
THE DISCRIMINANT OF A CUBIC SURFACE
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Abstract. The 27 lines on a smooth cubic surface over Q are acted upon

by a finite quotient of Gal(Q/Q). We construct explicit examples such that
the operation is via the index two subgroup of the maximal possible group.
This is the simple group of order 25 920. Our examples are given in pentahedral
normal form with rational coefficients. For such cubic surfaces, we study the

discriminant and show its relation to the index two subgroup.

1. Introduction

1.1. Let S ⊂ P3 be a smooth cubic surface over an algebraically closed field. It is
well known that there are exactly 27 lines on S. Having numbered these lines
appropriately, their intersection matrix is the same for every smooth cubic surface.
The group of all permutations of the 27 lines respecting the intersection matrix is
isomorphic to the Weyl group W(E6).

For a smooth cubic surface S ⊂ P3 over Q, the 27 lines are, in general, not
defined over Q but over an algebraic field extension L. The Galois group Gal(L/Q)
is a subgroup of W(E6). It is known that equality holds for general cubic surfaces.

1.2. In this article, we describe our search for explicit examples of cubic surfaces
over Q such that the Galois group Gal(L/Q) is exactly the index two subgroup
D1W(E6) ⊂ W(E6). This is the simple group of order 25 920.

Our approach is as follows. We consider cubic surfaces in pentahedral normal
form with rational coefficients. For these, we study the discriminant ∆. We show
that Gal(L/Q) is contained in the index two subgroup if and only if (−3)∆ is a
perfect square. This leads to a point search on the double covering of P4, ramified
at the degree 32 discriminantal variety.

A generalized Cremona transform reduces the degree to eight. We discuss the
geometry of this modified discriminantal covering. In particular, we compute the
Picard rank of a resolution of singularities. This has an application towards the
arithmetic of the discriminantal covering, which we will investigate in a forthcoming
paper [8].

2. The discriminant and the index two subgroup

2.1. One way to write down an explicit cubic surface is the so-called pentahedral
normal form. Denote by S(a0,...,a4) the cubic surface given in P4 by the system
of equations

a0X
3
0 + a1X

3
1 + a2X

3
2 + a3X

3
3 + a4X

3
4 = 0 ,

X0 + X1 + X2 + X3 + X4 = 0 .
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Remarks 2.2. a) A general cubic surface over an algebraically closed field may be
brought into pentahedral normal form over that field. Further, the coefficients are
unique up to permutation and scaling. Cubic surfaces not allowing a pentahedral
normal form correspond to a low-dimensional subset of the moduli stack [5, sec. 5].

This is a classical result, which was first observed by J. J. Sylvester [15]. A proof is
given in [3]. There is a more recent approach, due to J.Alexander and A.Hirscho-
witz [1], which provides a generalization to higher dimension and arbitrary degree.
Uniqueness of the presentation is discussed in [13] and [12].

Cubic surfaces over Q having a pentahedral normal form with rational coefficients
are, however, special to a certain extent.

b) One should keep in mind that S(0,a1,...,a4) is simply the diagonal cubic surface
with coefficients a1, . . . , a4.

Definition 2.3. The expression

∆(S(a0,...,a4)) :=

a80 · . . . · a84 ·∏
i1,i2,i3,i4∈{0,1}

( 1
√
a0

+ (−1)i1
1

√
a1

+ (−1)i2
1

√
a2

+ (−1)i3
1

√
a3

+ (−1)i4
1

√
a4

)
is called the discriminant of the cubic surface S(a0,...,a4). Instead of ∆(S(a0,...,a4)),
we will usually write ∆(a0, . . . , a4).

Remark 2.4. One has

∆(a0, . . . , a4) :=∏
i1,i2,i3,i4∈{0,1}

(
√
a1a2a3a4 + (−1)i1

√
a0a2a3a4 + (−1)i2

√
a0a1a3a4 + · · ·

· · ·+ (−1)i3
√
a0a1a2a4 + (−1)i4

√
a0a1a2a3) .

Lemma 2.5. ∆ ∈ Q[a0, . . . , a4] is a symmetric polynomial, homogeneous of de-
gree 32, and absolutely irreducible.

Proof. The remark shows that ∆ ∈ Q[
√
a0, . . . ,

√
a4]. Further, the expression is

obviously invariant under the action of G := Gal(Q(
√
a0, . . . ,

√
a4)/Q(a0, . . . , a4)).

This yields ∆ ∈ Q[a0, . . . , a4]. Symmetry and homogeneity are obvious.
Definition 2.3 provides us with the decomposition of ∆ into irreducible factors

in the unique factorization domain Q[
√
a0, . . . ,

√
a4,

1
a0
, . . . , 1

a4
]. As G operates

transitively on the sixteen factors, ∆ is irreducible in Q[a0, . . . , a4,
1
a0
, . . . , 1

a4
].

Finally, from ∆(0, a1, a2, a3, a4) = (a1a2a3a4)
8, we see that it is not divisible by a0.

Thus, ∆ is not divisible by any of the ai. �
Lemma 2.6. Writing σi for the elementary symmetric function of degree i
in a0, . . . , a4, one may express the discriminant as follows,

∆ = (A2 − 64B)2 − 211(8D +AC) .

Here,
A := σ2

4 − 4σ3σ5, B := σ1σ
3
5 , C := σ4σ

4
5 , D := σ2σ

6
5 .

Proof. This formula may easily be established, for example, using maple. �
Remarks 2.7. i) Together with E := σ8

5 , the expressions A,B,C, andD are called
the fundamental invariants of the cubic surface S(a0,...,a4). This notion is due to
A. Clebsch [3].
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ii) Lemma 2.6 is originally due to G. Salmon [14]. Note that there is a misprint
in Salmon’s original work, which has been repeatedly copied by several people
throughout the 20th century. The correct formula may be found in [6].

Fact 2.8. Assume that a0 · . . . ·a4 ̸= 0. Then, the singular points on S(a0,...,a4) are
exactly those of the form( 1

√
a0

: (−1)i1
1

√
a1

: (−1)i2
1

√
a2

: (−1)i3
1

√
a3

: (−1)i4
1

√
a4

)
that lie on the hyperplane given by X0 +X1 +X2 +X3 +X4 = 0. �
Examples 2.9. i) The cubic surface S(1,1,1,1, 14 ) has exactly four singular points.
These are (1 : −1 : −1 : −1 : 2) and permutations of the first four coordinates.
This is the famous Cayley cubic.

ii) The cubic surface S(1,1,1, 19 ,
1
16 ) has exactly three singular points, namely

(1 : −1 : −1 : −3 : 4) and permutations of the first three coordinates.

iii) The cubic surface S(1,1, 14 ,
1
9 ,

1
25 ) has exactly two singular points. These are

(1 : −1 : −2 : −3 : 5) and permutations of the first two coordinates.

iv) (−1 : −1 : −1 : −1 : 4) is the only singular point of the cubic surface S(1,1,1,1, 1
16 ).

Corollary 2.10. The cubic surface S(a0,...,a4) is non-singular if and only if
∆(a0, . . . , a4) ̸= 0. �
Remark 2.11. The same is true over any ground field of characteristic ̸= 3.
Therefore, with the possible exception of the prime 3, for a0, . . . , a4 ∈ Z such
that gcd(a0, . . . , a4) = 1, the prime divisors of ∆(a0, . . . , a4) are exactly the primes,
where S(a0,...,a4) has bad reduction.

One might want to renormalize ∆ in order to overcome the defect at the prime 3.
For this, observe that S( 1

3 ,
1
3 ,

1
3 ,

1
3 ,

1
3 ) has only integral coefficients after the substitu-

tion x4 := −x0 − . . . − x3. It turns out that this surface has good reduction at 3.
Since ∆( 13 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ) = −5 · 3−27, actually ±327∆(a0, . . . , a4) could have the prop-

erty desired. Theorem 2.12 below indicates that the minus sign should be correct.

Theorem 2.12. Let a0, . . . , a4 ∈ Q such that ∆(a0, . . . , a4) ̸= 0. Then, the Galois
group operating on the 27 lines on S(a0,...,a4) is contained in the index two sub-
group D1W(E6) ⊂ W(E6) if and only if (−3)∆(a0, . . . , a4) ∈ Q is a perfect square.

Proof. First step. Construction of a ramified covering of degree two of P4.

Define C ⊂ P4
(X) ×P4

(x) by the system of equations

x0X
3
0 + x1X

3
1 + x2X

3
2 + x3X

3
3 + x4X

3
4 = 0 ,

X0 + X1 + X2 + X3 + X4 = 0 .

The projection π : C → P4(= P4
(x)) is the family of the cubic surfaces in pentahedral

normal form. The fiber of π over (x0 : . . . : x4) is the cubic surface S(x0,...,x4).
The fiber Cη over the generic point η ∈ P4 is a smooth cubic surface

over Q(η) = Q(x1/x0, x2/x0, x3/x0, x4/x0). Its 27 lines are defined over a finite
extension L of Q(η). We claim that Gal(L/Q(η)) = W(E6).

Indeed, this is the maximal possible group. The inclusion “⊆” is, therefore, triv-
ially fulfilled. On the other hand, according to a result of B. L. van der Waerden,
the generic Galois group Gal(L/Q(η)) can not be smaller than that for a particu-
lar fiber. Specializing, for example, to (x0 : x1 : x2 : x3 : x4) = (1 : 2 : 3 : 7 : 17),
[7, Algorithm 10] shows that the Galois group is equal to W(E6).
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Consequently, there exists a unique intermediate field K of L/Q(η) that is
quadratic over Q(η). This induces a scheme V together with a finite morphism
p : V → P4 of degree two.

In fact, this is a standard construction. For each affine open set
SpecA = U ⊆ P4, take the spectrum of the integral closure of A in the exten-
sion K. Note that A is integrally closed in Q(η) since P4 is a normal scheme.
The morphism p : V → P4 is finite according to the finiteness of the integral clo-
sure.

Second step. p : V → P4 is unramified outside the divisor R given by ∆ = 0.

For this, let us describe the double covering V more precisely. We have
P3
Q(η) ⊂ P4

Q(η), given by the equationX0+. . .+X4 = 0, and a smooth cubic surface

Cη ⊂ P3
Q(η) .

On Cη, there are the 45 tritangent planes. These give rise to a subscheme of the
dual projective space (P3)∨

Q(η), which is finite of length 45 and étale over Q(η).
This, according to Galois theory, induces a set M = {e1, . . . , e45} of 45 elements

together with an operation of Gal(Q(η)/Q(η)). Actually, only a finite quotient
isomorphic to W(E6) is operating. The set M , in turn, defines a two element
set {±e1 ∧ ... ∧ e45}, again acted upon by Gal(Q(η)/Q(η)). The fixgroup of this
operation corresponds to the quadratic field extension K/Q(η).

We may do the same in a relative situation over P4 \R. The 45 tritangent planes
yield a closed subscheme of (P3)∨ × (P4 \R), which is finite and étale of degree 45
over P4 \R. According to A. Grothendieck’s theory of the étale fundamental
group [9], this induces a set M = {e1, . . . , e45} of 45 elements together with an
operation of πét

1 (P4 \R, ∗). This group is canonically a quotient of Gal(Q(η)/Q(η))
[9, Exp.V, Proposition 8.2]. Again, we get a canonical operation on the two element
set {±e1∧...∧e45}. Corresponding to this, there is an étale covering p′ : V ′ → P4 \R
of degree two [9, Exp.V, Sec. 7].

V ′ is, by construction, a normal scheme with function field K. In particular,
over an affine open set SpecA = U ⊆ P4 \R, we have the spectrum of the integral
closure of A in the extension K. This shows that V and V ′ coincide over P4 \R.

Third step. The equation.

As R is irreducible, the ramification locus of p : V → P4 might be either empty or
equal to R. If the ramification locus were empty then, as πét

1 (P4, ∗) = 0, we had a
trivial covering by a non-connected scheme. However, V is connected by construc-
tion. The generic fiber of p is a scheme consisting of a single point.

Hence, p is ramified exactly at R. This implies that V is given by the equation
w2 = λ∆ for a suitable constant λ.

Fourth step. Specialization.

Let (a0 : . . . : a4) ∈ P4(Q) such that ∆(a0, . . . , a4) ̸= 0. Then, by virtue of the
construction above, we have the following statement.

Denote by l the field of definition of the 27 lines on S(a0,...,a4). Then, the smallest
intermediate field k of l/Q such that Gal(l/k) acts on the 45 tritangent planes

on S(a0,...,a4) only via even permutations is exactly k = Q(
√
λ∆(a0, . . . , a4)).

This extension splits if and only if λ∆(a0, . . . , a4) is a perfect square in Q.
Except for the determination of the constant λ, this proves the assertion.
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Fifth step. The constant λ.

We consider the particular cubic surface S(0,1,1,1,1), i.e., the diagonal cubic surface
given by x3

1 + x3
2 + x3

3 + x3
4 = 0.

Here, the 45 tritangent planes are defined over the field Q(ζ3) = Q(
√
−3).

They may easily be written down explicitly. In fact, seven of them are defined
over Q. Hence, Gal(Q(

√
−3)/Q) operates on the 45 tritangent planes as a product

of 19 two-cycles, while seven tritangent planes are fixed. This is an odd permutation.
Consequently, in this case, k = Q(

√
−3) is the smallest field such

that Gal(l/k) acts on the 45 tritangent planes only by even permutations.
As ∆(0, 1, 1, 1, 1) = 1, this shows λ = −3 up to a factor being a perfect square.
The proof is complete. �
Remark 2.13. This result was essentially known to H. Burkhardt [2, p. 341]
in 1893. Burkhardt gives credit to C. Jordan [10], who was the first to study
the automorphism group of the configuration of the 27 lines on a cubic surface.

3. Rational points on the discriminantal covering

Definition 3.1. We will call the twofold covering of P4
Q, given by the equation

(3.1) w2 = −3∆(a0, . . . , a4) ,

the discriminantal covering.

3.2. There are two surprising constraints that equation (3.1) imposes on the coef-
ficients a0, . . . , a4.

Proposition 3.3 (The two constraints). –––– Suppose a0, . . . , a4 ∈ Z are such
that gcd(a0, . . . , a4) = 1 and (−3)∆(a0, . . . , a4) ̸= 0 is a perfect square in Q.

a) Then, a0, . . . , a4 all have the same sign.

b) Further, for every prime number p ≡ 2 (mod 3), all the p-adic valuations
νp(a0), . . . , νp(a4) are even.

Proof. Observe first that the assumption ensures a0, . . . , a4 ̸= 0. Indeed,
∆(0, a1, . . . , a4) = (a1a2a3a4)

8 ≥ 0.

a) Assume the contrary. Then, there is a product of four, say a1 · . . . · a4, that
is negative. The formula given in Remark 2.4 implies that ∆(a0, . . . , a4) is the
norm of an element of Q(

√
a1 · . . . · a4). As this is an imaginary quadratic field, we

see that ∆(a0, . . . , a4) ≥ 0. Contradiction!

b) Again, assume the contrary. Then, there is a product of four, say a1 · . . . ·a4, the
p-adic valuation of which is odd. We have the fact that ∆(a0, . . . , a4) is the norm
of an element of Q(

√
a1 · . . . · a4). On the other hand, (−3)∆(a0, . . . , a4), being a

perfect square by assumption, is a norm, too. Consequently, (−3) is the norm of
an element of Q(

√
a1 · . . . · a4).

Since νp(a1 · . . . ·a4) is odd, the norm equation (−3) = x2−a1 · . . . ·a4 ·y2 ensures
that νp(x) = 0 and νp(a1 · . . . · a4 · y2) > 0. Therefore, (−3) is a quadratic residue
modulo p. This is a contradiction. �
3.4. We are interested in smooth cubic surfaces S(a0,...,a4) such that the Galois
group operating on the 27 lines is exactly equal to D1W(E6).

By Theorem 2.12, this implies that (a0 : . . . : a4) ∈ P4(Q) gives rise to a
Q-rational point on the discriminantal covering. Further, according to Corol-
lary 2.10, (a0 : . . . : a4) is supposed not to lie on the ramification locus.
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Finally, if two of the coefficients were the same, say a0 = a1, then S(a0,...,a4) al-
lowed the tritangent plane x0+x1 = 0, which was defined overQ. Consequently, the
order of the group acting on the lines could be at most 1152.

3.5. A naive search. For these reasons, we searched for Q-rational points
(w; a0 : . . . : a4) satisfying equation (3.1) and the extra conditions below:

i) w ̸= 0.

ii) No two of the five coordinates a0, . . . , a4 are the same.

A rather simple computation led to the Q-rational points (3 : 4 : 21 : 36 : 63),
(4 : 7 : 12 : 28 : 84), and (12 : 28 : 36 : 63 : 84). Up to symmetry, these are the only
solutions of height ≤ 100.

Remark 3.6. The three rational points given above really lead to cubic surfaces
such that the 27 lines are acted upon by the simple group D1W(E6). To prove this,
we ran the algorithm below, which is an obvious modification of [7, Algorithm 10].

Algorithm 3.7 (Verifying G ⊇ D1W(E6)). –––– Given the equation f = 0 of
a smooth cubic surface, this algorithm verifies that G ⊆ W(E6) is of index at
most two.

i) Compute a univariate polynomial 0 ̸= g ∈ Z[d] of minimal degree such that

g ∈ (f(ℓ(0)), f(ℓ(∞)), f(ℓ(1)), f(ℓ(−1))) ⊂ Q[a, b, c, d]

where ℓ : t 7→ (1 : t : (a+ bt) : (c+ dt)).

If g is not of degree 27 then terminate with an error message. In this case, the
coordinate system is not sufficiently general.

ii) Factor g modulo all primes below a given limit. Ignore the primes dividing the
leading coefficient of g.

iii) If one of the factors is multiple then go to the next prime immediately. Other-
wise, check whether the decomposition type is (1, 1, 5, 5, 5, 5, 5) or (9, 9, 9).

iv) If each of the two cases occurred at least once then output the message
“The Galois group contains D1W(E6).” and terminate.

Otherwise, output “Cannot prove that the Galois group contains D1W(E6).”

Remark 3.8. To justify Algorithm 3.7, one may argue as follows. For
G ⊇ D1W(E6), it is sufficient to verify that G is transitive and contains an el-
ement of order five. Indeed, this criterion was proven in [7, Lemma 8].

Further, the two cycle types required guarantee these properties. An element
of cycle type (1, 1, 5, 5, 5, 5, 5) is of order five. Finally, G is transitive as neither 9
nor 18 allows a partition into only fives and at most two ones.

4. The generalized Cremona transform

4.1. ∆ is a homogeneous form of degree 32. Naively, one would expect that there
are not many solutions of the equation

w2 = −3∆(a0, a1, a2, a3, a4) .

The constraints proven above reduce the expectations even more. Neverthe-
less, three rational points of height ≤ 100 have been found. The reason for this
is the following observation.
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Fact 4.2. There is form ∆′ homogeneous of degree 8 such that

∆(a0, . . . , a4) = (a0 · . . . · a4)8 ·∆′(1/a0, . . . , 1/a4) .

Proof. The octic ∆′ is given by the formula

∆′(x0, . . . , x4) :=∏
i1,i2,i3,i4∈{0,1}

(√
x0 + (−1)i1

√
x1 + (−1)i2

√
x2 + (−1)i3

√
x3 + (−1)i4

√
x4

)
. �

Definition 4.3. We call the birational map ι from P4 to itself, given by

(a0 : . . . : a4) 7→ (1/a0 : . . . : 1/a4) ,

a generalized Cremona transform.

Remarks 4.4. i) Note that the standard Cremona transform of P2 is the bira-
tional map (a0 : a1 : a2) 7→ (1/a0 : 1/a1 : 1/a2).

ii) The generalized Cremona transform ι provides an automorphism of

{(x0 : . . . : x4) ∈ P4 | x0 · . . . · x4 ̸= 0} .

In particular, (x0 : . . . : x4) ∈ P4(Q), x0 · . . . · x4 ̸= 0, gives rise to a solution of

w2 = (−3)∆′(x0, . . . , x4)

if and only if ι
(
(x0 : . . . : x4)

)
yields a rational point on the discriminantal covering.

Lemma 4.5. a) ∆′ ∈ Q[x0, . . . , x4] is a symmetric polynomial, homogeneous of
degree eight and absolutely irreducible.

b) One has ∆′(0, x1, . . . , x4) = D2 for a symmetric, homogeneous quartic form
D ∈ Q[x1, . . . , x4].

Proof. a) By definition, ∆′ ∈ Q[
√
x0, . . . ,

√
x4]. Further, the expression for ∆′ is

obviously invariant under the action of G := Gal(Q(
√
x0, . . . ,

√
x4)/Q(x0, . . . , x4)).

This yields ∆ ∈ Q[x0, . . . , x4]. Symmetry and homogeneity are obvious.
Finally, we have a decomposition of ∆′ into irreducible factors in the unique

factorization domainQ[
√
x0, . . . ,

√
x4]. Since G operates transitively on the sixteen

factors, ∆ is absolutely irreducible.

b) ∆′(0, x1, . . . , x4) is the square of

D(x1, . . . , x4) :=
∏

i2,i3,i4∈{0,1}

(√
x1 + (−1)i2

√
x2 + (−1)i3

√
x3 + (−1)i4

√
x4

)
. �

Remarks 4.6. i) The ramification locus R, given by ∆′ = 0 is a rational threefold.
The parametrization ι : P3 → R,

ι : (t0 : . . . : t3) 7→
(
t20 : t21 : t22 : t23 : (t0 + . . .+ t3)

2
)

is a finite birational morphism.

ii) The equation D = 0 defines the famous Roman surface of J. Steiner.
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5. The Picard rank of the modified discriminantal covering

Definition 5.1. By the modified discriminantal covering, we mean the twofold
covering O of P4

Q, given by the equation

w2 = −3∆′(a0, . . . , a4).

Proposition 5.2. The singular locus of O is reducible into ten components.
The component S(x0,x1) is given by

x0 − x1 = 0 , x2
2 + x2

3 + x2
4 − 2x2x3 − 2x2x4 − 2x3x4 = 0 .

The others are obtained by permuting coordinates.

Proof. First case. x0 · . . . · x4 ̸= 0.

Then, the morphism p : P4
Q → P4

Q given by

(t0 : . . . : t4) 7→ (t20 : . . . : t24)

is étale over (x0 : . . . : x4). We may therefore test the fiber product O ×π,P4
Q
,p P

4
Q

for smoothness. It is given explicitly by

w2 = (−3)
∏

i1,i2,i3,i4∈{0,1}

(
t0 + (−1)i1t1 + (−1)i2t2 + (−1)i3t3 + (−1)i4t4

)
.

Here, the singular points are exactly the singular points of the ramification locus.
That, in turn, consists of 16 hyperplanes such that precisely the intersection points
are singular. Going back to O, we see that the singular points are those where at
least two of the expressions

√
x0 + (−1)i1

√
x1 + (−1)i2

√
x2 + (−1)i3

√
x3 + (−1)i4

√
x4

vanish.
If these expressions coincide in one or four signs then this enforces one coordinate

to be zero. The cases that there are two or three signs in common are essentially
equivalent to each other. Without restriction,

√
x0 −

√
x1 +

√
x2 +

√
x3 +

√
x4 =

√
x0 −

√
x1 −

√
x2 −

√
x3 −

√
x4 = 0 .

Then,
√
x0 =

√
x1 and

√
x2 +

√
x3 +

√
x4 = 0. The first equation yields x0 = x1.

The quadratic relation given is equivalent to
√
x2 ±

√
x3 ±

√
x4 = 0.

Second case. x0 · . . . · x4 = 0.

The singular locus is a Zariski closed subset. Therefore, the points satisfying the
equations given above are clearly singular. It remains to prove that the others
are non-singular.

Without restriction, we may assume that x0 = 0 and that exactly one of the
expressions

√
x1+(−1)i2

√
x2+(−1)i3

√
x3+(−1)i4

√
x4, say

√
x1+

√
x2+

√
x3+

√
x4,

is equal to zero. Then, the partial derivative of

(
√
x0 +

√
x1 +

√
x2 +

√
x3 +

√
x4)(

√
x0 −

√
x1 −

√
x2 −

√
x3 −

√
x4) =

= x0 − (
√
x1 +

√
x2 +

√
x3 +

√
x4)

2

by x0 is non-zero. As the other factors do not vanish, the product over all the
16 factors has non-zero derivative at this point. The assertion follows. �

Theorem 5.3. Let pr: Õ → O be the proper and birational morphism obtained by
blowing up the ten singular components.
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a) Then, Õ is non-singular. I.e., pr is a resolution of singularities.

b) Further, rkPic(Õ) = 11.

c) The canonical divisor of Õ is K = pr∗KO for KO = −π∗H and H a hyper-
plane section of P4.

Proof. a) This may be tested locally. Let (w; x0 : . . . : x4) be a point in the
singular locus of O.

First case. x0 · . . . · x4 ̸= 0.

Near (x0 : . . . : x4), the morphism

p : P4
Q → P4

Q, (t0 : . . . : t4) 7→ (t20 : . . . : t24)

is étale. We may take square roots t
(0)
0 , . . . , t

(0)
4 of x0, . . . , x4 and consider

w2 = (−3)
∏

i1,i2,i3,i4∈{0,1}

(
t0 + (−1)i1t1 + (−1)i2t2 + (−1)i3t3 + (−1)i4t4

)
.

Actually, only the linear factors vanishing at (t
(0)
0 : . . . : t

(0)
4 ) need to be taken

into consideration.
Without restriction, suppose that (x0 : . . . : x4) ∈ S(x0,x1). Then, again with-

out restriction,

t
(0)
0 − t

(0)
1 + t

(0)
2 + t

(0)
3 + t

(0)
4 = t

(0)
0 − t

(0)
1 − t

(0)
2 − t

(0)
3 − t

(0)
4 = 0 .

The corresponding linear forms X,Y are linearly independent, which means that
we blow up a scheme, locally given by the equation W 2 = XY , at the ideal (X,Y ).
The result is clearly non-singular.

Now suppose that (x0 : . . . : x4) is a point of intersection of at least
two singular components. Without loss of generality, the second singular com-
ponent might be either S(x0,x2) or S(x2,x3). The latter variant enforces that
(x0 : . . . : x4) = (1 : 1 : 1 : 1 : 4) is the point corresponding to the Cayley cu-
bic. This is actually a special case of the first variant.

Thus, assume that (x0 : . . . : x4) ∈ S(x0,x1) ∩ S(x0,x2). Then, without restriction,

t
(0)
0 = t

(0)
1 = t

(0)
2 and t

(0)
0 + t

(0)
3 + t

(0)
4 = 0. We have the three vanishing linear forms

t0 + t1 − t2 + t3 + t4, t0 − t1 + t2 + t3 + t4, and t0 − t1 − t2 − t3 − t4. Only when
x3 = x0 (or x4 = x0), another linear form vanishes.

Altogether, there are four linearly independent linear forms X,Y, Z, and U .
We blow up W 2 = XYZU or W 2 = XYZ at (X,Y ), (X,Z), and (Y, Z), (as well
as (X,U), (Y, U), and (Z,U)). The resulting scheme is non-singular.

Second case. Exactly one of the coordinates x0, . . . , x4 vanishes.

Then, without loss of generality, (x0 : . . . : x4) = (a : a : b : b : 0). We may
take square roots t0, . . . , t3 of x0, . . . , x3 such that t0 and t1 as well as t2 and t3
are of the same sign. Then, the right hand side goes over into the product over
all (t0±t1±t2±t3)

2−x4. Among these, (t0−t1+t2−t3)
2−x4 and (t0−t1−t2+t3)

2−x4

do vanish.
Hence, for two linearly independent linear forms X and Y , we consider the

scheme given by W 2 = (X2 − x4)(Y
2 − x4). The singular components S(x0,x1)

and S(x2,x3) correspond to the ideals (X2−x4, X+Y ) and (X2−x4, X−Y ), respec-

tively. Blowing up the first ideal amounts to the substitutions x4 = X2+ v(X+Y )
and, for the other affine chart, x4 = X2+ 1

v (X+Y ). The first substitution leads to

(W ′)2 = v(X − Y + v) becoming smooth after blowing up (v,X − Y ), which is the
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next step. On the other hand, the second substitution yields (W ′)2 = v(X−Y )+1
which is clearly non-singular near v = 0.

There is the exceptional case that a = b. Then, (t0 + t1 − t2 − t3)
2 − x4

is a third factor vanishing. We have to consider a scheme locally given by
W 2 = (X2 − x4)(Y

2 − x4)(Z
2 − x4). Here, the substitution x4 = X2 + v(X + Y )

yields (W ′)2 = v(X − Y + v)[Z2 − X2 − v(X + Y )]. The next step, to blow up
(v,X − Y ), leads to (W ′′)2 = v1(1 + v1)[Z

2 − X2 − v1(X
2 − Y 2)]. Here, for the

other affine chart, we find a formula of the same structure. Further, it is sufficient
to consider the singularity at v1 = 0. That at v1 = −1 is analogous.

Actually, to blow up S(x1,x2) ∪ S(x0,x3) suffices to resolve this singularity. In-

deed, the substitution Z2 − X2 = v2v1 yields (W ′′′)2 = v2 − X2 + Y 2, which
is clearly non-singular. On the other hand, putting Z2 −X2 = 1

v2
v1 leads to

(W ′′′)2 = v2(1− v2(X
2 − Y 2)), which is obviously smooth near v2 = 0.

Third case. Exactly two of the coordinates x0, . . . , x4 vanish.

Here, without restriction, (x0 : . . . : x4) =
(
0 : 0 :

(
t
(0)
2

)2
:
(
t
(0)
3

)2
:
(
t
(0)
4

)2)
for t

(0)
2 + t

(0)
3 + t

(0)
4 = 0. Therefore, precisely four of the sixteen factors of the right

hand side vanish. These are
√
x0±

√
x1±(t2+t3+t4). We findW 2 = X2−2Y T 2+T 4

for the new coordinate functions X := x0 −x1, Y := x0 +x1, and T := t2 + t3 + t4.
When blowing up (X,T ), the substitution X := uT leads to

(W ′)2 = u2 − 2Y + T 2, which is non-singular. On the other hand, T := uX yields
(W ′)2 = 1− 2u2Y + u4X2 being clearly smooth near u = 0.

Fourth case. Three of the coordinates x0, . . . , x4 vanish.

Without restriction, (x0 : . . . : x4) = (0 : 0 : 0 : 1 : 1). Take square roots t3, t4 of x3

and x4 that are of the same sign. The eight factors
√
x0 ±

√
x1 ±

√
x2 ± (t3 − t4)

vanish at (0 : 0 : 0 : 1 : 1). We find the local equation W 2 = D(x0, x1, x2, t
2) for

t := t3 − t4 and D the symmetric, homogeneous quartic from Lemma 4.5.b).
Blowing up (x0 −x1, x2 − t2) amounts to substituting x2 := t2 +u(x0 −x1) and,

for the other affine chart, x2 := t2 + 1
u (x0 − x1). Then, the ideals (x0 − x2, x1 − t2)

and (x1 − x2, x0 − t2) to be blown up subsequently go over to (u − 1, x1 − t2)
and (u+ 1, x0 − t2). The substitutions

x2 := t2 + u(x0 − x1) ,

x1 := t2 + u1(u− 1) ,

x0 := t2 + u2(u+ 1) ,

yield

W 2 = (Y − uZ)2 + 8Zt2

for the new functions Y := u1 + u2 and Z := u1 − u2.
For the other seven affine charts of this triple blow-up, the equations are com-

pletely analogous. The differences are that the definitions of Y and Z may be
replaced by Y,Z := 1± u1u2. Further, instead of Y − uZ, we may have uY − Z.

The last step is to blow up the ideal (Y − uZ, t) corresponding to the com-
ponent S(x3,x4). The substitution Y − uZ = vt yields (W ′)2 = v2 + 8Z, which
is non-singular. Indeed, otherwise we must have v = 0 and W ′ = 0, which im-
plies Z = 0. But, in this situation, Z is a local parameter. On the other hand,
Y − uZ = 1

v t leads to (W ′)2 = 1 + 8v2Z, which is clearly smooth at v = 0.
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b) We claim that O is normal. To see this, note first that O is a hypersurface in
weighted projective space P = P(4, 1, 1, 1, 1, 1). This is a scheme equipped with a
canonical rational map ι : P //__ P(1, 1, 1, 1, 1) = P4. ι is undefined at exactly one
point, which is the only singularity of P.

By construction, the double covering O does not meet the singular point. Con-
sequently, O is Gorenstein and, in particular, Cohen-Macaulay. Further, the singu-
larities of O are in codimension 2. Serre’s criterion [11, Theorem 23.8] shows that
O is normal.

We assert that, after each step of blowing up, the resulting scheme is still nor-
mal. In fact, the centre of the blowing up is a codimension two complete intersec-
tion. The blow-up BlS(x0,x1)

(O) is, therefore, locally given by a single equation in
a P1-bundle over O. This ensures BlS(x0,x1)

(O) is Cohen-Macaulay. Further, the
smooth part of O is untouched under blowing up. Thus, regularity in codimension
two could be destroyed only if the whole exceptional set were singular. As this is
a P1-bundle over S(x0,x1), that is clearly not the case. The same argument works
for each of the subsequent steps.

By Lemma 5.4, it suffices to show that the Picard rank grows by one in each step.
Again, let us explain this for the first step in order to simplify notation. We have
BlS(x0,x1)

(O) = Proj(O ⊕ I ⊕ I 2 ⊕ . . . ) for I := IS(x0,x1),O. We assert

that the twisting sheaf O(1) is linearly independent of the pull-backs of Pic(O)
in Pic(BlS(x0,x1)

(O)). Indeed, O(n) for n ̸= 0 is non-trivial when restricted to one
of the exceptional fibers, which is just a P1.

c) As O is a Gorenstein scheme, its dualizing sheaf ωO is invertible [4, Theo-
rem 3.5.1]. To describe ωO completely, we may restrict it to Oreg, since O is nor-
mal. Here, ωO|Oreg ∼= Ω4

Oreg . A 4-form with a simple pole at “x0 = 0” is given
by (x4

0/w) · d(x1/x0) ∧ . . . ∧ d(x4/x0). Hence, ωO = π∗O(−1).
Further, pr is an isomorphism outside the exceptional fibers. This implies that

K and pr∗KO coincide up to a sum of exceptional divisors. Due to symmetry, the
coefficients at E1, . . . , E10 are equal to each other. To determine the actual number,
consider a general point P ∈ S(x0,x1). Near P , we blow up a double covering of

the type w2 = XY . This is a quadric cone times a neighbourhood of (0, 0) ∈ A2.
Its blow-up is the Hirzebruch surface Σ2 times that neighbourhood. The exceptional
curve E ⊂ Σ2 is a (−2)-curve, hence ωΣ2 |E is trivial. The coefficients desired are
equal to zero. �

Lemma 5.4. Let p : X → Y be a surjective and birational morphism of
Noetherian, normal, integral schemes. Then, the pull-back homomorphism
p∗ : Pic(Y ) → Pic(X) is injective.

Proof. Suppose, for L ∈ Pic(Y ), the pull-back p∗L ∈ Pic(X) would be trivial.
This means, we have a section s ∈ Γ(X, p∗L ) without zeroes or poles. Correspond-
ing to each codimension one point ξ ∈ Y , there is a discrete valuation ring Oξ.
Further, there is a codimension one point ζ ∈ X mapping to ξ. As Oξ is integrally
closed, we see that Oξ

∼= Oζ .
Consequently, s gives rise to a section t ∈ Γ(Y ◦,L |Y ◦) without zeroes or poles

for Y ◦ ⊆ Y the complement of a closed subset of codimension ≥ 2. [11, Theorem
12.4.i)] implies that tmay be extended to a global section. Hence, L ∼= OY is trivial.

�
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Remark 5.5. According to a famous conjecture of Manin, the value of the Picard
rank of a non-singular Fano variety has implications on its arithmetic. More pre-
cisely, the number of points of anticanonical height <B should grow asymptotically
like τB logrk Pic Õ−1 B for a certain constant τ . We will discuss this topic in a forth-
coming paper [8].
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Universität Siegen, Département Mathematik, Walter-Flex-Straße 3, D-57068
Siegen, Germany

E-mail address: jahnel@mathematik.uni-siegen.de


