 mod ki).

Note that the set Ω parameterizes simple components of the algebra H̄�. If pi,j = 2 for
(i, j) ∈ Ωi, we put: (i, j) ≈ (i, j). If (i, j), (i′, j′) ∈ Ω are such that the corresponding

component of the embedding ı is k
diag−→ k× k, we put: (i, j) ≈ (i′, j′).

Note that the following diagram of k-algebras

A� //
_�

��

Ā�� _

ı

��
H�

π // // H̄�

is a pull-back diagram, i.e. A� ∼= π−1
(
Im(ı)

)
. From this it is not difficult to deduce that

A� = A(Ω, σ,≈,wt◦),
where wt◦ is the trivial weight function.

Since the order A is Morita equivalent to A�, there exists a projective left A�-module
P such that A ∼=

(
EndA�(P )

)◦
. Recall that the isomorphism classes of indecomposable

A�-modules are parameterized by the elements of the set Ω̃‡. Let P ∼=
⊕
γ∈Ω̃‡

P
⊕mγ
γ be a

decomposition of P into a direct sum of indecomposable modules. Then we get a weight

function Ω̃‡
wt−→ N, γ 7→ mγ . It is easy to see that A� ∼= A(Ω, σ,≈,wt). �

3.3. Skew group products of kJu, vK/(uv) with a finite group. Let k be an alge-
braically closed field of characteristic zero, ζ ∈ k be a primitive n-th root of 1, G :=〈
ρ
∣∣ ρn = e

〉
be a cyclic group of order n ∈ N≥2 and k[G] be the corresponding group

algebra. The following results is well-known.

Lemma 3.19. For 1 ≤ k ≤ n, let ξk := ζk and εk := 1
n

n−1∑
j=0

ξjkρ
j ∈ k[G]. Then we have:{

1 = ε1 + · · ·+ εn
εk · εl = δklεk

In other words, {ε1, . . . , εn} is a complete set of primitive idempotents of k[G].



18 IGOR BURBAN AND YURIY DROZD

Proposition 3.20. Consider the action of the cyclic group G on the polynomial algebra
k[u] given by the rule: ρ ◦ u := ζu. Then the skew product k[u] ∗ G is isomorphic to the

path algebra of the cyclic quiver ~Cn

(28)

2◦
a1

�����������
◦a2oo

1◦

an
��99999999

... ◦

\\999999999

n◦ // ◦

BB���������

Proof. An isomorphism k[u] ∗G −→ k
[
~Cn
]

is given by the rule:{
εk 7→ ek

εkuεk+1 7→ ak,

where ek ∈ k
[
~Cn
]

is the trivial path corresponding to the vertex k. �

Corollary 3.21. Let R := kJuK. Then the skew group product R ∗G is isomorphic to the
arrow completion of the path algebra of (28). Note that the latter algebra can in its turn
be identified with the algebra of matrices

(29) Tn(R) :=


R R . . . R
m R . . . R
...

...
. . .

...
m m . . . R

 ,

where the primitive idempotent ek corresponding to the vertex k of ~Cn is sent to the k-th
diagonal matrix unit of Tn(R).

Remark 3.22. Let us notice that, strictly speaking, R ∗ G depends on the choice of an
n-th primitive root of unity ζ. On the other hand, the primitive idempotent

ε = εn :=
1

n
(e+ ρ+ · · ·+ ρn−1) ∈ k[G] ∼= R ∗G/ rad(R ∗G)

does not depend on the choice of ζ. Therefore, identifying the skew group product R ∗G
with the completed path algebra of a cyclic quiver, we shall always choose a labeling of

vertices of ~Cn such that the idempotent ε is identified with the trivial path corresponding
to the vertex labeled by n.

Note also that the orders Tn(R) and Hn(R) are isomorphic.

Let 0 < c < n be such that gcd(n, c) = 1. Then we have a permutation{
1̄, . . . , n̄

} τc−→
{

1̄, . . . , n̄
}

k̄ 7→ c · k,
where k̄ denotes the remainder of k modulo n.
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Proposition 3.23. For any 0 < c < n such that gcd(n, c) = 1, consider the action of the
cyclic group G =

〈
ρ
∣∣ ρn = e

〉
on the nodal algebra D = kJu, vK/(uv), given by the rule

(30)

{
ρ ◦ u = ζ u
ρ ◦ v = ζcv.

Then the nodal order A := D ∗G has the following description:

(31) A ∼=
{

(U, V ) ∈ Tn(R)× Tn(R)
∣∣U τc(k)τc(k)(0) = V kk(0) for 1 ≤ k ≤ n

}
.

Proof. Let D̃ = kJuK× kJvK be the hereditary cover of D. Then

H := D̃ ∗G ∼=
(
kJuK ∗G

)
×
(
kJvK ∗G

) ∼= Tn(R)× Tn(R)

is the hereditary cover of A. For any 1 ≤ k ≤ n, let

ε̃k := ετck =
1

n

(
1 + ζckρ+ ζ2ckρ2 + · · ·+ ζ(n−1)ckρn−1

)
∈ k[G].

We consider the elements εk and ε̃k as elements, respectively, of k[[u]]∗G and k[[v]]∗G. It
is convenient, taking into account that the actions of G on kJuK and on kJvK are actually
different.

We have the following commutative diagram of algebras and algebra homomorphisms:

A_�

��

// // A/ rad(A)
_�

��

∼= // k[G]� _

diag
��

H // // H/ rad(H)
∼= // k[G]× k[G]

Viewing εk and ε̃k as elements of
(
kJuK ∗G

)
/
(
(u) ∗G

) ∼= k[G] ∼=
(
kJvK ∗G

)
/
(
(v) ∗G

)
, we

get: diag
(
ε̃k
)

=
(
ε̃k, ε̃k

)
=
(
εσc(k), ε̃k

)
. Taking into account the rules for the isomorphisms

kJuK ∗G
∼=−→ Tn(R)

∼=←− kJvK ∗G,

we get the description (31) of the nodal order A. �

Remark 3.24. In the terms of Theorem 3.11, the order A given by (31) has the following
description.

• Let Ω =
{

1, . . . , n, 1̃, . . . , ñ
}

.

• The relation ≈ is given by the rule: k̃ ≈ τc(k) for 1 ≤ k ≤ n.

• The permutation Ω
σ−→ Ω is given by the formula

σ =

(
1 2 . . . n 1̃ 2̃ . . . ñ

n 1 . . . n− 1 ñ 1̃ . . . ñ− 1

)
.
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Then we have: A ∼= A(Ω, σ,≈,wt◦). It is not difficult to derive the quiver description of
the order A. Of the major interest is the case c = n − 1. Then A is isomorphic to the
arrow completion of the path algebra of the following quiver

(32)

2◦
a1

��

b2

44 ◦
a2

tt

$$1◦

an
%%

b1

II

... ◦

dd

		n◦ 44

bn

ee

◦

II

tt

modulo the relations akbk = 0 = bkak for all 1 ≤ k ≤ n.

Lemma 3.25. Consider the action of the cyclic group G =
〈
τ
∣∣ τ2 = e

〉
on the nodal

algebra D = kJu, vK/(uv), given by the rule τ(u) = v. Then the nodal order A := D ∗ G
has the following description:

(33) A ∼=
(
kJwK (w)
(w) kJwK

)
.

Proof. Consider the elements e± :=
1± τ

2
∈ A. Then the following statements are true.

• e2
± = e±, e±e∓ = 0 and 1 = e+ + e−. Moreover, τ · e± = ±e±.

• For any s, t ∈ {+,−} we have: esAet = esDet.

Therefore we have the Peirce decomposition:

(34) A ∼=
(
e+Ae+ e+Ae−
e−Ae+ e−Ae−

)
=

(
e+De+ e+De−
e−De+ e−De−

)
.

For any m ∈ N0, set w
(m)
± :=

1

2m
(
um ± vm

)
(within this notation, w

(0)
− = 0). It is easy to

see that w
(m1)
s1 · w(m2)

s2 = w
(m1+m2)
s1·s2 for any m1,m2 ∈ N0 and s1, s2 ∈

{
+,−

}
. Moreover,

one can check that

e±De± =
〈
w

(m)
+ e±

∣∣m ∈ N0

〉
k

and e±De∓ =
〈
w

(m)
− e∓

∣∣m ∈ N
〉
k

.

One can check that the linear map

A ∼=
(
e+De+ e+De−
e−De+ e−De−

)
−→

(
kJwK (w)
(w) kJwK

)
given by the following rules:{

w
(m)
+ e+ 7→ wme11

w
(m)
+ e− 7→ wme22

m ∈ N0
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and {
w

(m)
− e− 7→ wme12

w
(m)
− e+ 7→ wme21

m ∈ N

is an algebra isomorphism we are looking for. �

Proposition 3.26. For any n ∈ N, let G :=
〈
ρ, τ

∣∣ ρn = e = τ2, τρτ = ρ−1
〉

be the
dihedral group and ζ ∈ k be a primitive n-th root of 1. Consider the action of G on the
nodal ring D = kJu, vK/(uv) given by the rules:

ρ ◦ u = ζ u
ρ ◦ v = ζ−1v
τ ◦ u = v
τ ◦ v = u.

Then the nodal order A := D ∗G has the following description.

• If n = 2l + 1 for l ∈ N0 then A ∼= A(Ω, σ,≈,wt◦), where

Ω :=
{

1, 2, . . . , n
}
, σ =

(
1 2 . . . n
n 1 . . . n− 1

)
and (2k − 1) ≈ 2k for 1 ≤ k ≤ l, whereas (2l + 1) ≈ (2l + 1).
• If n = 2l + 2 for l ∈ N0 then A ∼= A(Ω, σ,≈,wt◦), where

Ω :=
{

0, 1, 2, . . . , 2l + 1
}
, σ =

(
1 2 . . . n
n 1 . . . n− 1

)
and (2k − 1) ≈ 2k for 1 ≤ k ≤ l, whereas 0 ≈ 0 and (2l + 1) ≈ (2l + 1).

Sketch of the proof. The cyclic group K := 〈ρ〉 is a normal subgroup of G of index two. Let
L = 〈τ〉. Then we have a commutative diagram of k-algebras and algebra homomorphisms

A ∗G_�

��

∼= // (A ∗K) ∗ L� _

��
H ∗G

∼= // (H ∗K) ∗ L,

where the action of L on H ∗K =
(
kJuK ∗K

)
×
(
kJvK ∗K

)
is given by the rule

τ ◦
(
uk1ρl1 , vk2ρl2

)
=
(
uk2ρ−l2 , vk1ρ−l1

)
for any k1, k2, l1, l2 ∈ N0. The nodal ring A ∗K is described in Remark 3.24. In the terms
of the quiver presentation (32) we have: τ ◦ ak = bk̄−1

τ ◦ bk = ak̄−1

τ ◦ ek = ek̄

where k̄ = (n− k) for 1 ≤ k ≤ n and all indices are taken modulo n. The remaining part
is a lengthy computation analogous to the one made in the course of the proof of Lemma
3.25 which we leave for the interested reader.
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3.4. Auslander order of a nodal order.

Definition 3.27. Let A be a nodal order and H be its hereditary cover. Then

(35) C :=
{
a ∈ A

∣∣ ah ∈ A for all h ∈ H
}

is called conductor ideal of A.

Remark 3.28. It follows from the definition that C = ACH and the canonical morphism

(36) C −→ HomA(H,A), c 7→
(
h 7→ ch

)
is a bijection (here, we view both H and A as left A-modules).

Proposition 3.29. Let R be a discrete valuation ring and A = A
(
R, (Ω, σ,≈,wt)

)
be the

nodal order from the Definition 3.10. Then we have:

C =

(X1, . . . Xt) ∈ A

∣∣∣∣∣∣ X(ω′, ω′)
i′ (0) = 0 = X

(ω′′, ω′′)
i′′ (0) for all

1 ≤ i′, i′′ ≤ t
ω′ ∈ Ωi′ , ω

′′ ∈ Ωi′′

ω′ ≈ ω′′


and C =

{
a ∈ A

∣∣ha ∈ A for all h ∈ H
}

. In particular, C is a two-sided ideal both in H
and A containing the common radical J = rad(A) = rad(H) of A and H.

Corollary 3.30. Let k be an algebraically closed field, R be the local ring of an affine
curve over k at a smooth point, H be a hereditary R-order, A be a nodal order whose
hereditary cover is H and C be the corresponding conductor ideal. Then C is a two sided
ideal in H.

Proof. We have to show that the canonical map of R-modules C −→ HCH is surjective.
For this, it is sufficient to prove the corresponding statement for the radical completions

of A and H. However, the structure of nodal orders over R̂ ∼= kJwK is known; see Theorem
3.18. Hence, the statement follows from Proposition 3.29. �

Lemma 3.31. Let A = A
(
R, (Ω, σ,≈,wt)

)
be a nodal order, H be its hereditary cover,

C be the conductor ideal, Ā := A/C and H̄ := H/C. Let Ω◦ be the subset of Ω whose

elements are reflexive or tied elements of Ω and Ω̃‡◦ be the subset of Ω̃‡ defined in a similar
way. Then the following diagram

(37)

Ā
∼= //

_�

��

∏
γ∈Ω̃‡◦

Āγ

� _

ı
��

H̄
∼= //

∏
ω∈Ω◦

H̄ω

is commutative, where the components of the embedding ı are described in the same way
as in diagram (20).



NON-COMMUTATIVE NODAL CURVES AND DERIVED TAME ALGEBRAS 23

Definition 3.32. Let A be a nodal order, H be its hereditary cover and C be the corre-
sponding conductor ideal. The order

(38) B :=

(
A H
C H

)
is called Auslander order of A.

Example 3.33. The Auslander order of the commutative nodal ring kJu, vK/(uv) is(
kJu, vK/(uv) kJuK× kJvK

(u, v) kJuK× kJvK

)
,

i.e. the order from Example 3.15.

Example 3.34. Let R = kJwK, m = (w) and A =

(
R m
m R

)
be the nodal order from

Example 3.16. The hereditary cover H of A ist just the matrix algebra Mat2(R), whereas
the corresponding conductor ideal C = Mat2(m). Therefore, the Auslander order of A is

B =


R m R R
m R R R
m m R R
m m R R

 .

It is easy to see that B is Morita equivalent to the Gelfand order (26).

Let A be an arbitrary nodal order and B be the Auslander order of A. For the idempotents

e :=

(
1 0
0 0

)
, f :=

(
0 0
0 1

)
∈ B, consider the corresponding projective left B-modules

P := Be =

(
A
C

)
and Q := Bf =

(
H
H

)
. Note that

A = eBe ∼=
(
EndB(P )

)◦
and H = fBf ∼=

(
EndB(Q)

)◦
.

The action of B on the projective left B-modules

(
A
C

)
and

(
H
H

)
is given by the matrix

multiplication, whereas the isomorphisms A ∼=
(
EndB(P )

)◦
, respectively H ∼=

(
EndB(Q)

)◦
,

are compatible with the canonical right actions on P , respectively Q. The nodal order
A as well as its hereditary cover H are minors of the Auslander order B in the sense of
Definition 2.1. Let

P∨ := HomB(P,B) ∼= eB and Q∨ := HomB(Q,B) ∼= fB.

In the terms of Subsection 2.1, we have the following functors.

• Since P is a projective left A-module, we get an exact functor

G := HomB(P, − ) ' P∨ ⊗B −
from B-Mod to A-Mod. Of course, it restricts to an exact functor

B-mod
G−→ A-mod
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between the corresponding categories of finitely generated modules.

• Similarly, we have an exact functor G̃ = HomB(Q, − ) ' Q∨ ⊗B − from B-Mod
to H-Mod, as well as its restriction on the full subcategories of the corresponding
finitely generated modules.
• We have functors F := P ⊗A − and H := HomA(P∨, − ) from A-Mod to B-Mod.

• Similarly, we have functors F̃ := Q ⊗H − and H̃ := HomH(Q∨, − ) from H-Mod
to B-Mod.

Additionally to Theorem 2.3, the following result is true.

Proposition 3.35. The functor F̃ is exact, maps projective modules to projective modules

and has the following explicit description: if Ñ is a left H-module, then

F̃(Ñ) =

(
Ñ

Ñ

)
∼= Ñ ⊕ Ñ ,

where for b =

(
b1 b2
b3 b4

)
∈ B and z =

(
z1

z2

)
∈
(
Ñ

Ñ

)
, the element bz is given by the

matrix multiplication.

Remark 3.36. Since the order H is hereditary, the conductor ideal C is projective viewed

as a left H-module. The functor F̃ transforms projective modules into projective modules,

hence the left B-module

(
C
C

)
is projective, too. Consider the left B-modules S and T ,

given by the projective resolutions

0 −→
(
C
C

)
−→

(
A
C

)
−→ S −→ 0 and 0 −→

(
C
C

)
−→

(
H
H

)
−→ T −→ 0.

Obviously, both S and T have finite length viewed as B-modules. Moreover, S is isomor-
phic to Ā viewed as an A-module and T is isomorphic to H̄ viewed as an H-module.

Theorem 3.37. The following results are true.

• (LF,DG,RH) and (LF̃,DG̃,RH̃) are triples pairs of functors.

• The functors LF, LF̃, RH and RH̃ are fully faithful, whereas the functors DG and

DG̃ are essentially surjective.

• The essential image of LF̃ is equal to the left orthogonal category
⊥S :=

{
X• ∈ Ob

(
D(B-mod)

) ∣∣ Hom(X•, S[i]
)

= 0 for all i ∈ Z
}

of S, whereas the essential image of RH̃ is equal to the right orthogonal category
S⊥. Similarly, the essential image of LF is equal to ⊥T and the essential image of
RH is equal to T⊥.
• We have a recollement diagram

(39) D(Ā-mod) I // D(B-mod)

I!
ll

I∗
rr

DG̃ // D(H-mod)

RH̃

ll

LF̃
rr

,
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where I(Ā) := S, the functor I∗ is left adjoint to I and I! is right adjoint to I.
• Similarly, we have another recollement diagram

(40) DT (B-mod) J // D(B-mod)

J!
mm

J∗qq
DG // D(A-mod)

RH

ll

LF
rr

,

where DT (B-mod) is the full subcategory of the derived category D(B-mod) consist-
ing of those complexes whose cohomologies belong to Add(T ) and J is the canonical
inclusion functor.
• We have: gl.dimB = 2.

Proof. These results are specializations of Theorem 2.4. The statements about both rec-
ollement diagrams (39) and (40) follow from the description of the kernels of the functors

DG̃ and DG. Namely, consider the two-sided ideal

IQ := Im
(
Q⊗A Q∨

ev−→ B
)

=

(
C H
C H

)
in the algebra B. As one can easily see, IQ is projective viewed as a right B-module.
Moreover, B/IQ ∼= A/C =: Ā is semisimple. Hence, Theorem 2.4 gives the first recollement
diagram (39). Analogously, for

IP := Im
(
P ⊗H P∨

ev−→ B
)

=

(
A H
C C

)
the algebra B/IP ∼= H/C =: H̄ is again semisimple. However, this time IP is not projective
viewed as a right B-module.

To show the last statement, note that according to Theorem 2.4 we have: gl.dimB ≤ 2.
Since A is a non-hereditary minor of B, the order B itself can not be hereditary; see
Theorem 2.9. Hence gl.dimB = 2, as claimed. �

Corollary 3.38. We have a recollement diagram

(41) Db(Ā-mod) I // Db(B-mod)

I!
mm

I∗qq
DG̃ // Db(H-mod)

RH̃

mm

LF̃qq
.

As a consequence, we have a semiorthogonal decomposition

(42) Db(B-mod) =
〈
Im(I), Im(LF̃)

〉
=
〈
Db
(
Ā-mod), Db(H-mod)

〉
.

Moreover, we have the following commutative diagram of categories and functors:

(43)

Db(H-mod)

P ))SSSSSSSSSSSSSS
� � LF̃ // Db(B-mod)

DG
����

Perf(A)? _LFoo
H h

Euulllllllllllll

Db(A-mod)
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where Perf(A) is the perfect derived category of A, E is the canonical inclusion functor and
P is the derived functor of the restriction functor H-mod −→ A-mod.

Proof. The recollement diagram (41) is just the restriction of the recollement diagram (39)
on the corresponding full subcategories of compact objects. The isomorphism E ' DG◦LF
follows from the fact that the adjunction unit IdD(A-mod) −→ DG◦LF is an isomorphism of
functors (already on the level of unbounded derived categories). Next, since the functor

F̃ is exact, we have: DG ◦ LF̃ ' D(G ◦ F̃). For any H-module Ñ we have:

(G ◦ F̃)(Ñ) = HomB

(
P, F̃(Ñ)

)
= HomB

(
Be,

(
Ñ

Ñ

))
∼= e ·

(
Ñ

Ñ

)
∼= Ñ .

Hence, G ◦ F̃ is isomorphic to the restriction functor H-mod −→ A-mod, what finishes a
proof of the second statement. �

Proposition 3.39. Let A be a nodal order. Then the corresponding Auslander order B
is nodal too.

Proof. As usual, let H be the hereditary cover of A and J = rad(A) = rad(H) be the
common radical of A and H. Consider the following orders:

B̃ :=

(
A H
J H

)
and H̃ :=

(
H H
J H

)
.

It is not difficult to show that

J̃ := rad(H̃) =

(
J H
J J

)
= rad(B̃).

Since J̃ is projecive as H-module, H is hereditary. Then the commutative diagram

B̃/J̃
∼= //

_�

��

A/J ×H/J� _

��
H̃/J̃

∼= // H/J ×H/J

implies that B̃ is a nodal order and H̃ is its hereditary cover. Since the conductor ideal

C contains the radical J , the Auslander order B is an overorder of B̃. It follows from
Theorem 3.4 that the order B is nodal, too. �

In what follows, we shall need the following result about the finite length B-module S.
Assume that R = kJwK and A = A

(
R, (Ω, σ,≈,wt)

)
. Recall that

Ā := A/C ∼=
∏
γ∈Ω̃‡◦

Āγ ∼=
∏
γ∈Ω̃‡◦

Matwt(γ)(k).

It is clear that the set Ω̃‡◦ also parameterizes the isomorphism classes of the simple Ā-

modules. For any γ ∈ Ω̃‡◦, let Sγ be the simple left B-module which corresponds to the
(unique, up to an isomorphism) simple Āγ-module and Pγ be its projective cover. Then we
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have: S ∼=
⊕
γ∈Ω̃‡◦

S
⊕wt(Ω̃‡◦)
γ . Our next goal is to describe a minimal projective resolution of

Sγ . For any ω ∈ Ω, let Q̃ω be the corresponding indecomposable projective left H-module
and

Qω := F̃
(
Q̃ω
)

=

(
Q̃ω
Q̃ω

)
be the corresponding indecomposable projective left B-module.

Lemma 3.40. The following statements hold.

• Let ω ∈ Ω be a reflexive element and γ = ω± be one of the corresponding elements

of Ω̃‡◦. Then

(44) 0 −→ Qσ(ω) −→ Pγ −→ Sγ −→ 0

is a minimal projective resolution of the simple B-module Sγ. In particular, for
any δ ∈ Ω we have:

(45) Ext1B
(
Sγ , Qδ

) ∼= { k if δ = σ(ω)
0 otherwise.

• Let ω′, ω′′ ∈ Ω be a pair of tied elements and γ = {ω′, ω′′} be the corresponding

element of Ω̃‡◦. Then a minimal projective resolution of the simple B-module Sγ
has the following form:

(46) 0 −→ Qσ(ω′) ⊕Qσ(ω′′) −→ Pγ −→ Sγ −→ 0.

In particular, for any δ ∈ Ω we have:

(47) Ext1B
(
Sγ , Qδ

) ∼= { k if δ = σ(ω) for ω ∈ {ω′, ω′′}
0 otherwise.

Proof. It is not difficult to show that rad(Pγ) = Qσ(ω) for γ = ω± if ω ∈ Ω is reflexive and

rad(Pγ) = Qσ(ω′) ⊕Qσ(ω′′) if γ = {ω′, ω′′} for ω′, ω′′ ∈ Ω tied. The formulae (45) and (47)
follow from the fact that rad(Qω) = Qσ(ω) for any ω ∈ Ω. �

4. Non-commutative nodal curves: global theory

In this section, we are going to explain the construction as well as main properties of
non-commutative nodal curves of tame representation type.

4.1. The idea of a non-commutative nodal curve. Before going to technicalities and
details, let us consider the following example. Let k be a field, S = k[x], J = (x2− 1) and
K = k(x). Consider the hereditary order

H =

 S J J
S S J
S S S

 ⊂ Υ := Mat3(K).
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Next, consider the order

A :=

X ∈ H
∣∣∣∣∣∣
X11(1) = X22(1)
X33(1) = X33(−1)
X21(−1) = 0

 ⊂ H.
Let Z = Z(A) be the center of A. Then we have:

Z =
{
p ∈ S

∣∣ p(1) = p(−1)
}

= k
[
x2 − 1, x(x2 − 1)

] ∼= k[u, v]/(v2 − u3 − u2).

The multiplication maps K ⊗Z A −→ Υ and K ⊗Z H −→ Υ are isomorphisms. In other
words, A and H are Z-orders in the central simple K-algebra Υ.

Let E◦ = V (v2 − u3 − u2) ⊂ A2 be an affine plane nodal cubic and s = (0, 0) ∈ E◦ be its
unique singular point. For any x ∈ E◦ \ {s} we have: Ax = Mat3

(
Ox
)
, where Ox is the

local ring of E◦ at the point x. On the other hand,

Âs = A
(
R, (Ω, σ,≈,wt◦)

)
is a nodal order, where R = kJtK,

Ω :=
{

1, 2, 3, 4, 5
}
, σ =

(
1 2 3 4 5
2 3 1 5 4

)
and 1 ≈ 2, 3 ≈ 5 and 4 ≈ 4.

Let E = V (v2 − u3 − u2) ⊂ P2 be the projective closure of E◦. Then the Z-order A can
be extended to a sheaf of orders A on the projective curve E in such a way that the stalk
of A at the “infinite point” (0 : 1 : 0) of E is the maximal order (see for instance [7]).
The ringed space E = (E,A) is a typical example of a projective non-commutative nodal
curve of tame representation type.

Let H ′ =

 S I J
S S J
S S S

 , where J ⊂ I := (x − 1) ⊂ S. Then H ′ is a hereditary order,

too. Moreover, H ′ is the hereditary cover of the order A (the notion of the hereditary
cover can be defined locally). As above, we can extend H ′ to a sheaf of orders H on the
projective curve E in such a way that the stalk of H at the infinite point is the maximal

order. Thus we get a non-commutative curve Ẽ = (E,H). Note that the center of H

is S. Therefore, one can actually construct a sheaf of hededitary orders H̃ on P1 such

that H = ν∗(H̃), where P1 ν−→ E is the normalization map. The functor ν∗ provides an

equivalence between the categories of coherent sheaves on Ẽ and (P1, H̃). In what follows,

we shall consider Ẽ as the hereditary cover of the non-commutative nodal curve E what
can be viewed as an appropriate non-commutative generalization of the normalization of
a singular commutative nodal curve.

Definition 4.1. Let X be a reduced quasi-projective curve over a field k and A be a sheaf
of orders on X. Then the ringed space X = (X,A) is called a non-commutative curve. We
say that X is projective if the commutative curve X is projective. If for any point x ∈ X
the corresponding stalk Ax is a nodal order then X is a non-commutative nodal curve.
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Theorem 4.2. Let k be an algebraically closed field, X be a quasi-projective curve over
k, A and B be two sheaves of orders on X such that

Z(Âx) = Ôx = Z(B̂x)

for any x ∈ X, where Ôx is the completion of the local ring of X at the point x and Z(Âx)

(respectively, Z(B̂x)) is the center of Âx (respectively, of B̂x). Assume that for any x ∈ X
there exists a Morita equivalence Âx-mod

Φx−→ B̂x-mod such that the following diagram

Ôx
id //

∼=
��

Ôx

∼=
��

Z
(
Âx-mod)

Φ̄x // Z
(
B̂x-mod)

is commutative, where Φ̄x denotes the induced map of centers. Then the non-commutative
curves X = (X,A) and Y = (X,B) are Morita equivalent (i.e. the categories of quasi-
coherent sheaves QCoh(X) and QCoh(Y) are equivalent).

For a proof of this result, see [15, Theorem 7.5].

4.2. Construction of non-commutative nodal curves. Let k be an algebraically

closed field and (X̃,O
X̃

) be a smooth quasi-projective curve over k.

• Let X̃
l−→ N be a function such that l(x̃) = 1 for all but finitely many points

x̃ ∈ X̃ (such function will be called a length function).

• For any x̃ ∈ X̃ we put:

(48) Πx̃ :=
{

(x̃, 1), . . . , (x̃, l(x̃))
}

and Π :=
⋃
x̃∈X̃

Πx̃.

• For any function Π
wt−→ N and any point x̃ ∈ X̃ we denote:

~p(x̃) :=
(
wt(x̃, 1), . . . ,wt(x̃, l(x̃))

)
and m(x̃) :=

∣∣~p(x̃)
∣∣ :=

l(x̃)∑
i=1

wt(x̃, i).

• We say that wt is a weight function compatible with the given length function l if

m(x̃′) = m(x̃′′) for any pair of points x̃′, x̃′′ ∈ X̃ belonging to the same irreducible

component of X̃.

• For x̃ ∈ X̃, let Ox̃ be the stalk of the structure sheaf O
X̃

at the point x̃. Let

H̃x̃ := H
(
Ox̃, ~p(x̃)

)
⊆ Matm(x̃)(Ox̃)

be the standard hereditary order defined by (13).

Definition 4.3. Assume (for simplicity of notation) that X̃ is connected, X̃
l−→ N be a

length function and wt be a weight function. Let m = m(x̃) for some (hence for any) point

x̃ ∈ X̃. Then we define the sheaf of hereditary orders H̃ = H̃(l,wt) on the curve X̃ as
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the subsheaf of the sheaf of maximal orders Matm(O
X̃

) such that H̃x̃ = H̃x̃ for all x̃ ∈ X̃.

The corresponding ringed space X̃ := (X̃, H̃) is a non-commutative hereditary curve over

the field k defined by the datum (X̃, l,wt).

Theorem 4.4. Let X̃ be a smooth quasi-projective curve over k and X̃
l−→ Nbe a length

function. Let wt,wt′ : Π −→ N be two weight functions compatible with l and X̃ and X̃′
be the corresponding non-commutative hereditary curves. Then the categories QCoh(X̃)

and QCoh(X̃′) (respectively, Coh(X̃) and Coh(X̃′)) are equivalent. Let Ỹ be a smooth

quasi-projective curve over k, Ỹ
t−→ N be a length function and Ỹ be the corresponding

non-commutative hereditary curve. Then X̃ and Ỹ are Morita equivalent if and only if

there exists an isomorphism (of commutative curves) X̃
f−→ Ỹ such that the following

diagram

X̃
f //

l ��???????? Ỹ

t����������

N
is commutative. In other words, the Morita type of a non-commutative hereditary curve
does not depend on the choice of a weight function wt and is determined by the underlying

commutative curve X̃ and length function l.

Comment to the proof. This result is a special case of Theorem 4.2.

Remark 4.5. Let X̃ = P
1, X̃

l−→ N be a length function, Π
wt−→ N be a weight functions

compatible with l and X be the corresponding hereditary curve. Then X can be identified
with an appropriate weighted projective line of Geigle and Lenzing [23] in the sense that
the categories of (quasi-)coherent sheaves on both objects are equivalent (see, for instance,
the paper [41]).

Let us choose homogeneous coordinates on P1 and put: õ+ := (0 : 1), õ− := (1 : 0) and
õ := (1 : 1). In what follows, we shall use the following notation.

• P1(n+, n−) is the weighted projective line corresponding to the length function
given by the rule:

l(x̃) =

{
n± if x̃ = õ±

1 otherwise.

• P1(n+, n−, n) is the weighted projective line corresponding to the length function
given by the rule:

l(x̃) =

 n± if x̃ = õ±

n if x̃ = õ
1 otherwise,

where we additionally assume that n± ≥ 2.

Definition 4.6. Let X̃ be a smooth quasi-projective curve over k and X̃
l−→ N be a

length function. Let ≈ be a relation on the set Π defined by (48) such that
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• For any ω ∈ Π there exists at most one ω′ ∈ Π such that ω ≈ ω′ (such elements
ω, ω′ will be called special).
• There are only finitely many special elements in Π.

Non-special elements of Π will be called simple. The set of special elements of Π will be
denoted by Π◦. An element ω ∈ Π◦ is called reflexive if ω ≈ ω and tied if ω ≈ ω′ for some
ω 6= ω′.

Similarly to Definition 3.5 we define the set Π‡ by replacing each reflexive element ω ∈ Π
by two new simple elements ω+ and ω−. The pairs of tied elements of Π‡ are the same as
for Π.

Let Π‡
wt‡−→ N be a function such that wt‡(ω′) = wt‡(ω′′) for all ω′ ≈ ω′′ in Π‡. Then we

define the map Π
wt−→ N by the following rule:

wt(ω) :=

{
wt‡(ω+) + wt‡(ω−) if ω ∈ Π is reflexive

wt‡(ω) otherwise.

We call such a relation ≈ on the set Π admissible if there exists a function Π‡
wt‡−→ N for

which the corresponding function Π
wt−→ N is a weight function compatible with the length

function l. Abusing the notation, we shall drop the symbol ‡ in the notation of wt‡ and
write wt for all weight functions introduced above.

We say that two points x̃′ 6= x̃′′ ∈ X̃ are tied if there are ω′ ∈ Ωx̃′ and ω′′ ∈ Ωx̃′′ such that
ω′ ≈ ω′′. Let

(49) Z̃ :=
{
x̃ ∈ X̃

∣∣ there exists ỹ ∈ X̃ \ {x̃} such that x̃ and ỹ are tied
}

be the set of tied points of X̃. Taking the transitive closure, we get an equivalence relation

∼ on Z̃. We put: Z := Z̃/ ∼ . In what follows, we shall also consider Z̃ as a reduced

subscheme of X̃, Z as a reduced scheme over k and the projection map Z̃
ν̃−→ Z as a

morphism of schemes.

Given an admissible datum (X̃, l,≈), we define a quasi-projective curve X requiring the
following diagram of algebraic schemes

(50)

Z̃ �
� η̃ //

ν̃

��

X̃

ν

��
Z �
� η // X.

to be cartesian. In other words, the curve X is obtained from X̃ by gluing transversally

the equivalent points. It is clear that X is singular provided Z̃ is non-empty and that

X̃
ν−→ X is the normalization map. It always exists, as follows from [47].

We put: H := ν∗
(
H̃
)
. For any x ∈ X (respectively, x̃ ∈ X̃) let Ĥx (respectively, Ĥx̃)

be the radical completion of Hx (respectively, H̃x̃). Note that in the notation of (13) we
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have:
Ĥx̃ := H

(
Ôx̃, ~p(x̃)

)
,

where Ôx̃ is the completion of the local ring Ox̃. It is clear that Ĥx̃ is also an order over

the local ring Ôx, which is the completion of the local ring of the structure sheaf of X at
the point x.

Assume now that x ∈ Z and ν−1(x) = {x̃1, . . . , x̃r}. Then we have a canonical isomorphism

Ĥx
∼=−→ Ĥx̃1 × · · · × Ĥx̃r .

Next, we put: Ωx := Ωx̃1 t · · · tΩx̃r Then we have a permutation Ωx
σx−→ Ωx given by the

rule σx(x̃, i) :=
(
x̃, i + 1 mod l(x̃)

)
for any x̃ ∈ {x̃1, . . . , x̃r}. In the terms of Definition

3.10 we put:

(51) Âx := A(Ωx, σx,≈,wt) ⊂ Ĥx.

Then Âx is a nodal order and Ĥx is its hereditary cover. Moreover, the center of Âx
contains the local ring Ôx.

Definition 4.7. We define the sheaf of orders A on the curve X to be the subsheaf of H
satisfying the following conditions on the stalks:

(52) Âx :=

{
Ĥx if x /∈ Z
Âx if x ∈ Z.

We call the ringed space X = (X,A) the non-commutative nodal curve attached to the

datum (X̃, l,≈,wt). The ringed space X̃ = (X,H) will be called the hereditary cover of X.

Note that for X̃′ := (X̃, H̃) we have a natural morphism of ringed spaces X̃′ ν−→ X, which

induces an equivalence of categories Coh(X̃′) −→ Coh(X̃).

Theorem 4.8. Let (X̃, l,≈) be an admissible datum, Π‡
wt−→ N be any compatible weight

function and X be the corresponding non-commutative nodal curve. Then the following
results hold.

• Let Π‡
wt′−→ N be any other compatible weight function and X′ be the correspond-

ing non-commutative nodal curve. Then the categories of quasi-coherent sheaves
QCoh(X) and QCoh(X′) are equivalent.
That is why we often do not mention the weight wt and say that X is attached to

the admissible datum (X̃, l,≈).

• Let ≈′ be another equivalence relation on Π and Π
wt′−→ N be a weight function

compatible with ≈′. Suppose that for any x̃ ∈ X̃ there exists a cyclic permutation

Πx̃
fx−→ Πx̃ such that the diagram

Πx̃
fx //

wt   AAAAAAAA Πx̃

wt′~~}}}}}}}}

N
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is commutative. Then the categories QCoh(X) and QCoh(X′) are equivalent.

Comment to the proof. This result is a consequence of Theorem 4.2 and Theorem 3.11.

Example 4.9. Let (X̃, l,≈) be such that for any x̃ ∈ X̃ with l(x̃) ≥ 2, the set Πx̃ contains

a non-tied element. Then the datum (X̃, l,≈) is admissible.

Example 4.10. Let X̃ be any curve and x̃1 6= x̃2 ∈ X̃ be two distinct points. Define a

weight function P1 l−→ N by the rule:

l(x̃) =

{
2 if x̃ = x̃1

1 otherwise.

Let ≈ be given by the rule: (x̃1, 1) ≈ (x̃2, 1). Then the datum (X̃, l,≈) is not admissible.

4.3. Non-commutative nodal curves of tame representation type. In this subsec-
tion we recall, following the paper [21], the description of those non-commutative projective
nodal curves X = (X,A) for which the category VB(X) of vector bundles (i.e. of locally

projective coherent A-modules) has tame representation type. Let X̃ = X̃1 t · · · t X̃r

be a disjoint union of r projective lines. We choose homogeneous coordinates on each

component X̃k and define points õk, õ
±
k ,∈ X̃k setting: õk := (1 : 1), õ+

k := (0 : 1) and

õ−k := (1 : 0). Assume that (X̃, l,≈) is an admissible datum defining a non-commutative

nodal curve X. For each 1 ≤ k ≤ r, let Σk ⊂ X̃k be the corresponding set of special points.

• If
∣∣Σk

∣∣ = 2, we may without loss of generality assume that Σk =
{
õ+
k , õ

−
k

}
.

• Similarly, if
∣∣Σk

∣∣ = 3, we assume that Σk =
{
õk, õ

+
k , õ

−
k

}
.

The following result is proved in [21].

Theorem 4.11. Let X be a non-commutative projective curve. Then VB(X) has tame
representation type if and only if the following conditions are satisfied.

• X is Morita equivalent to a commutative elliptic curve, i.e. X̃ is an elliptic curve,
while l and ≈ are trivial.
• X is the rational non-commutative nodal curve attached to an admissible datum

(X̃, l,≈) such that X̃ = X̃1 t · · · t X̃r is a disjoint union of r projective lines,
whereas (l,≈) satisfies the following conditions:

– For any 1 ≤ k ≤ r we have:
∣∣Σk

∣∣ ≤ 3.

– If
∣∣Σk

∣∣ = 3 then we additionally have: the set Πx̃ contains special elements
for precisely one point x̃ ∈ Σk (say, for x̃ = õ), whereas for the remaining two
points of Πx̃ (say, for õ±) we have: l(õ±) = 2).

Definition 4.12. Consider the pair
(
~p, ~q
)
, where

~p =
(
(p+

1 , p
−
1 ), . . . , (p+

t , p
−
t )
)
∈
(
N2
)t

and ~q = (q1, . . . , qs) ∈ Ns

for some t, s ∈ N0 (either of this tuples may be empty). Let

X̃ := X̃1 t · · · t X̃t t X̃t+1 t · · · t X̃t+s
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be a disjoint union of t + s projective lines. We define the weight function X̃
l−→ N by

the following rules

• For each 1 ≤ k ≤ t we put: l(õ±k ) = p±k .

• For each 1 ≤ k ≤ s we put: l(õ±t+k) = 2 and l(õt+k) = qk.

Let ≈ be a relation on the set
(
Πõ+1
t Πõ−1

)
t · · · t

(
Πõ+t
t Πõ−t

)
t
(
Πõt+1 t · · · t Πõt+s

)
.

satisfying the conditions of Definition 4.6. If
(
~p, ~q,≈

)
is admissible and wt is a compatible

weight, we denote by X
(
~p, ~q,≈,wt

)
the corresponding non-commutative nodal rational

projective curve. Since the weight wt does not imply the derived category, we often omit
it and write X

(
~p, ~q,≈

)
.

One can rephrase Theorem 4.11 in the following way.

Theorem 4.13. The category VB(X) of vector bundles on a non-commutative projective
curve X is representation tame if and only if X is either a commutative elliptic curve or
a non-commutative nodal curve X

(
~p, ~q,≈

)
, where (~p, ~q,≈) is an admissible datum as in

Definition 4.12.

Remark 4.14. Let ~p =
(
(2, 2), (2, 2)

)
, ~q be void and ≈ be given by the following rule:

(õ+
k , 1) ≈ (õ−k , 1) for k = 1, 2 and (õ±1 , 2) ≈ (õ±2 , 2). Then the central curve X of the

corresponding non-commutative nodal curve X(~p,≈) is given by the following Cartesian
diagram:

Spec(k) t Spec(k)
ı //

��

E t E

��
Spec(k) // X

where E ∼= V (v2 − u3 − u2) ⊂ P2 is a plane nodal cubic and the image of ı of the singular
set of E t E. Note that the arithmetic genus of X is two. In fact, the central curve of a
tame non-commutative nodal curve can have arbitrary high arithmetic genus.

4.4. Remarks on stacky cycles of projective lines. In this subsection, let k be an
algebraically closed field of characteristic zero.

Example 4.15. Let E be a plane nodal cubic and P1 ν−→ E be its normalization. Let
us choose homogeneous coordinates (z : w) on P1 in such a way that ν−1(s) =

{
õ+, õ−

}
,

where s is the singular point of E and õ+ = (0 : 1) and õ− = (1 : 0). Consider the action

of the cyclic group G :=
〈
ρ
∣∣ ρn = e

〉
on P1 given by the formula (z : w)

ρ7→ (ζz : w), where

ζ is a primitive n-th root of unitity. It is clear that the action of G on P1 descends to an
action of G on E such that E′ := E/G ∼= E. Let A := OE′ ∗G be the sheaf on E′ defined
by the following rule:

U 7→ Γ
(
π−1(U),OE

)
∗G for any open U ⊆ E′,
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where E
π−→ E′ is the projection map. Then A is a sheaf of nodal orders on the projective

curve E′. For any x ∈ E′ \ {s}, the order Ax is maximal, whereas Âs is the nodal order
given by (32).

The following result is obvious.

Lemma 4.16. The category CohG(E) of G-equivariant sheaves on E is equivalent to the
category Coh(E), where E = (E′,A).

Remark 4.17. The non-commutative nodal curve E admits the following description.

Consider the length function P1 l−→ N given by the rule:

l(x̃) =

{
n if x̃ ∈ {õ+, õ−}
1 otherwise.

We then define the relation ≈ on the set Π setting (õ+, k) ≈ (õ−, n − k) for 1 ≤ k ≤ n,
where we replace 0 by n. It is easy to see that the datum (P1, l,≈) is admissible. Using
Theorem 4.2 one can conclude that E and the non-commutative nodal curve corresponding
to the datum (P1, l,≈) are Morita equivalent.

Example 4.18. Again, let E = V (v2 − u3 − u2) ⊂ P2 be a plane nodal cubic. Consider

the involution E
τ−→ E given by the rule (u, v) 7→ (u,−v). Let E

π−→ E/G ∼= P
1 be the

projection map, where G = 〈τ〉 ∼= Z2. Next, let A := OE ∗ G and E = (P1,A) be the
corresponding non-commutative nodal curve. Again, the categories CohG(E) and Coh(E)
are equivalent. Let us choose homogeneous coordinates on P1 in such a way that π−1(õ+)
is the singular point of E and π−1(õ−) is its infinite point. Consider the length function

P
1 l−→ N given by the rule:

l(x̃) =

{
2 if x̃ = õ−

1 otherwise.

We define the relation ≈ on the set Π by setting (õ+, 1) ≈ (õ+, 1). Obviously, the datum
(P1, l,≈) is admissible. According to Lemma 3.25 and Theorem 4.2, the datum (P1, l,≈)
defines a non-commutative nodal curve, which is Morita equivalent to E.

Example 4.19. In this example, we give a description of stacky cycles of projective
lines used in the paper of Lekili and Polishchuk [35] in the language of non-commutative
nodal curves. Let r ∈ N, ~n = (n1, . . . , nr) ∈ Nr and ~c = (c1, . . . , cr) ∈ Nr be such that

gcd(nk, ck) = 1 for any 1 ≤ k ≤ r. Let Er be a cycle of r projective lines and X̃
π−→ Er

be its normalization. Then X̃ = X̃1 t · · · t X̃r is a disjoint union of r projective lines. Let{
o1, . . . , or

}
be the set of singular points of Er, where we choose their labeling in such a

way that π−1(ok) =
{
õ−k , õ

+
k+1

}
, where õ−k = (1 : 0) ∈ X̃k and õ+

k+1 = (0 : 1) ∈ X̃k+1.
The completion of the local ring of Er at each point ok is isomorphic to the commutative
nodal ring kJu, vK/(uv). For any 1 ≤ k ≤ n, consider the action of the cyclic group
Gnk =

〈
ρ
∣∣ ρnk = e

〉
on D = kJu, vK/(uv) given by the rule

(53)

{
ρ ◦ u = ζku
ρ ◦ v = ζckk v,
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where ζk is some primitive nk-th root of 1. The category of coherent sheaves Coh(E) on a
stacky cycle of projective lines E := Er(~n,~c) is an abelian category satisfying the following
property: the category Tor(E) of finite length objects of Coh(E) splits into a direct sum of
blocks:

Tor(E) ∼=
⊎
x∈Er

Torx(E),

where Torx(E) is equivalent to the category of finite length kJwK-modules if x ∈ Er smooth
and to the category of finite length D ∗Gnk -modules if x = ok, where the action of Gnk is
given by the rule (53).

The stacky cycle of projective lines Er(~n,~c) can be understood as an appropriate cyclic
gluing of weighted projective lines P1(n1, n2), . . . ,P1(nr−1, nr),P

1(nr, n1). Now let us
proceed with a formal definition of Er(~n,~c) viewed as a non-commutative nodal curve.

As above, let X̃ be a disjoint union of r projective lines. Consider the length function

X̃
l−→ N given by the rule:

l(x̃) =

{
nk if x̃ ∈

{
õ−k , õ

+
k+1

}
1 otherwise.

Let Π±k = Πõ±k
. It is convenient to use the identification

Π−k = {1̄, . . . , n̄k} = Π+
k+1,

given by the rule: (õ−k , j) = j̄ = (õ+
k+1, j) for 1 ≤ j ≤ nk. We have a bijection

Π−k
τk−→ Π+

k+1, j̄ 7→ ck · j.

Let ≈ be a relation on the set Π, given by the rule: (õ−k , j) ≈
(
õ+
k+1, τk(j)

)
. Note that the

set Π does not contain reflexive elements, hence Π‡ = Π in this case.

Next, we claim that the datum (X̃, l,≈) is admissible. Indeed, let m := n1 . . . nr. Then

we can define a compatible weight function Π
wt−→ N by the following rules:

wt(x̃, j) =


m

nk−1
if x̃ = õ+

k and ≤ j ≤ nk−1,

m

nk
if x̃ = õ−k and 1 ≤ j ≤ nk,

m otherwise.

Then the stacky cycle of projective lines Er(~n,~c) can be defined as the non-commutative

nodal curve corresponding to the datum (X̃, l,≈,wt). Recall that, up to Morita equiv-
alence, the non-commutative nodal curve Er(~n,~c) does not depend on the choice of the
weight function wt; see Theorem 4.2.
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4.5. Auslander curve of a non-commutative nodal curve.

Definition 4.20. Let X = (X,A) be a non-commutative nodal curve and H be the
hereditary cover of A. The conductor ideal sheaf C is defined as follows: for any open
subset U ⊆ X we put:

(54) Γ(U, C) :=
{
f ∈ Γ(U,A)

∣∣ fg ∈ Γ(U,A) for all g ∈ Γ(U,H)
}
.

Lemma 4.21. The following results are true.

• The canonical morphism of OX-modules C → HomA(H,A) given on the level of
local sections by the rule (36) is an isomorphism.
• C is a sheaf of two-sided ideals both in A and H.
• The k-algebras Ā := Γ(X,A/C) and H̄ := Γ(X,H/C) are finite dimensional and

semisimple.

Proof. All statements follow directly from the corresponding local statements; see Propo-
sition 3.29 and Corollary 3.30. �

Definition 4.22. For a nodal curve X = (X,A) as above, we call the sheaf of orders

(55) B :=

(
A H
C H

)
the Auslander sheaf of A. The corresponding non-commutative nodal curve Y := (X,B)
is called the Auslander curve of X.

Consider the following idempotent sections e :=

(
1 0
0 0

)
and f :=

(
0 0
0 1

)
∈ Γ(X,B).

Then we get the following sheaves of locally projective left B-modules:

(56) P := Be ∼=
(
A
C

)
and Q := Bf ∼=

(
H
H

)
.

We denote P∨ := HomB(P,B) ∼= eB and Q∨ := HomB(Q,B) ∼= fB.

Similarly to the local case, we introduce the following functors.

• An exact functor G := HomB(P, − ) ' P∨ ⊗B − from QCoh(Y) to QCoh(X).

• Similarly, we have an exact functor G̃ = HomB(Q, − ) ' Q∨ ⊗B − from QCoh(Y)

to QCoh(X̃).
• We have functors F := P ⊗A − and H := HomA(P∨, − ) from QCoh(X) to
QCoh(Y).

• Similarly, we have functors F̃ := Q⊗H − and H̃ := HomH(Q∨, − ) from QCoh(X̃)
to QCoh(Y).

• Let DG,DG̃, LF, LF̃, RH and RH̃ be the corresponding derived functors.

Remark 4.23. It is clear that all functors G, G̃, F, F̃, H and H̃ can be restricted to the

corresponding subcategories of coherent sheaves. The functor F̃ is exact and transforms
locally projective H-modules to locally projective B-modules.
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All statements and proofs of Theorem 2.4 and Corollary 3.38 can be generalized to the
global setting in a straightforward way. In particular, we have the following results.

Theorem 4.24. Let X = (X,A) be a non-commutative nodal curve as in Definition 4.7,

X̃ = (X,H) be its hereditary cover and Y = (X,B) be the corresponding Auslander curve.
Then the following results are true.

• We have: gl.dim
(
Coh(Y)

)
= 2.

• We have a recollement diagram

(57) Db
(
Ā-mod)

)
I // Db

(
Coh(Y)

)
I!

mm

I∗qq
DG̃ // Db

(
Coh(X̃)

)
.

RH̃

mm

LF̃qq

Here, the exact functor I is determined by the rule I(Ā) = S, where S is given by
the locally projective resolution

(58) 0 −→
(
C
C

)
−→

(
A
C

)
−→ S −→ 0.

In particular, we have a semi-orthogonal decomposition

(59) Db
(
Coh(Y)

)
=
〈
Im(I), Im(LF̃)

〉
=
〈
Db
(
Ā-mod), Db

(
Coh(X̃)

)〉
.

• Moreover, we have the following commutative diagram of categories and functors:

(60)

Db
(
Coh(X̃)

)
ν∗ ))SSSSSSSSSSSSSSS

� � LF̃ // Db
(
Coh(Y)

)
DG
����

Perf(X)? _LFoo
H h

Evvllllllllllllll

Db
(
Coh(X)

)
where Perf(X) is the perfect derived category of coherent sheaves on X, E is the

canonical inclusion functor, LF and LF̃ are fully faithful, DG is an appropriate local-

ization functor and ν∗ is the functor induced by the “normalization map” X̃ ν−→ X.

5. Tilting on rational non-commutative nodal projective curves

5.1. Tilting on projective hereditary curves. We begin with a brief description of
the standard tilting bundle on a weighted projective line due to Geigle and Lenzing [23]

reexpressed in the language of non-commutative hereditary curves. Let X̃ = P
1 and

X̃
l−→ N be any length function. Let us fix any weight function Π

wt−→ N compatible with
l. As usual, we put

~p(x̃) :=
(
wt(x̃, 1), . . . ,wt(x̃, l(x̃))

)
for any x̃ ∈ X̃.

Let m :=
∣∣~p(x̃)

∣∣ for some (hence for any) point x̃ ∈ X̃ and H̃x̃ := H
(
Ox̃, ~p(x̃)

)
⊆ Matm(Ox̃)

be the standard hereditary order, defined by the vector ~p(x̃). Next, let Q̃(x̃,1), . . . , Q̃(x̃,l(x̃))
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be the standard indecomposable projective left H̃x̃-modules, i.e. we have a direct sum
decomposition

H̃x̃
∼= Q̃

⊕wt(x̃,1)
(x̃,1) ⊕ · · · ⊕ Q̃⊕wt(x̃,l(x̃))

(x̃,l(x̃)) .

Here, we have:

Q̃(x̃,1) :=

 Ox̃
...
Ox̃

 ∼=
 mx̃

...
mx̃

 =: Q̃′(x̃,1).

Note that there is a chain of embeddings of Hx̃-modules Q̃′(x̃,1) ⊂ Q̃(x̃,l(x̃)) ⊂ · · · ⊂ Q̃(x̃,1).

Let H̃ := H̃(l,wt) be the sheaf of hereditary orders on X̃ defined by (l,wt) and X̃ = (X̃, H̃)

the corresponding non-commutative hereditary curve. Recall that H̃ is a subsheaf of the

sheaf of maximal orders Matm(O
X̃

) such that H̃x̃ = H̃x̃ for any x̃ ∈ X̃. First of all, note
that we have an exact fully faithful functor

Coh(X̃)
F̄−→ Coh(X̃), E 7→

 E...
E

 ,

which transforms locally free sheaves on X̃ into locally projective H̃-modules. We put:

L̃ := F̄
(
O
X̃

)
=

 OX̃...
O
X̃

 .

Next, for any x̃ ∈ X̃ such that l(x̃) ≥ 2 and 2 ≤ i ≤ l(x̃), we have a locally projective

H-module L̃(x̃,i) uniquely determined by the following properties:

• The sheaf L̃(x̃,i) is a subsheaf of L̃.

• For any ỹ ∈ X̃ we have:(
L̃(x̃,i)

)
ỹ

=

{
L̃ỹ if ỹ 6= x̃

Q̃(x̃,i) if ỹ = x̃.

For a convenience of notation, we also define for any point x̃ ∈ X̃ the locally projective

subsheaf L̃(x̃,1) of L̃ defined by the following condition on the stalkes:(
L̃(x̃,1)

)
ỹ

=

{
L̃ỹ if ỹ 6= x̃

Q̃′(x̃,1) if ỹ = x̃.

It is clear that

L̃(x̃,1) := F̄
(
O
X̃

(−x̃)
)

=

 OX̃(−x̃)
...

O
X̃

(−x̃)

 .
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Note that L̃(x̃′,1)
∼= L̃(x̃′′,1) for any x̃′, x̃′′ ∈ X̃. Abusing the notation, we shall denote this

sheaf by L̃(−1). Next, let

(61) Φ :=
{
x̃ ∈ X̃

∣∣ l(x̃) ≥ 2
}

=:
{
x̃1, . . . , x̃r

}
be the set of weighted points of X̃. Let us choose some homogeneous coordinates (z : w) on

X̃. Then we have a pair of distinguished sections z, w ∈ Hom
X̃

(
O
X̃

(−1),O
X̃

)
vanishing,

respectively at the points õ+ := (0 : 1) and õ− = (1 : 0). Let x̃i = (λi : µi) and li = l(x̃i)
for 1 ≤ i ≤ r.
The following theorem is a restatement of the classical result of Geigle and Lenzing; see
[23, Proposition 4.1].

Theorem 5.1. The locally projective H-module

(62) T̃ :=
(
L̃ ⊕ L̃(−1)

)
⊕
⊕
x̃∈Φ

l(x̃)⊕
i=2

L̃(x̃,i)

is a tilting object in the derived category Db
(
Coh(X̃)

)
(called, in what follows, the standard

tilting bundle on X̃) and the corresponding algebra Γ :=
(
EndX̃(T̃ )

)◦
is isomorphic to

the Ringel canonical algebra Γ = Γ
(
(x̃1, l1), . . . , (x̃r, lr)

)
which is the path algebra of the

following quiver1

(63)

◦ u12 // ◦ // . . . // ◦
u1l1

$$IIIIIIIIIIIIII

◦ u22 // ◦ // . . . // ◦ u2l2

**TTTTTTTTTTTT

◦

u11

::uuuuuuuuuuuuuu

u21 44jjjjjjjjjjjj

ur1

""DDDDDDDDDDDDDDD

z
..

w

00 ◦

... ... ...

◦ ur2 // ◦ // . . . // ◦

urlr

<<zzzzzzzzzzzzzzz

modulo the relations

(64) uili . . . ui1 = λiw − µiz for 1 ≤ i ≤ r.

In other words, the derived functor

RHomX̃(T̃ , − ) : Db
(
Coh(X̃)

)
−→ Db(Γ-mod)

is an equivalence of triangulated categories.

1 In this picture the leftmost vertex corresponds to the sheaf L, the rightmost one corresponds to the

sheaf L(−1), while the internal vertices of the k-th branch correspond to the sheaves L̃(x̃k,i) for a special

point x̃k and lk = l(x̃k).
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Remark 5.2. In what follows, we shall call the arrows uij in the quiver (63) for 1 ≤
i ≤ r, 1 ≤ j ≤ li essential, whereas the arrows z and w will be called redundant. Note
that the relations (63) defining the canonical algebra Γ

(
(x̃1, l1), . . . , (x̃r, lr)

)
generate an

admissible ideal if and only if the set Φ is empty (in this case, the canonical algebra is the
path algebra of the Kronecker quiver).

Note also that we can formally add to the set Φ any point x̃ ∈ X̃ of length one, which
correspond to a formal addition of another redundant arrow and does not change the
corresponding canonical algebra. We will use this procedure in the study of nodal curves.

Example 5.3. Let λ ∈ k \ {0, 1}, Φ :=
{

(0 : 1), (1 : 0), (1 : 1), (λ : 1)
}

and l(x̃) = 2 for
any x̃ ∈ Φ. Then the corresponding canonical algebra (63) is the tubular algebra (1) from
the introduction.

5.2. Tilting on non-commutative rational projective nodal curves. We begin with

an admissible datum (X̃, l,≈), where X̃ = X̃1 t · · · t X̃r is a smooth rational projective

curve (each X̃i ' P
1). Let wt be any compatible weight function, X = (X,A) be the

corresponding non-commutative nodal curve, X̃ = (X,H) = X̃1t· · ·t X̃r be its hereditary
cover and Y = (X,B) be the corresponding Auslander curve.

Theorem 5.4. Let T̃i be the standard tilting bundle on X̃i defined by (62), T̃ := T̃1⊕· · ·⊕T̃r

and T := F̃(T̃ ) =

(
T̃
T̃

)
. Consider the complex X • := T ⊕S[−1] in the derived category

Db
(
Coh(Y)

)
, where S is the torsion sheaf defined by the short exact sequence (58). Then

X • is a tilting complex in Db
(
Coh(Y)

)
. In particular, if Λ :=

(
EndDb(Y)(X •)

)◦
then the

derived categories Db
(
Coh(Y)

)
and Db(Λ-mod) are equivalent.

Proof. The fact that X • generates the derived category Db
(
Coh(Y)

)
follows from the

recollement diagram (57) and the facts that T̃ generates Db
(
Coh(X̃)

)
and Ā generates

Db(Ā-mod). Since the functors I and LF̃ are fully faithful, we have:

ExtiY(S,S) = 0 = ExtiY(T , T )

for i ≥ 2. Since the functor LF̃ is left adjoint to DG and DG(S) = 0, we have:

ExtiY(T ,S) ∼= Hom
Db(X̃)

(
T̃ ,DG(S)[i]

)
= 0 for all i ∈ Z.

Finally, for any i ∈ Z we have: ExtiY(S, T ) ∼= Γ
(
X,ExtiY(S, T )

)
. Since S is torsion and T

is locally projective, we have: HomY(S, T ) = 0. It follows from the exact sequence (58)
that ExtiY(S, T ) = 0 for i ≥ 2. Therefore, HomDb(Y)

(
X •,X •[i]

)
= 0 for i 6= 0 and

(65) Λ :=
(
EndDb(Y)(X •)

)◦ ∼= ( Γ 0
W Ā

)
,

where Γ =
(
EndX̃(T̃ )

)◦
, Ā =

(
EndY(S)

)◦
and W := Γ

(
X,Ext1Y(S, T )

)
(viewed as an

Ā-Γ-bimodule). �
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Corollary 5.5. Let (X̃, l,≈) be an admissible datum, where X̃ is a disjoint union of pro-
jective lines. Then we have the following commutative diagram of categories and functors:

(66)

Db
(
Coh(X̃)

)
ν∗

wwooooooooooo � _

LF̃
��

Db
(
Coh(X)

)
Db
(
Coh(Y)

)DGoooo T // Db(Λ-mod)

Perf(X)
� ?

LF

OO

5 UE

ggPPPPPPPPPPPP

in which T is an exact equivalence of triangulated categories, LF and LF̃ are fully faithful
exact functors, E is the canonical inclusion, DG is an appropriate Verdier localization

functor and ν∗ is induced by the forgetful functor Coh(X̃) −→ Coh(X) (normalization).

5.3. Tame non-commutative nodal curves and tilting. We are especially interested
in studying those finite dimensional k-algebras Λ arising in the diagram (66) for which the
derived category Db(Λ-mod) has tame representation type. Since Db(Λ-mod) contains the
category of vector bundles VB(X) as a full subcategory, the non-commutative nodal curve
X has to be vector bundle tame, i.e. of the form X(~p, ~q,≈), where (~p, ~q,≈) is a datum from
Definition 4.12; see Theorem 4.13.

In this subsection we are going to elaborate one step further an explicit description of the
corresponding algebras Λ(~p, ~q,≈).

Definition 5.6. Let us start with a pair of tuples

~p =
(
(p+

1 , p
−
1 ), . . . , (p+

r , p
−
r )
)
∈
(
N2
)r

and ~q = (q1, . . . , qs) ∈ Ns,

where r, s ∈ N0 (either of this tuples is allowed to be empty).

For any 1 ≤ i ≤ r, let Ξ±i :=
{
x±i,1, . . . , x

±
i,p±i

}
and

(67) Γ
(
p+
i , p

−
i

)
=

◦
x+i,2 // ◦ . . . ◦ // ◦ x+

i,p+
i

��@@@@@@@

◦

x+i,1
??~~~~~~~

x−i,1
��

◦

◦
x−i,2

// ◦ // ◦ . . . ◦ // ◦ // ◦

x−
i,p−
i

OO
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Next, for any 1 ≤ j ≤ s, let Ξ◦j :=
{
wj,1, . . . , wj,qj

}
and

(68) Γ
(
2, 2, qj) =

◦ v+j

""
◦

u+j ..

u−j
00

wj,1 // ◦
wj,2 // . . . ◦ // ◦

wj,qj // ◦

◦ v−j

<<

modulo the relation v+
j u

+
j + v−j u

−
j + wj,qj . . . wj,1 = 0.

Let ≈ be a symmetric relation on the set

Ξ :=
(
(Ξ+

1 ∪ Ξ−1 ) ∪ · · · ∪ (Ξ+
r ∪ Ξ−r )

)
∪
(
Ξ◦1 ∪ · · · ∪ Ξ◦s

)
such that for any ξ ∈ Ξ there exists at most one ξ′ ∈ Ξ such that ξ ≈ ξ′. Then the datum
(~p, ~q,≈) defines a finite dimensional k-algebra Λ = Λ(~p, ~q,≈) which is obtained from
the disjoint union of quivers with relatioins Γ

(
p+
i , p

−
i

)
and Γ

(
2, 2, qj) by the following

combinatorial procedure.

• For any pair of tied elements %′ ≈ %′′ of Ξ, we add a new vertex and two arrows
ending in it:

(69)

◦
%′ // ◦

ϑ′

��@@@@@@@

•

◦
%′′ // ◦

ϑ′′

??~~~~~~~

The new arrows satisfy the following zero relations: ϑ′%′ = 0 = ϑ′′%′′.
• For each reflexive element % ∈ Ξ, we add two new vertices and two arrows ending

in each new vertex:

(70)

•

◦
% // ◦

ϑ+
??~~~~~~~

ϑ− ��@@@@@@@

•
The new arrows satisfy the following zero relations: ϑ±% = 0.

Remark 5.7. In the case when s = 0 (i.e. when the tuple ~q is void) the algebra Λ is
skew-gentle [24]. If additionally ξ 6≈ ξ for all ξ ∈ Ξ, then the algebra Λ is gentle [2]. We
also refer to [14] for a survey of results on the derived categories of gentle and skew-gentle
algebras.
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Theorem 5.8. Let X = X(~p, ~q,≈) be the non-commutative nodal curve attached to an
admissible datum (~p, ~q,≈) from Definition 4.12, Y be the Auslander curve of X and Λ =
Λ(~p, ~q,≈) be the finite dimensional algebra from Definition 5.6. Then the following results
hold:

• The derived categories Db
(
Coh(Y)

)
and Db(Λ−mod) are equivalent.

• Moreover, Db
(
Coh(Y)

)
and Db

(
Coh(X)

)
have tame representation type.

Proof. According to Theorem 5.4, there exists a tilting complex X • := T ⊕ S[−1] in the
derived category Db

(
Coh(Y)

)
such that

Λ̃ :=
(
EndDb(Y)(X •)

)◦ ∼= ( Γ 0
W Ā

)
,

Note, that Γ ∼=
(
Γ(p+

1 , p
−
1 )× · · · × Γ(p+

r , p
−
r )
)
×
(
Γ(2, 2, q1)× · · · × Γ(2, 2, qs)

)
. Next, Ā is

a product of several copies of the semisimple algebras k and k × k. Namely, each pair
ω′, ω′′ ∈ Π of tied elements gives a factor k, whereas each reflexive element ω ∈ Π gives
a factor k × k. Taking into account the description of the space W = Γ

(
X,Ext1Y(S, T )

)
viewed as right Γ-module given by Lemma 3.40, we can conclude that actually Λ̃ = Λ,
giving the first statement.

Since the derived category Db(Λ−mod) is representation tame (it can be deduced as in
[12]), the derived category Db

(
Coh(Y)

)
is representation tame too. Since Db

(
Coh(X)

)
can

be obtained as a Verdier localization of Db
(
Coh(Y)

)
(see Theorem 4.24), one can conclude

that Db
(
Coh(X)

)
is representation tame as well.2 �

6. Tilting exercises with some tame non-commutative nodal curves

In this section we are going to study in more details several special cases of the setting of
Corollary 5.5.

6.1. Elementary modifications. We are going to introduce two “elementary modifica-
tions”, which allow to replace the algebra Λ = Λ(~p, ~q,≈) by a derived-equivalent algebra.

Lemma 6.1. Any fragment of Λ of the form (69) can be replaces by the fragment

◦

%′1 ��======== ◦

•
%′′2

��========

%′2

@@��������
%′′2%
′
1 = 0, %′′1%

′′
2 = 0

◦

%′′1

@@��������
◦

Proof. Let j be the common target of the arrows ϑ′ and ϑ′′, i′ be the source of ϑ′ and i′′

be the source of ϑ′′. Consider the complex

Tj := (. . . −→ 0 −→ Pj
(ϑ′,ϑ′′)−−−−→ Pi′ ⊕ Pi′′ −→ 0 −→ . . . ),

2 Another approach to establish the representation tameness of Db
(
Coh(X)

)
is given in [22].
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where the underlined term of T∗ is located in the zero degree. Let Ω be the set of vertices of
the quiver of the algebra Λ. Then T := Tj⊕

(
⊕i∈Ω\{j}Pi) is a tilting object of Db(Λ-mod).

Let Γ :=
(
EndDb(Λ)(T )

)◦
. Then on the level of quivers and relations we get precisely the

transformation described in the statement of Lemma. �

Example 6.2. Let Λ be the path algebra of the following quiver

(71)

◦
u1

��@@@@@@@
x2 // ◦

x3

��@@@@@@@

◦

x1
??~~~~~~~

y1 ��@@@@@@@ • ◦
u3

**

v3

44 •

◦ y2
// ◦

v2
__@@@@@@@ y3

??~~~~~~~

modulo the relations: uixi = 0 for i ∈ {1, 3} and vjyj = 0 for j ∈ {2, 3}.
Making an elementary transformation at both bullets, we get a derived equivalent algebra
Γ, which is the path algebra of the following quiver

(72)

◦ x2 // ◦
x
(1)
3

��@@@@@@@

◦
x
(1)
1 //

y1 ��@@@@@@@ •

x
(2)
1

__@@@@@@@

y
(2)
2 ��@@@@@@@ ◦

x
(2)
3

**

y
(2)
3

44 •

◦
y
(1)
2

??~~~~~~~
◦

y
(1)
3

??~~~~~~~

modulo the relations: x
(2)
1 y

(1)
2 = y

(2)
2 x

(1)
1 = x

(2)
3 y

(1)
3 = y

(2)
3 x

(1)
3 = 0.

Lemma 6.3. Any fragment of Λ of the form (70) can be replaced by the fragment

•
%
(2)
+

��;;;;;;;;

◦

%
(1)
− ��;;;;;;;;

%
(1)
+

AA��������
◦ %

(2)
+ %

(1)
+ = %

(2)
− %

(1)
−

•
%
(2)
−

AA��������

Proof. Let j± be the target of ϑ± and i be their common source. Consider the complexes

Tj± := (. . . −→ 0 −→ Pj±
ϑ±−−→ Pi −→ 0 −→ . . . ).

Again, let Ω be the set of vertices of the quiver of the algebra Λ. Then

T :=
(
Tj+ ⊕ Tj−

)
⊕
(
⊕i∈Ω\{j+,j−}Pi)

is a tilting object in Db(Λ-mod). If Γ :=
(
EndDb(Λ)(T )

)◦
, then on the level of quivers and

relations the passage from Λ to Γ gives the desired elementary transformation. �
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Example 6.4. Let Λ be the path algebra of the following quiver

(73)

•

◦ x2 //

u1
??~~~~~~~

◦
x3

��@@@@@@@

u2
__@@@@@@@

◦

x1
??~~~~~~~

y1
''OOOOOOOOOOOOOO ◦

u3
**

v2

44 •

◦
y2

77oooooooooooooo

v+1

��@@@@@@@
v−1

��~~~~~~~

• •

subject to the relations: uixi = 0 for all 1 ≤ i ≤ 3, v2y2 = 0 and v±1 y1 = 0.

Performing the elementary transformations at all bullets, we get a derived equivalent
algebra Γ, given as the path algebra of the following quiver

(74)

•
x
(2)
1
��

x
(2)
2

��
◦

x
(1)
2

VV

◦
x
(1)
3

��@@@@@@@

◦

x
(1)
1

::

y+11
��

y−11 // •
y−12
��

◦
x
(2)
3

**

y
(2)
2

44 •

•
y+12

// ◦
y
(1)
2

77oooooooooooooo

subject to the relations:

x
(2)
2 x

(1)
1 = x

(2)
1 x

(1)
2 = x

(2)
3 y

(1)
2 = y

(2)
2 x

(1)
3 = 0 and y+

12y
+
11 = y−12y

−
11.

6.2. Degenerate tubular algebra. Let E = V
(
zy2 − x2(x − z)

)
⊂ P

2 be a plane

nodal cubic and G = 〈τ〉 ∼= Z2, where E
τ−→ E is the involution given by the rule

(x : y : z) 7→ (x : −y : z). Then the category CohG(E) of G-equivariant coherent sheaves
on E is equivalent to the category of coherent sheaves on the non-commutative nodal curve
E = X(~p, ~q ≈) described in Example 4.18. Recall that the vector ~p is void, ~q = (1) and
(õ, 1) ≈ (õ, 1). Then the corresponding algebra Λ = Λ(~p, ~q,≈) is the path algebra of the
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following quiver

◦
x2

��@@@@@@@ •

◦

x1
??~~~~~~~ w //

y1 ��@@@@@@@ ◦

u+
??~~~~~~~

u− ��@@@@@@@

◦
y2

??~~~~~~~
•

modulo the relations x2x1 + y2y1 + w = 0 and u±w = 0. Note that the corresponding
ideal in the path algebra is not admissible and the arrow w is redundant. Applying the
elementary transformation from Lemma 6.3 to the arrow w, we end up with the the path
algebra T of the following quiver

(75)

◦
a1

wwoooooooooooooo

a2��~~~~~~~

a3 ��@@@@@@@
a4

''OOOOOOOOOOOOOO

◦

b1 ''OOOOOOOOOOOOOO ◦
b2

��@@@@@@@ ◦
b3

��~~~~~~~
◦

b4wwoooooooooooooo

◦

modulo the relations b1a1 + b2a2 + b3a3 = 0 and b1a1 = b4a4, i.e. the degenerate tubular
algebra from Introduction. Since the derived categories Db(Λ-mod) and Db(T -mod) are
equivalent, the commutative diagram of categories and functors (3) is a special case of the
setting from Corollary 5.5.

Let S be the path algebra of the following quiver

(76)

◦
a+ //

c+

77

◦
b+ //

d+

��

◦

◦ a−
//

c−

''

◦
b−

//

d−

WW

◦

modulo the following set of relations:

d±a± = b∓c± and b±a± = dmpa∓,

i.e. any two paths with the same source and target are equal.

Proposition 6.5. The derived categories Db(T -mod) and Db(S-mod) are equivalent.
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Proof. Let A be the path algebra of the affine Dynkin quiver

(77)

◦

b1 ''OOOOOOOOOOOOOO ◦
b2

��@@@@@@@ ◦
b3

��~~~~~~~
◦

b4wwoooooooooooooo

◦
and M be the left A-module corresponding to the representation

(78)

k

( 1
0 ) ''OOOOOOOOOOOOOO k

( 1
1 )

��@@@@@@@ k
( 1

1 )

��~~~~~~~
k

( 0
1 )wwoooooooooooooo

k
2

Then we have: T ∼=
(
k 0
M A

)
, i.e. T is a so-called one-point extension of the algebra A

by the left A-module M . Next, consider the following left A-modules:

V1 =

0

''NNNNNNNNNNNNNN 0

��>>>>>>>> k

1

����������
0

wwoooooooooooooo

k

V2 =

0

''OOOOOOOOOOOOOO k

1

��>>>>>>>> 0

����������
0

wwpppppppppppppp

k

V3 =

k

( 1
1 ) ''OOOOOOOOOOOOOO k

( 1
0 )

��@@@@@@@ k
( 0

1 )

��~~~~~~~
0

wwoooooooooooooo

k
2

V4 =

0

''OOOOOOOOOOOOOO k
( 1

0 )

��@@@@@@@ k
( 0

1 )

��~~~~~~~
k

( 1
1 )wwoooooooooooooo

k
2

and

V5 =

0

''OOOOOOOOOOOOOO k

1

��>>>>>>>> k

1

����������
0

wwoooooooooooooo

k

Then V := V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5 is a tilting module in Db(A-mod) and

T := RHomA(T, − ) : Db(A-mod) −→ Db(B-mod)

is an equivalence of triangulated categories, where B :=
(
EndA(V )

)◦
. Note that B is

isomophic to the path algebra of the following quiver

(79)

◦
b+

//

d+

��

◦

◦

u+
??~~~~~~~

u− ��@@@@@@@

◦
b− //

d−

WW

◦



NON-COMMUTATIVE NODAL CURVES AND DERIVED TAME ALGEBRAS 49

modulo the relations: b±u± = d∓u∓. It is not difficult to see that T(M) ∼= N , where N is
the following representation of the quiver (79):

k
1

//
1

��

k

0

??��������

��>>>>>>>

k
1 //

1

WW

k

Observe that S ∼=
(
k 0
N B

)
. The statement follows now a result of Barot and Lenzing

[5, Theorem 1] on derived equivalences of one-point extensions. �

Remark 6.6. According to [32, Theorem 8.1.10 and Exercise 8.1], the derived category
Db(S-mod) is equivalent to the derived category of constructible sheaves Db

Σ

(
ConSh(S2)

)
on the two-dimensional real sphere S2 with respect to the stratification Σ described in the
following picture:

Putting together all results obtained in this subsection, we get the following commutative
diagram of triangulated categories and exact functors:

(80)

Db(T -mod)
T // Db

Σ

(
ConSh(S2)

) P // // Db
(
CohG(E)

)

PerfG(E)
5 UE

hhPPPPPPPPPPPP ) 	 I

66mmmmmmmmmmmm

where I is the canonical inclusion functor, E is a fully faithful functor, T is an equivalence
of categories and P is an appropriate localization functor. It would be quite interesting to
give an interpretation of this result in terms of the homological mirror symmetry in the
spirit of the approach of [38].

6.3. A purely commutative application of non-commutative nodal curves. Again,
let E = V

(
zy2−x2(x− z)

)
⊂ P2 be a plane nodal cubic. Consider the action of the cyclic

group G ∼= Z2 from Example 4.15. As an application of the technique of non-commutative
nodal curves, we give a direct proof of the following known result; see [48, Example 1.4].
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Proposition 6.7. Let Ẽ be the cycle of two projective lines. Then the derived categories

Db
(
Coh(Ẽ)

)
and Db

(
CohG(E)

)
are equivalent.

Proof. Let E be the non-commutative nodal curve from Example 4.15 (i.e. the cate-

gories Coh(E) and CohG(E) are equivalent). Let Y (respectively, Ỹ) be the Auslan-

der curve of E (respectively, of Ẽ). Let K := Ker
(
Db
(
Coh(X)

) P−→ Db
(
Coh(E)

))
and

K̃ := Ker
(
Db
(
Coh(X̃)

) P̃−→ Db
(
Coh(Ẽ)

))
be the kernels of the corresponding localization

functors from Corollary 5.5. We are going to construct an equivalence of triangulated cat-

egories Db
(
Coh(X)

) E−→ Db
(
Coh(X̃)

)
, which induces a commutative diagram of categories

and functors

K
E //

_�

��

K̃� _

��

Db
(
Coh(Y)

) E //

P
����

Db
(
Coh(Ỹ)

)
P̃����

Db
(
Coh(E)

) Ē // Db
(
Coh(Ẽ)

)
,

where all horizontal arrows are equivalences of triangulated categories.

Let Db
(
Coh(Y)

) T−→ Db(Λ-mod) and Db
(
Coh(Ỹ)

) T̃−→ Db(Λ̃-mod)) be the equivalences

of triangulated categories, where the algebras Λ and Λ̃ are the algebras corresponding,

respectively, to Y and to Ỹ as in Corollary 5.5. Recall that

(81) Λ =

2−

b−
��

c+

��
1

a+
88

a− &&

3 4

d+
((

d−

66 5 b±a∓ = 0 and d±c∓ = 0

2−

b+

OO

c−

GG

whereas

(82) Λ̃ =

3+

1

u+
((

u−

66 2

v+
??��������

v−
��>>>>>>>> 4

w+

__>>>>>>>>

w−
����������

5

z+
vv

z−

hh v±u∓ = 0 and w±z∓ = 0.

3−
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Consider the third gentle algebra

Γ =

3+

c+

��>>>>>>>>

1

u+
((

u−

66 2

v+
??��������

v−
��>>>>>>>> 4

d+
((

d−

66 5 v±u∓ = 0 and d±c∓ = 0.

3−

c−

??��������

We construct now a pair of equivalences of triangulated categories:

Db(Λ-mod)
T1−→ Db(Γ-mod)

T2←− Db(Λ̃-mod).

• The first equivalence T1 is just the elementary modification from Lemma 6.1,
applied to the third vertex.
• The second equivalence T2 is given by the tilting complex

X• := S1[−2]⊕ S2[−1]⊕ P3+ ⊕ P3− ⊕ P4 ⊕ P5.

The image of the localizing subcategory K ⊂ Db
(
Coh(Y)

)
in Db(Λ-mod) under the tilting

equivalence T is the triangulated envelope
〈
X+, X−, Y+, Y−

〉
, where

X± =
(
. . . −→ 0 −→ P5

d±−→ P4
c∓−→ P2± −→ 0 −→ . . .

)
and Y± =

(
. . . −→ 0 −→ P3

b∓−→ P2∓
a±−→ P1± −→ 0 −→ . . .

)
. One can check that

T1(X±) ∼= S3± , whereas T1(Y±) ∼= Z±, where

Z± =
(
. . . −→ 0 −→ P3

v∓−→ P2∓
u±−→ P1± −→ 0 −→ . . .

)
.

In an analogous way one can check that the image of the localizing subcategory K̃ under
the chain of equivalences of derived categories

Db
(
Coh(Ỹ)

) T̃−→ Db(Λ̃-mod)
T2−→ Db(Γ-mod)

is again the triangulated category
〈
S3+ , S3− , Z+, Z−

〉
. It proves the proposition. �

6.4. Tilting on Zhelobenko’s non-commutative cycles of projective lines. For
n ∈ N, let E = E2n be a cycle of 2n projective lines. It is convenient to label the

irreducible components of E by the natural numbers
{

1, 2, . . . , 2n
}

. Let Ẽ
ν−→ E be

the normalization of E, Õ := ν∗
(
O
Ẽ

)
and C := AnnE

(
Õ/O

) ∼= HomE

(
Õ,O

)
be the

corresponding conductor ideal sheaf. In this particular case, C is just the ideal sheaf of the
set

{
o1, o2, . . . , o2n

}
of the singular points of E. Let E = (E,B) be the Auslander curve

of E, where B =

(
O Õ
C Õ

)
. Recall that for any 1 ≤ k ≤ 2n we have: B̂ok ∼= B, where
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B is the Auslander order (23). Let S±k be the simple torsion sheaf on E supported at the
singular point ok which corresponds to the vertex ± of the quiver (24). Note that

(83) ExtpE
(
S±k ,S

±
k

) ∼= { k if p = 0
0 otherwise.

Let e :=

(
1 0
0 1′

)
∈ Γ(E,B), where 1 = 1′ + 1′′ ∈ Γ(E, Õ) is the decomposition of the

identity section corresponding to the decomposition Õ = Õ′ ⊕ Õ′′ of Õ in the direct sum
of “even” and “odd” components. Let

A := HomB
(
Be
) ∼= ( O Õ′

C Õ′

)
and A := (E,A) be the corresponding non-commutative nodal curve. Note that for any 1 ≤
k ≤ 2n we have: Âok ∼= A, where A is the Zhelobenko order (21), so we call A Zhelobenko’s
non-commutative cycle of projective lines. Next, we have a splitting C = C′ ⊕ C′′, where

C′ ⊂ Õ′ (respectively, C′′ ⊂ Õ′′). Under these notations, the following sequences of sheaves

are exact: 0 −→ C′ −→ O −→ Õ′′ −→ 0 and 0 −→ C′′ −→ O −→ Õ′ −→ 0. Next, let

I := Im
(
Be⊗eBe eB

mult−−→ B
)

=

(
O Õ′ ⊕ Õ′′
C Õ′ ⊕ C̃′′

)
and B̄ := B/I. Then we have: Ō′′ := Γ

(
E, Õ′′/C′′

) ∼= Γ(E, B̄) ∼= k× · · · × k︸ ︷︷ ︸
2n times

.

Proposition 6.8. We have a recollement diagram

(84) Db
(
Ō′′-mod)

)
// Db
(
Coh(E)

)
mm

qq
// Db
(
Coh(A)

)
.mm

qq

In particular, there exists an equivalence of triangulated categories:

(85) Db
(
Coh(A)

)
−→

〈
S+

1 ,S
−
2 , . . . ,S

+
2n−1,S

−
2n

〉⊥ ⊂ (Coh(E)
)
.

Proof. It is a consequence of the corresponding local statement (see Theorem 2.4) com-
bined with the fact (following from (83)) that the functor

Db
(
Ō′′-mod)

)
−→ Db

B̄
(
Coh(E)

)
=
〈
S+

1 ,S
−
2 , . . . ,S

+
2n−1,S

−
2n

〉
is an equivalence of triangulated categories. �

Theorem 6.9. Let Υ = Υn be the gentle algebra given by (9). Then the derived categories
Db
(
Coh(A)

)
and Db(Υ-mod) are equivalent.
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Proof. Let Db
(
Coh(E)

) T−→ Db(Λ-mod) be the tilting equivalence from Corollary 5.5.
Recall from [13, Section 5.2] that Λ = Λ2n is the path algebra of the following quiver

α1

a+1 **

a−1

44 β1

b−1

��

b+1 // φ+
1

φ−1 γ1

c+1oo

c−1

aaBBBBBBBBB
δ1

d−1

ii

d+1uu

α2

a+2 **

a−2

44 β2

b−2
==|||||||| b+2 // φ+

2

φ−2 γ2

c+2oo

c−2

aaBBBBBBBBB
δ2

d−2

ii

d+2uu

...

φ−n−1

αn

a+n **

a−n

44 βn

b−n
==|||||||| b+n // φ+
n

φ−n γn
c+noo

c−n

aaCCCCCCCCC
δn

d−n

jj

d+ntt

modulo the relations b±k a
∓
k = 0 = c±k d

∓
k for all 1 ≤ k ≤ n. For any 1 ≤ k ≤ n, consider the

complexes

A±k :=
(
. . . −→ 0 −→ Pφ±k

c∓k−→ Pγk
d±k−−→ Pδk −→ 0 −→ . . .

)
.

Then we have: {
T
(
S+

2k−1

) ∼= A+
k

T
(
S−2k
) ∼= A−k

1 ≤ k ≤ n.

For any 1 ≤ k ≤ n, consider the following objects of Db(Λ-mod):

Bk =
(
. . . −→ 0 −→ Pφ+k−1

⊕ Pφ−k
(b−k b+k )
−−−−−→ Pβk −→ 0 −→ . . .

)
,

Ck =
(
. . . −→ 0 −→ Pφ+k−1

⊕ Pφ−k
(b−k a

−
k b+k a

+
k )

−−−−−−−−→ Pαk −→ 0 −→ . . .
)
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and

H :=

n⊕
k=1

(
Pγk ⊕ Pδk ⊕Bk ⊕ Ck

)
.

It is not difficult to check that HomDb(Λ)

(
H,H[p]

)
= 0 and H generates the triangu-

lated category
〈
A+

1 , A
−
1 , . . . , A

+
n , A

−
n

〉⊥
. Hence H is a tilting object of the latter category.

Moreover, one can show that
(
EndDb(Λ)(H)

)◦ ∼= Υ. Summing up, we have a chain of
equivalences of triangulated categories

Db
(
Coh(A)

)
−→

〈
A+

1 , A
−
1 , . . . , A

+
n , A

−
n

〉⊥ −→ Db(Υ-mod),

which yields the desired statement. �

For any n ∈ N, consider the graded gentle algebra Θ = Θn, given as the path algebra of
the following quiver

(86)

◦

a1

��

b1

""

◦

a2

��

b2

##

. . . ◦

an

��

bn

jj◦

w1

OO

◦

w2

OO

◦ ◦

wn

OO

modulo the relations bkwk = 0 = wkak for all 1 ≤ k ≤ n, where the grading is given by
the rule deg(ak) = deg(bk) = 0, whereas deg(wk) = 1.

Proposition 6.10. The triangulated categories Db(Υ-mod) and Db(Θ) are equivalent,
where Db(Θ) denotes the derived category of Θ viewed a differential graded category with
trivial differential. As a consequence, the triangulated categories Db

(
Coh(A)

)
and Db(Θ)

are equivalent, too.

Proof. Let S be a Serre functor of the derived category Db
(
Coh(E)

)
. In [16, Lemma 5.2]

it was observed that S(S±k ) ∼= S∓k [2] for any 1 ≤ k ≤ 2n. Moreover, for p ∈ N0 and
ε, δ ∈ {+,−} we have:

ExtpE
(
Sεk,Sδk

)
=

{
k if p = 0 and ε = δ
0 if p = 2 and ε 6= δ.

In other words, for any 1 ≤ k ≤ 2n, the pair of objects S+
k , S

−
k forms a generalized

2-spherical collection. Let Tk : Db
(
Coh(E)

)
−→ Db

(
Coh(E)

)
be the corresponding Seidel-

Thomas twist functor. According to [46, Proposition 2.10] (see also [9, Theorem 2], [44,
Remark 2.5] and [1]), the functor Tk is an auto-equivalence of Db

(
Coh(E)

)
. For any

1 ≤ k, l ≤ 2n we have:

Tk
(
S±l
) ∼= { S±l if l 6= k

S∓l [2] if l = k.
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It follows that the composition T̃ := T1 ◦ T3 ◦ · · · ◦ T2n−1 induces an equivalence of
triangulated categories

Db(Υ-mod) −→
〈
S+

1 ,S
−
2 , . . . ,S

+
2n−1,S

−
2n

〉⊥ T̃−→
〈
S−1 ,S

−
2 , . . . ,S

−
2n−1,S

−
2n

〉⊥
.

Let Ã−k :=
(
. . . −→ 0 −→ Pφ+k

b+k−→ Pβk
a−k−−→ Pαk −→ 0 −→ . . .

)
. Then we have:

T
(
S−2k−1

) ∼= Ã−k for all 1 ≤ k ≤ n. As a consequence, the categories Db(Υ-mod) and〈
A−1 , Ã

−
1 , . . . , A

−
n , Ã

−
n

〉⊥
are equivalent.

For any 1 ≤ k ≤ n, consider the following object in Db(Λ-mod):

Xk =
(
. . . −→ 0 −→ Pβk

a−k−−→ Pαk −→ 0 −→ . . .
)

Yk =
(
. . . −→ 0 −→ Pγk

d−k−−→ Pδk −→ 0 −→ . . .
)

Uk =
(
. . . −→ 0 −→ Pφ−k

b−k−→ Pβk+1
−→ 0 −→ . . .

)
Vk =

(
. . . −→ 0 −→ Pφ+k

c−k−→ Pγk −→ 0 −→ . . .
)
.

One can show that

G :=
n⊕
k=1

(
Xk ⊕ Yk ⊕ Uk ⊕ Vk

)
generates the orthogonal category

〈
A−1 , Ã

−
1 , . . . , A

−
n , Ã

−
n

〉⊥
. Moreover, we have an isomor-

phism of graded algebras Θ ∼=
(
Ext∗Db(Λ)(G)

)◦
.

A result of Bardzell (see [4, Theorem 4.1]) allows to write down a minimal resolution of
Θ viewed as a module over its enveloping algebra Θe := Θ⊗k Θ◦. From the explicit form
of this resolution one can conclude that gl.dimΘ = 3. Moreover, one can show that in the
category of graded left Θe-modules the following vanishing is true:

Ext3gr(Θe)
(
Θ,Θ(−1)

)
= 0.

A result of Kadeishvili [31] implies that the algebra Θ is intrinsically formal, i.e. that any
minimal A∞-structure on Θ is equivalent to the trivial one. According to Keller’s work

[33], the categories
〈
A−1 , Ã

−
1 , . . . , A

−
n , Ã

−
n

〉⊥
and Db(Θ) are equivalent, which implies the

statement. �

Remark 6.11. It follows from Bardzell’s resolution [4, Theorem 4.1] that the third
Hochschild cohomology HH3(Υ) is non-vanishing. Assume that Γ is a finite dimensional
algebra, which is derived equivalent to Υ. According to a result of Schröer and Zim-
mermann [45], Γ is a gentle algebra. Rickard’s derived Morita theorem [42] implies that
HH3(Γ) ∼= HH3(Υ) 6= 0 (see for instance [34, Section 2.4] for a detailed argument). It fol-
lows from [29, Section 1.5] that gl.dim(Γ) ≥ 3. In particular, the gentle algebra Υ can not
be derived equivalent to a gentle algebra Λ(~p,≈) from Definition 5.6. As a consequence, a
Zhelobenko’s non-commutative cycle of projective lines A is not derived equivalent to the
Auslander curve of a non-commutative projective nodal curve.
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[45] J. Schröer & A. Zimmermann, Stable endomorphism algebras of modules over special biserial algebras,

Math. Z. 244 (2003), no. 3, 515–530.
[46] P. Seidel & R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J.

108 (2001), no. 1, 37–108.
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