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Abstract. An invariant of a group U is called a relative invariant of U ( G
if its stabilizer in G is U . The computation of Galois groups requires the

construction of such invariants for permutation groups. In this article, we

summarize the constructions of relative invariants as they are implemented
in the Galois group package of magma 2.20. These constructions result in

practical invariants for all transitive groups up to degree 32.

1. Introduction

The computation of the Galois group of a polynomial is one of the basic questions
of algorithmic algebraic number theory [3, Sec. 6.3]. Old algorithms used tables of
precomputed data. Thus, they were equipped with an a priori degree limitation.
In [8], such an algorithm is described for polynomials up to degree 23. As there are
25000 transitive permutation groups in degree 24, it is clear that any extension will
get huge. Thus, one needs a degree independent implementation that computes all
required data on the fly. The first implementation of such an algorithm is described
in [7]. It was done as a magma [1] package.

The basic idea of the algorithm dates back to [13]. The first observation is that
the Galois group of a separable degree n polynomial f is contained in G1 := Sym(n).
We take this as the starting group and compute the conjugacy classes of maximal
subgroups.

For each maximal subgroup class representative U , we compute a relative invari-
ant polynomial I, i.e., a polynomial such that its stabilizer in G1 is U .

We form I(rσ(1), . . . , rσ(n)), for ri the roots of f and σ ∈ G1//U . Here, we denote
by G1//U a system of coset representatives of G/U . Assuming the numerical values
of the evaluation of the invariant to be distinct, one can show that the Galois group
is contained in σUσ−1 if and only of the corresponding value of the invariant is
rational.

Using this, one can either prove that the Galois group is equal to G1 or find a
maximal subgroup G2 that contains the Galois group. Now, one iterates this step
starting with G2 instead of G1 until the Galois group is determined.

One limiting bottleneck of the implementation described in [7] is the complex-
ity of the invariant. In case its evaluation requires a large number of arithmetic
operations, the computation gets slow. In extreme cases, the construction of the
invariant may even run out of memory.

The aim of this article is to describe the methods to construct relative invariants,
as they are implemented in magma 2.20. These constructions cover all transitive
groups up to degree 32.
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2. Invariants from block systems and the Reynolds operator

2.1. Block systems. Let G ⊂ Sym(n) be a transitive permutation group. Let
B ⊂ {1, . . . , n} be a non-empty subset. In case

∀σ ∈ G : σB = B or σB ∩B = ∅

we call B a block of G. The G-orbit of B is called a block system.
In case B is a singleton, we get the trivial block system. Otherwise, we get a

non-trivial block system. A permutation group without a non-trivial block system
is called primitive. Otherwise, it is called imprimitive.

We denote a block system {B1, . . . Bk} by B. As G acts on the block system,
this gives us a second permutation representation. We denote it by φB.

2.2. Remarks.
i) The size of a block is a divisor of the degree of the permutation group. Thus, all
groups of prime degree are primitive.

ii) However, most transitive permutation groups have block systems. For example,
only five out of the 25000 transitive permutation groups in degree 24 are primitive.

2.3. Wreath product type constructions. Let U be a maximal and transitive
subgroup of G ⊂ Sym(n). In case U is a subgroup of a non-trivial wreath product in
Sym(n) that does not contain G, at least one of the following constructions results
in a relative invariant in K[X1, . . . , Xn]. [8, Satz 6.14, Satz 6.16]

NewBlock-construction: In case {B1, . . . , Bk} is a block-system for U , but
not for G, the following are relative invariants

k∑
i=1

(
∑
j∈Bi

Xj)2, if char(K) 6= 2,

k∑
i=1

(
∑
j∈Bi

Xj)3, if char(K) 6= 3,

k∑
i=1

(
∏
j∈Bi

Xj),
k∏
i=1

(
∑
j∈Bi

Xj) in general.

E-construction: Let B = {B1, . . . , Bk} be a block system of G with φB(U) 6=
φB(G). Then

I(
∑
i∈B1

Xi, . . . ,
∑
i∈Bk

Xi)

is a relative invariant for U ⊂ G. Here, I denotes a relative invariant for
φB(U) ⊂ φB(G).

F-construction: Let B = {B1, . . . , Bk} be a block system of G. Assume
StabU (B1)|B1 6= StabG(B1)|B1 . Then we get the relative invariant∑

s∈U//StabU (B1)

Is .

Here, I denotes a relative invariant for StabU (B1)|B1 ⊂ StabG(B1)|B1 .
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2.4. Remark. The F-construction lifts an invariant of a subgroup to a U -invariant
by forming its orbit sum. This is a general strategy in invariant theory, usually
called the Reynolds operator. The general construction is as follows:

Let U ⊂ G be a subgroup of finite index. Then the Reynolds operator maps
U -invariants to G-invariants by

RG/U (f) =
1

[G : U ]

∑
σ∈G//U

σf .

It may happen that the result degenerates. For example, if U is an index 2 subgroup
of G and G acts on f by change of sign then we get RG/U (f) = 0. In the situation
of the F-construction, it is obviously impossible that the invariant degenerates to
a G-invariant. In later constructions, we will use the following lemma to exclude
degeneration.

2.5. Lemma. Let U0, G ⊂ G0 ⊂ Sym(n) be permutation groups. Define U :=
U0 ∩ G 6= G. We assume [U0 : U ] = [G0 : G] > 1. Further let f be an U -
invariant that is not G invariant. If the K-vector space span{σf | σ ∈ U0} is of
dimension [U0 : U ] and span{σf | σ ∈ G} is one dimensional then RU0/U (f) is not
G0-invariant.

Proof: In this situation, U0/U coset representatives are G0/G coset represen-
tatives. Thus, G acts on span{σf | σ ∈ U0}, as well.

Pick an element τ ∈ G with τf 6= f (i.e., f and τf differ by a scalar). τ acts
on the sum

∑
σ∈U0//U

σf by permutation and scaling of the summands. As the
summands are linearly independent, τ will not stabilize the sum as it does not
stabilize f . �

3. Change of representation and the BlockQuotient-construction

3.1. Change of representation. Let H ⊂ G be a subgroup. Then the coset
action of G on G/H coincides with the G-action on the G-orbit of a (H ⊂ G)-
relative invariant. We denote the coset action homomorphism by φG/H . For a
maximal subgroup U ⊂ G with φG/H(U) 6= φG/H(G), we can use a relative invariant
for φG/H(U) ⊂ φG/H(G) and plug the G-orbit of a (H ⊂ G)-relative invariant into
it. This leads to a U -invariant. In case the construction does not degenerate, we
get a relative invariant. In case of a degeneration, we replace the (H ⊂ G)-relative
invariant I by T (I) with a random univariate polynomial T [8, Bemerkung 6.19].

3.2. The BlockQuotient-Construction. The following strategy to pick H leads
to the BlockQuotient-Construction:
i) For each block-system B = {B1, . . . , Bk} of G, compute the stabilizer S :=
StabG(B1). Denote by π the action of S on B1.
ii) Compute the subgroups of π(S) of index 2, . . . ,#B1.
iii) For each subgroup T ⊂ π(S) found, take its preimage H := π−1(T ).
iv) In case φG/H(U) 6= φG/H(G) and φG/H(G) has smaller degree or order than G,
return H as the subgroup to be used.

One advantage of this construction is that a (H ⊂ G)-relative invariant is given
by a (T ⊂ π(S))-relative invariant. The later groups are much simpler as they have
at most half the degree as the initial ones.
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3.3. Remark. The index limit #B1 for the subgroup search is somehow random.
It is a trade-off between the time spent to search for and test the subgroups and the
chance of getting a significant simplification by passing to φG/H(U) ⊂ φG/H(G).

3.4. Interpretation.
i) One can interpret the Block-Quotient construction as follows. Let a tower of
fields Q ⊂ K ⊂ L be given. The field L is the stem field Q[x]/(f), for f the
polynomial we are treating. The field K corresponds to the stabilizer of one block
of a block system of the Galois group.
The BlockQuotient-construction passes to the tower Q ⊂ K ⊂ L1. Here, the
field L1 is chosen as a subfield of the Galois hull of L/K with the degree limit
[L1 : K] ≤ [L : K]. The Galois group of the Galois hull of L1/Q is a quotient of
the Galois group of the Galois hull of L/Q. The new representation used by the
BlockQuotient-construction is the projection.
Typical examples for this are Q ⊂ K := Q[a] ⊂ Q[ n

√
a], for L1 := K[ζn] and

Q ⊂ K := Q[a] ⊂ Q[ 16
√
a] for L1 := Q[

√
a] or L1 := Q[ 4

√
a,
√
−1].

ii) In the category of permutation groups the Block-Quotient-construction can be
described as follows: Given transitive subgroups G1 ⊂ Sym(n1), G2 ⊂ Sym(n2)
and a surjective homomorphism φ : G1 → G2. Then φ induces a homomorphism of
wreath products

Φ: Gn1 o Sym(n) → Gn2 o Sym(n)
((σ1, . . . , σn), τ) 7→ ((φ(σ1), . . . , φ(σn)), τ) .

In the notation we used in 3.2 we have G1 = π(S) and φ is the action on π(S)/T .
Further, Φ|G is φG/H .

3.5. Statistics. We used the database of transitive groups [2, 10] up to degree 32
to test the constructions above. This led to the statistics in Table 1.

n # pairs # NewBlock/E/F # Block-Quot # Remaining
4 5 3 0 2
6 30 21 2 7
8 141 100 20 21
9 78 40 8 30

10 100 66 12 22
12 1083 795 201 87
15 264 171 55 38
16 12533 9613 2663 257
18 4189 3217 892 80
20 4856 3448 1082 326
24 178753 135464 42101 1188
27 12964 8558 3549 857
28 8293 5775 1879 639
30 28012 20505 7048 459
32 53804069 46347960 7443119 12990

Table 1 – Number of pairs of groups U ⊂ G ⊂ Sym(n) covered
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3.6. Inspecting other representations. As explained above, the BlockQuotient
construction leads to a simplification, as it maps to a smaller group. In some cases
even an injective map may be helpful.

i) The primitive wreath product [5, Sec. 2.7] is a permutation representation of
Sym(n) o Sym(m) of degree nm. Mapping to the imprimitive wreath product of
degree nm is an isomorphism. Aside from the degree reduction the main advantage
is that this map makes the group structure more visible.

ii) The action on 2-sets of U ⊂ G ⊂ Sym(n) coincides with the action on the
monomials {XiXj : i 6= j}. This is a faithful representation of degree

(
n
2

)
. One

could try to use this new representation to get an invariant. The main problem
of this approach is that it is not clear how to decide wether this is simpler than
the initial representation. Of course, one can use it in case U has more orbits than
G or U has a new block system. The first possibility is an example of a generic
invariant, as they are analyzed in [7, Section 4].

4. Constructions for index 2 subgroups

4.1. Example. Let Alt(n) ⊂ Sym(n) be the alternating group inside the symmet-
ric group of degree n. An element of Sym(n) is contained in Alt(n) if and only if it
is in the kernel of the sign homomorphism. We denote by ∆ the polynomial∏

1≤i<j≤n

(Xj −Xi) =
∑

σ∈Sym(n)

sgn(σ)Xσ(2)X
2
σ(3) · · ·X

n−1
σ(n)

=

∣∣∣∣∣∣∣
1 X1 · · · Xn−1

1
...

...
. . .

...
1 Xn · · · Xn−1

n

∣∣∣∣∣∣∣ .
Then Sym(n) operates on ∆ via the sign homomorphism. Thus, ∆ is a relative
invariant for Alt(n) ⊂ Sym(n).

4.2. Generalization. The product formula above for the invariant ∆ can be inter-
preted as follows: The Sym(n)-orbit of (X1−X2) is {±(Xi−Xj) | 1 ≤ i < j ≤ n}.
In this situation, the signed permutations give us a

(
n
2

)
-dimensional monomial rep-

resentation of Sym(n).
Thus, the action on the product∏

1≤i<j≤n

(Xi −Xj)

results in a one-dimensional representation.
In case G ⊂ Sym(n) is a subgroup that is not transitive on 2-sets, the above rep-

resentation decomposes into monomial subrepresentations. We get one summand
for each orbit of G on 2-sets. Denote by O2 one G-orbit on 2-sets. This orbit leads
to a 1-dimensional representation, given by the action on∏

{i,j}∈O2

(Xmin{i,j} −Xmax{i,j}) .
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4.3. Combining invariants. Given the index 2 subgroups U1, U2 ⊂ G, there is a
third index 2 subgroup

U3 := (U1 ∩ U2) ∪ (G \ (U1 ∪ U2)) .

Let I1, I2 be relative invariants for U1, U2 ⊂ G. We assume that the action of G
on these invariants is by change of sign. If this is not the case then we replace the
invariants by Ij − σIj for a σ ∈ G \ Uj . Then I3 := I1I2 is a relative invariant
for U3. [8, Satz 6.21]

More generally, given two 1-dimensional representations of G by action on poly-
nomials, we get the tensor product of these representations as the product of the
polynomials. This will be a relative invariant for the kernel of the representation.

4.4. The FactorDelta-construction. Let a subgroup G ⊂ Sym(n) be given.
Then we apply the following steps to find invariants for index 2 subgroups of G:
i) Compute all orbits of G and all block systems of each orbit.
ii) List transitive representations of G by taking the actions on orbits and on block
systems.
iii) For each transitive representation found, compute the orbits of the action on
2-sets.
iv) For each orbit on 2-sets found compute the 1-dimensional representations of G
as formulated in the generalization above.
v) Compute the kernel of each representation.
vi) In case a representation is trivial, delete it.
vii) In case two representations have the same kernel, pick the simpler one.
viii) For each pair of representations found, apply the above combine step to get a
third representation having an other index 2 subgroup as kernel.
ix) In case a representation with this kernel is already known, pick the one with
the simpler polynomial.
x) Iterate the combine step until no further representations are found.
xi) Return the list of 1-dimensional representations found and the list of kernels.

5. Using monomial representations and transfer

5.1. Recall.
i) A matrix is called monomial if each row and each column have exactly one non-
zero entry.
ii) A matrix group is called monomial if all elements are monomial matrices.
iii) A representation is called monomial if its image is a monomial group.
iv) For a field K the group of n × n monomial matrices Nn(K) is isomorphic to
(K∗)n o Sym(n).
v) The monomial group has a 1-dimensional representation given by the determi-
nant and a second one given by the sign of the permutation in Sym(n).
vi) The tensor product of these two 1-dimensional representations is a third 1-
dimensional representation. It is the product of all the non-zero entries of the
matrix.
vii) More generally, each group with a monomial representation has these three
1-dimension representations associated to the monomial representation.
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viii) The induced representation IndGU (φ) of a 1-dimension representation φ of a
subgroup U of finite index in G is a monomial representation of G. All monomial
representations are direct sums of such representations.

5.2. Notation. In case the monomial representation is given as IndGU (φ) for a 1-
dimensional representation φ, we call the tensor product of vi) the φ-transfer of
G. For a general introduction to the transfer, we refer to [11, Kap. IV] and in
particular to [11, IV, Hilfssatz 1.2].

5.3. Monomial representations from block systems. Given the wreath prod-
uct G := Ck o Sym(n) ⊂ Sym(kn) of the cyclic group of order k and the symmetric
group of degree n, we get a monomial representation by mapping Ck to the group
of k-th roots of unity 〈ζk〉. I.e., we use the isomorphism of the wreath product to
〈ζk〉n o Sym(n).

We get the required 1-dimension representation φ of Ck ⊂ Sym(k) as the action
on X1 + ζkX2 + · · · + ζk−1

k Xk. The φ-transfer representation of G is given by the
action on the product

(X1 + ζkX2 + · · ·+ ζk−1
k Xk) · . . . · (X(k−1)n+1 + ζkX(k−1)n+2 + · · ·+ ζk−1

k Xnk) .

5.4. Remarks.
i) Let the wreath product G = G1 o G2 be given. In case G1 is not cyclic, one
would like to start with a more complicated 1-dimensional representation φ (i.e., a
quotient) of G1 to get a representation of G with an interesting kernel. However,
this is implicitly done by the BlockQuotient-construction described above, as the
projection G1 oG2 → φ(G1) oG2 is a possible block quotient.

ii) In practice, we are interested in invariants with rational coefficients instead of
roots of unity. As shown in [6, Sec. 4], this problem can be solved by splitting the
invariants into components.

5.5. Generalization. In some cases we have to combine the transfer construction
with the Reynolds operator. Thus, we start with U0 ⊂ G0. Then we pick an
auxiliary group G and put U := G ∩ U0. In the lucky case that the transfer
construction gives us a relative invariant for U ⊂ G, we can lift it with the Reynolds
operator to a relative invariant for U0 ⊂ G0.

5.6. Examples.
i) We inspect the groups U0 := T 5396

30 , G0 := T 5421
30 ,

T 5396
30 = ({(σ1, . . . , σ10) ∈ Alt(3)10 | σ1 · · ·σ10 = id}o Sym(10)) o Z/2Z

⊂ T 5421
30 = (Alt(3) o Sym(10)) o Z/2Z .

Here, we first have to remove the extension by Z/2Z. Then we get an invariant
for U := T 5368

30 ⊂ G := T 5405
30 by transfer. Finally, the Reynolds operator lifts this

to a relative invariant for the initial groups. The decomposition of the cyclotomic
coefficients into components leads to an evaluation algorithm of the invariant that
involves 103 multiplications over the base field.

In this case, the subgroup U can be constructed as the kernel of the coset action of
G0 on G0/U0.



8 ANDREAS-STEPHAN ELSENHANS

ii) The dihedral group D4 can be constructed as the semi-direct product Z/4Z o
Z/2Z. Using this, we can construct (Z/4Z)7 oZ/2Z by acting on each factor in the
same way. In this case, we have the subgroups

U2 := {(x1, . . . , x7) ∈ (Z/4Z)7 |
∑

xi = 0 mod 2}o Z/2Z,

U4 := {(x1, . . . , x7) ∈ (Z/4Z)7 |
∑

xi = 0 mod 4}o Z/2Z .

As U2 and U4 are Sym(7) invariant, we get the extensions

U0 := T 1610
28 = U4 o Sym(7) ⊂ G0 := T 1651

28 = U2 o Sym(7) .

To construct an invariant, we have to remove the Z/2Z in U2 and U4. After that,
we can use the transfer to construct an invariant for T 1541

28 ⊂ T 1601
28 that can be

evaluated by 42 multiplications. The Reynolds operator lifts this to an invariant
for U0 ⊂ G0. This doubles the number of multiplications.

5.7. Remark. A summary of the general construction is as follows. Given U0 ⊂
G0, we first search for an auxiliary group G. Then we construct a relative invariant
for U0 ∩G ⊂ G by φ-transfer. Finally, we lift the invariant by using the Reynolds
operator.

In practice, the main problem is to find the auxiliary group. As we are only
interested in subgroups of small index, one could in principle enumerate all sub-
groups of bounded index and test them. In some cases, we can do better as we will
show in the next section.

6. Invariants in case of a block system of block size 2

6.1. Setup. Let U ⊂ G be a maximal subgroup of a transitive permutation group
of degree n = 2k with the block system B = {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}.
Further, we assume that the E-construction does not work, i.e., φB(U) = φB(G).
As

StabG(B1)|B1 = StabU (B1)|B1
∼= Sym(2) ,

the F-construction and the BlockQuotient construction do not lead to anything
when applied to this block-system. Table 2 gives an overview of the number of
transitive groups having such a block system.

6.2. Invariants for the kernel of the block action. Let U ⊂ G and the block
system B be given as in 6.1. Then, the difference of U and G is hidden in the kernel
of φB. Let us inspect the kernel a bit closer:

U0 := U ∩ ker(φB) ( G0 := ker(φB) ⊂ Sym(2)k ∼= (Z/2Z)k ∼= {±1}k .
The last isomorphism is given by the action on the polynomials

X1 −X2, X3 −X4, . . . , X2k−1 −X2k .

From this, we can easily write down an U ∩ker(φB)-invariant that is not a ker(φB)-
invariant. Even better, we can construct one of minimal degree as follows:
i) Write U ∩ ker(φB) and ker(φB) as subgroups of (Z/2Z)k.
ii) View these groups as F2-codes CU ( CG.
iii) Compute the dual codes C⊥G ( C⊥U .
iv) Find a word w of minimal weight in C⊥U \ C⊥G .
v) Return Iw :=

∏
i,wi=1(X2i−1 −X2i) as invariant of U0 that is not G0 invariant.
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Degree # groups with a block of size 2
4 5 3
6 16 8
8 50 36
10 45 21
12 301 182
14 63 37
16 1954 1754
18 983 387
20 1117 621
22 59 32
24 25000 20733
26 96 39
28 1854 1238
30 5712 1955
32 2801324 2793029

Table 2 – Number of transitive groups with blocks of size 2

6.3. Remarks.
i) Note that φB(G) consists of automorphisms of all the codes involved. These code
automorphisms can be used to speed up the code analysis.
ii) In case, one is not interested in an invariant of minimal degree, one can choose
w as the first element of an LLL-basis of C⊥U that is not in C⊥G .

6.4. First lifting step. Naively, one would try to lift the invariant Iw to a (U ⊂
G)-invariant by applying the Reynolds operator. This would lead to a U -invariant
consisting of #φB(G) summands. Further, it could degenerate to a G-invariant.
We do the lifting in two steps to reduce the number of summands and to deal with
the degeneration.

We compute G1 := φ−1
B StabφB(G)(w). This is the largest subgroup of G that

acts on Iw by change of sign. In general, U1 := G1 ∩U will act on Iw by change of
sign, as well.

We compute the kernel of the U1-action on Iw as the index 2 subgroup U1,w.
Note that ker(φB) ∩ U1 ⊂ U1,w. Thus, we can use the E-construction applied to
the block system B to find a second relative invariant Ic for U1,w ⊂ U1. As G1 acts
on Ic in the same way as U1, the combination of invariants applied to Iw and Ic
will lead to a U1-invariant that is not G1-invariant. Summarizing, Ip := Iw or the
product Ip := IwIc is a (U1 ⊂ G1)-invariant.

6.5. Second lifting step. Again, one would try to lift Ip to a (U ⊂ G)-invariant
by using the Reynolds operator. This would lead to an invariant with [G : G1]
summands. We can take it, in case it does not degenerate to a G-invariant.

At this point, we can add an optimization. We require that the word w in
C⊥U \ C⊥G has a φB(G)-orbit of minimal length.

Now, we have to treat the possibility of a degeneration. The group G1 is the
stabilizer of the variable sum I1 :=

∑
i,wi=1Xi in G. We can replace Ip by IpI

e
1 ,
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for any positive integer e. We claim that there is an

e ≤ e0 := #{i | wi = 1}(deg(Ip) + 1)

that solves the degeneration problem. To prove this, it suffices to show that the
polynomials (IpIe1)σ, σ ∈ U//U1 are linearly independent.

Recall that monomials are linearly independent. Thus, it suffices to show that
(IpIe01 ) has at least one monomial that is not contained in any other summand.
When we multiply out Ie01 , we find the summand P :=

∏
i,wi=1X

deg(Ip)+1
i . When

we look at σI1 for σ ∈ G \ G1, we replace at least one variable in I1. Thus, a
monomial in σIpI

e0
1 will contain the factor P only in case σ ∈ G1. �

6.6. Remark. In case of finite characteristics, the expression Ie1 may not contain
the monomial we used in the proof. One way to solve this problem, is to replace I1
by
∏
i,wi=1Xi.

6.7. Complexity. The complexity of the invariant constructed will depend on the
complexity of the invariant Ic and the number of summands generated in the second
lifting step. The latter question is a coding theoretic problem.

To get an impression of what happens here, we enumerate all codes over F2 up
to length 23 with a transitive automorphism group. This covers all the cases that
may appear for polynomials up to degree 46. We end up with the following extreme
examples.
i) The sum zero subspace of Fn2 is generated by the Sn orbit of (1, 1, 0, . . . , 0). It is
of length

(
n
2

)
. In case n is even, shorter orbits can not generate this subspace.

ii) Let G := Sym(2) o Sym(n) and consider the block system {{1, 2}, . . . , {2n −
1, 2n}}. The orbit O of (1, 0, 1, 0, . . . , 0, 1, 0) is of length 2n. It generates an (n+1)-
dimensional subspace U . The complement of O in U is a n-dimensional subspace.
iii) Let G := Sym(4) o Sym(n) with block system {{1, 2, 3, 4}, . . . , {4n − 3, 4n −
2, 4n−1, 4n}}. The G-orbit of {4, 8, 12, . . . , 4n} is of length 22n. It spans a (3n+1)-
dimensional subspace U . All elements of U with shorter orbits are contained in a
3n-dimensional subspace.

To summarize, for permutation groups up to degree 46 with a block of size 2,
we have an algorithm to generate invariants with at most 2048 summands. The
extreme examples relate to permutation groups with a second block system of block
size 4 or 8. It may be used to find simpler invariants for these cases.

6.8. Example. Let us inspect the groups

G = T 4831
30 = (Z/2Z)15 o Gl(4,F2) = Sym(2) oGl(4,F2) ⊂ Sym(2) oAlt(15)

and
H = T 3819

30 = N o Gl(4,F2) ⊂ G .
Here, N is the Hamming code in F15

2 . We get #G = 660602880 and [G : H] = 16.
Recall the following description of the Hamming code.
i) P3(F2) has 15 planes and 15 points.
ii) Each plane has 7 points and its complement has 8 points.
iii) We use the points of P3(F2) as index set. I.e., we fix a bijection ι : P3(F2) →
{1, . . . , 15}.
iv) For each plane E ⊂ P3(F2) we get the linear form lE :=

∑
P∈P3(F2)\E Xι(P ).
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v) N is the intersection of the kernel of the 15 linear forms lE .
vi) The linear forms lE are the non-zero words in the dual code of the Hamming
code.

As the code analysis is done on the dual codes, it will inspect the trivial code as
a subcode of the dual of the Hamming code. It will find one of the linear forms lE
of weight 8 as w. As there are 15 planes in P3(F2), the stabilizer of lE (resp. w)
in Gl(4,F2) is of index 15. Thus, we end up with an invariant of degree 8 and 15
summands. It involves 105 multiplications.

6.9. Remark. The main advantage of the coding theoretic approach is that we
can compute the auxiliary group as the stabilizer of a code word. This leads to the
following question for groups with a block of size bigger than 2: Can more general
codes (i.e., codes over different rings) be used to construct the auxiliary group more
efficiently than this is done by searching in the subgroup lattice?

7. Invariants for intransitive groups

7.1. Remark. At a first glance, invariants for intransitive groups seem to be nec-
essary only, when one wants to compute Galois groups of reducible polynomials.
However, several of the constructions above may recursively construct intransitive
subgroups and need invariants to handle them.

7.2. Subdirect products. Let G ⊂ G1 ×G2 ⊂ Sym(n)× Sym(m) be intransitive
groups. We denote the projections of G to G1 and G2 by π1 and π2. In case one
of the projections is not surjective, one can use this projection to get a G-invariant
that is not G1 ×G2 invariant.

The interesting case is that both projections are surjective. Then G is called a
subdirect product of G1 and G2.

The main theorem of subdirect products gives us two surjective homomorphisms
φi : Gi → H such that

G = {(g1, g2) ∈ G1 ×G2 | φ1(g1) = φ2(g2)} .

In [6, Sec. 3], we used this theorem to construct relative invariants by using linear
representations.

Here, we will explain how to do this by using permutation representations.

7.3. Construction. Let a subdirect product G ⊂ G1 ×G2 be given.
i) Compute the kernel of φ1 as K1 := π1(G ∩ (G1 × {idG2})).
ii) Find a subgroup U1 ⊂ G1 of minimal index such that the kernel of the coset
action coincides with K1.
iii) Put U2 := π2(G ∩ (U1 ×G2)).
iv) Choose φi as the coset action on Ui.
v) Construct relative invariants Ii for Ui ⊂ Gi.
vi) Chose univariate polynomials T1, T2, randomly.
vii) Compute the G-invariant I :=

∑
σ∈G//G∩(U1×G2)

T1(I1)σT2(I2)σ.

viii) In case I is a relative invariant, return I. Otherwise, try with other transfor-
mations T1, T2.
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7.4. Remarks.
i) The complexity of the invariant depends on the index [G1 : U1]. It would be
very helpful to have an algorithm available that yields a fast construction of a
subgroup U1 of minimal index. For transitive groups of moderate degree, a naive
scan of the subgroup lattice works. Table 3 gives an overview of the minimal degrees
of transitive permutation representations of all non-trivial quotients of transitive
groups in degree n.

n Degree of quotient n Degree of quotient
3 2 4 4
5 4 6 6
7 6 8 16
9 9 10 10
11 10 12 30
13 12 14 14
15 15 16 128
17 16 18 32
19 18 20 128
21 21 22 22
23 22

Table 3 – Degrees occuring for representations of subquotients of Sym(n)

In case we are interested in intransitive permutation representations of the quo-
tients, we have to deal with orbits up to length 90. The extreme examples are
given the quotients G/Z(G) for G := Sym(2) o Sym(2k).
ii) The effect of the transformation polynomials Ti can be explained by inspecting
the linear representation of the Gi on span{Iσi | σ ∈ Gi}. In case both represen-
tations are of dimension [G1 : U1], we are exactly in the situation of [6, 3.3, 3.4].
If this representation is of smaller dimension than expected, we only get quotients
of the expected linear representations. However, there are always transformations
T1, T2 that result in linear representations of the expected dimensions.

8. Relative invariants for non-maximal subgroups

The above constructions focus on the case of maximal subgroups. However, the
recursion may require relative invariants for non-maximal subgroups U ⊂ G of
small index. A solution for this is as follows.

First, we compute all the minimal over-groups Zi of U in G. Then, we compute
relative invariants Ii for U ⊂ Zi. In case, the base ring has infinitely many elements,
there is a linear combination of the Ii that is a G-relative U -invariant. To construct
it, one can form random linear combinations of the Ii and check by evaluation that
each Zi has an element that does not stabilize it.

9. Timings, tests, and examples

All tests are done on one core of an Intel i7-3770 CPU with 3.4GHz running
magma 2.20.
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9.1. Test on irreducible polynomials. For each transitive permutation group
in degree 16,18, 20, and 21 we picked one irreducible polynomial out of the data-
base [12]. These are 1954, 983, 1117, resp. 164 test cases. We can compute all
these Galois groups in 1359, 444, 1227, resp. 227 seconds.

The example x20 − 308x16 + 33396x12 − 1554608x8 + 28579232x4 − 113379904,
cf. [7, Sec. 8], can be done in 0.85 seconds. Using magma 2.18 on the same machine,
it takes 47 seconds.

In higher degrees, we can not do a systematic test with polynomials, as there is
no complete database available for polynomials of degree ≥ 24. Table 4 lists a few
examples.

polynomial magma 2.18 magma 2.20 group
x21 + x3 + 8 ∈ Q[x] 1.1 sec 0.7 sec T 138

21

x24 + x3 + 8 ∈ Q[x] 1.5 sec 1.2 sec T 24648
24

x24 + x4 + 16 ∈ Q[x] 54 sec 2.0 sec T 21844
24

x27 + x3 + 8 ∈ Q[x] impossible 2.4 sec T 2357
27

x28 + x4 − 16 ∈ Q[x] impossible 3.2 sec T 1610
28

x30 + x3 + 8 ∈ Q[x] impossible 3.8 sec T 5396
30

x24 + x+ t ∈ F2(t)[x] impossible 12.5 sec M24

Table 4 – Test polynomials and computation time

Impossible means that magma reaches the memory limit of 10GB.

9.2. Testing with the group database. The database [2, 10] of transitive per-
mutation groups is available up to degree 32. For all groups up to degree 30 in the
database, we computed its maximal subgroups and searched for relative invariants.
This enumeration took 2.5 hours. Most of the time was spent to treat the 25000
transitive groups in degree 24. All the other cases were done within 21 minutes.

For the Galois group computation, the number of multiplications for an eval-
uation and the polynomial degree of the invariant determine the costs. The ∆-
invariant of degree

(
n
2

)
for Alt(n) ⊂ Sym(n) is of minimal degree. Thus, in degree

30 we have to handle invariants of degree 435. In theory, a larger degree is never
necessary but the BlockQuotient-construction may result in invariants of larger
degree.

Table 5 shows the maximal number of multiplications used and the largest
polynomial degree of the invariants found for the transitive subgroups in degree
n = 3, . . . , 30.

The hardest case in degree 26 is an index 2 subgroup of PΓl2(F25) ⊂ Sym(26).
Here, none of the new constructions applies. Thus, the generic invariant algo-
rithm [7, Sec. 4] has to be used. It results in a degree 5 invariant that involves
14735 multiplications.

The action on 2-sets of Alt(8) ⊂ Sym(8) leads to primitive subgroups in Sym(28).
Again, only a generic invariant of degree 6 with 14123 multiplications is found for
this index 2 example. Because of this invariant, the computation of the Galois
group A8 ⊂ Sym(28) of a test polynomial takes 4.5 seconds. Of course, one could
easily map back to the degree 8 representation and use the invariant ∆. However,
this is not yet implemented.
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n multiplications deg(invariant) n multiplications deg(invariant)
3 2 3 4 5 6
5 15 10 6 35 10
7 20 21 8 159 28
9 542 36 10 760 45
11 264 55 12 660 66
13 77 78 14 364 91
15 436 105 16 2653 120
17 4040 136 18 2900 216
19 170 171 20 2811 190
21 306 210 22 1540 231
23 1012 253 24 9252 792
25 5952 300 26 14735 325
27 4733 351 28 14123 378
29 405 406 30 5224 600

Table 5 – Largest number of multiplications and degrees

In degree 32, we have 2801324 transitive groups in the data base. The NewBlock-,
E-, F-, and BlockQuotient-constructions fail only for subgroups of 2154 groups. This
results in 12990 pairs U ⊂ G. For 4074 of them, the action on pairs results in an
invariant as a new orbit or a new block system comes up. In 8639 cases, we have a
minimal block system of size 2. Here, the coding theoretic approach works. Only
four of the remaining 277 pairs of groups result in generic invariants.

One example is T 2713815
32 of order 217 · 32 · 7 with an index 8 subgroup. These

groups have exactly one block system with block size 8. Another example are the
groups AΓl1(F25) ⊂ ASl5(F2) of index 64512. Here, the generic invariants used
involve up to 50000 multiplications.

References

[1] W. Bosma, J. Cannon, and C. Playoust: The Magma algebra system. I. The user language.

J. Symbolic Comput. 24 (1997), 235–265
[2] J. Cannon, D. Holt: The transitive permutation groups of degree 32. Experiment. Math.

17 (2008), no. 3, 307–314.

[3] H. Cohen: A course in computational algebraic number theory. Springer-Verlag, Berlin
1993.

[4] H. Derksen, G. Kemper: Computational invariant theory. Springer-Verlag, Berlin, 2002.

[5] J. Dixon, B. Mortimer: Permutation groups. Springer-Verlag, New York 1996.
[6] A.-S. Elsenhans: Invariants for the computation of intransitive and transitive Galois groups,

Journal of Symbolic Computation 47 (2012) 315–326.
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