Estimates for Tamagawa numbers of diagonal cubic surfaces

Andreas-Stephan Elsenhans and Jörg Jahnel

Abstract

For diagonal cubic surfaces, we give an upper bound for E. Peyre's Tamagawa type number in terms of the coefficients of the defining equation.

1 Introduction

1.1. - A conjecture, due to Yu. I. Manin, asserts that the number of \mathbb{Q}-rational points of anticanonical height $<B$ on a Fano variety S is asymptotically equal to $\tau B \log ^{\mathrm{rkPic}(S)-1} B$, for $B \rightarrow \infty$. Further, the coefficient $\tau \in \mathbb{R}$ is conjectured to be the Tamagawa-type number $\tau(S)$ introduced by E. Peyre in [Pe]. In the particular case of a cubic surface, the anticanonical height is the same as the naive height.
1.2. E. Peyre's constant. - E. Peyre's Tamagawa-type number is defined in [PT, Definition 2.4] as

$$
\tau(S):=\alpha(S) \cdot \beta(S) \cdot \lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)}\right) \cdot \tau_{H}\left(S\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}}\right)
$$

for $t=\operatorname{rkPic}(S)$.
Here, the factor $\beta(S)$ is simply defined as

$$
\beta(S):=\# H^{1}\left(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)\right) .
$$

$\alpha(S)$ is given as follows [Pe, Définition 2.4]. Let $\Lambda_{\mathrm{eff}}(S) \subset \operatorname{Pic}(S) \otimes_{\mathbb{Z}} \mathbb{R}$ be the cone generated by the effective divisors. Identify $\operatorname{Pic}(S) \otimes_{\mathbb{Z}} \mathbb{R}$ with \mathbb{R}^{t} via a mapping induced by an isomorphism $\operatorname{Pic}(S) \xrightarrow{\cong} \mathbb{Z}^{t}$. Consider the dual cone $\Lambda_{\text {eff }}^{\vee}(S) \subset\left(\mathbb{R}^{t}\right)^{\vee}$. Then,

$$
\alpha(S):=t \cdot \operatorname{vol}\left\{x \in \Lambda_{\mathrm{eff}}^{\vee} \mid\langle x,-K\rangle \leq 1\right\} .
$$

[^0]$L\left(\cdot, \chi_{\operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)}\right)$ denotes the Artin L-function of the $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-representation $\operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right) \otimes_{\mathbb{Z}} \mathbb{C}$ which contains the trivial representation t times as a direct summand. Therefore, $L\left(s, \chi_{\operatorname{Pic}\left(S_{\bar{Q}}\right)}\right)=\zeta(s)^{t} \cdot L\left(s, \chi_{P}\right)$ and
$$
\lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S_{\bar{Q}}\right)}\right)=L\left(1, \chi_{P}\right)
$$
where ζ denotes the Riemann zeta function and P is a representation which does not contain trivial components. [Mu , Corollary 11.5 and Corollary 11.4] show that $L\left(s, \chi_{P}\right)$ has neither a pole nor a zero at $s=1$.

Finally, τ_{H} is the Tamagawa measure on the set $S\left(\mathbb{A}_{\mathbb{Q}}\right)$ of adelic points on S and $S\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}} \subseteq S\left(\mathrm{~A}_{\mathbb{Q}}\right)$ denotes the part which is not affected by the Brauer-Manin obstruction.
1.3. - As S is projective, we have

$$
S\left(\mathbb{A}_{\mathbb{Q}}\right)=\prod_{\nu \in \operatorname{Val}(\mathbb{Q})} S\left(\mathbb{Q}_{\nu}\right)
$$

τ_{H} is defined to be a product measure $\tau_{H}:=\prod_{\nu \in \operatorname{Val}(\mathbb{Q})} \tau_{\nu}$.
For a prime number p, the local measure τ_{p} is given as follows. Let $a \in S\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$ and put $\mathfrak{U}_{a}^{(k)}:=\left\{x \in S\left(\mathbb{Q}_{p}\right) \mid x \equiv a\left(\bmod p^{k}\right)\right\}$. Then,
$\tau_{p}\left(\mathfrak{U}_{a}^{(k)}\right):=\operatorname{det}\left(1-p^{-1} \operatorname{Frob} b_{p} \mid \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)^{I_{p}}\right) \cdot \lim _{m \rightarrow \infty} \frac{\#\left\{y \in S\left(\mathbb{Z} / p^{m} \mathbb{Z}\right) \mid y \equiv a\left(\bmod p^{k}\right)\right\}}{p^{m \operatorname{dim} S}}$.
Here, $\operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)^{I_{p}}$ denotes the fixed module under the inertia group.
τ_{∞} is described in [Pe, Lemme 5.4.7]. In the case of a hypersurface of degree d in \mathbf{P}^{n}, defined by the equation $f=0$, this yields

$$
\tau_{\infty}(U)=\frac{n+1-d}{2} \int_{\substack{ \\\left|x_{0}\right|, \ldots,\left|x_{n}\right| \leq 1}} \omega_{\text {Leray }}
$$

for $U \subset S(\mathbb{R})$. Here, $\omega_{\text {Leray }}$ is the Leray measure on the cone $C S(\mathbb{R})$ associated to the equation $f=0$. Note that for a cubic surface, one has $n+1-d=1$.

The Leray measure is related to the usual hypersurface measure by the formula $\omega_{\text {Leray }}=\frac{1}{\| \text { grad } f \|} \omega_{\text {hyp }}$. Observe, $\frac{1}{\| \text { grad } f \|}$ is an integrable function on the whole of $C S(\mathbb{R})$ since $\operatorname{deg} f \leq n$.
1.4. The main result. - For diagonal cubic surfaces, there is an estimate for $\tau(S)$ in terms of the coefficients of the defining equation. More precisely, we will prove the following theorem.

Theorem. Let $\mathfrak{a}=\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$ be a vector. Denote by $S^{\mathfrak{a}}$ the cubic surface in $\mathbf{P}_{\mathbb{Q}}^{3}$ given by $a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0$. Then, for each $\varepsilon>0$ there exists a constant $C(\varepsilon)>0$ such that

$$
\frac{1}{\tau\left(S^{\mathfrak{a}}\right)} \geq C(\varepsilon) \cdot \mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}-\varepsilon}
$$

Corollary (Fundamental finiteness). For each $T>0$, there are only finitely many diagonal cubic surfaces $S^{\mathfrak{a}}: a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0$ in $\mathbf{P}_{\mathbb{Q}}^{3}$ such that $\tau\left(V^{\mathfrak{a}}\right)>T$.
1.5. Application: The height of the smallest point. - We denote by $\mathrm{m}(S)$ the smallest naive height of a \mathbb{Q}-rational point on S, or ∞ if there are no \mathbb{Q}-rational points. The main result implies that there is an estimate for $\mathrm{m}(S)$ in terms of $\tau(S)$.

Corollary (An inefficient search bound). There exists a monotonically decreasing function $F:(0, \infty) \rightarrow[0, \infty)$, the search bound, satisfying the following condition. Let $S^{\mathfrak{a}}$ be the cubic surface given by the equation $a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0$. Assume $S^{\mathfrak{a}}(\mathbb{Q}) \neq \emptyset$. Then, $S^{\mathfrak{a}}$ admits a \mathbb{Q}-rational point of height $\leq F\left(\tau\left(S^{\mathfrak{a}}\right)\right)$.
Proof. One may simply put $F(t):=\max _{\substack{\tau\left(S_{a}\right) \geq t \\ S^{\wedge}(\mathbb{Q}) \neq \emptyset}} \min _{P \in S^{a}(\mathbb{Q})} \mathrm{H}_{\text {naive }}(P)$.
In other words, we have $\mathrm{m}\left(S^{\mathfrak{a}}\right) \leq F\left(\tau\left(S^{\mathfrak{a}}\right)\right)$ as soon as $S^{\mathfrak{a}}(\mathbb{Q}) \neq \emptyset$.
1.6. Remark. - For diagonal quartic threefolds, these results were known before [EJ]. The case of the classical cubic surfaces is, however, more complicated.

The reason is that quartic threefolds are of geometric Picard rank one. Therefore, the factors α and β are always the same and could essentially be ignored. Further, the L-factor is equal to 1 as the $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-representation considered is trivial. In the situation of diagonal cubic surfaces, all these factors need to be considered.

2 Estimates for Peyre's constant

Consider a general diagonal cubic surface $S^{\left(a_{0}, \ldots, a_{3}\right)} \subset \mathbf{P}_{\mathbb{Q}}^{3}$ given by

$$
a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0
$$

Our goal is to establish the estimate for $\tau^{\left(a_{0}, \ldots, a_{3}\right)}:=\tau\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right)$ formulated in Theorem 1.4. For this, in the subsections below, we will give an individual estimate for each of the factors occurring in the definition of $\tau\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right)$.

2.1 Estimates for α and β

2.1. - Recall that on a smooth cubic surface \mathscr{S} over an algebraically closed field, there are exactly 27 lines. For the Picard group, which is isomorphic to \mathbb{Z}^{7}, the classes of these lines form a system of generators.
2.2. Notation. - i) The set \mathscr{L} of the 27 lines is equipped with the intersection product $\langle\rangle:, \mathscr{L} \times \mathscr{L} \rightarrow\{-1,0,1\}$. The pair $(\mathscr{L},\langle\rangle$,$) is the same for all smooth$ cubic surfaces. It is well known [Ma, Theorem 23.9.ii] that the group of permutations of \mathscr{L} respecting \langle,$\rangle is isomorphic to W\left(E_{6}\right)$. We fix such an isomorphism.
Denote by $F \subset \operatorname{Div}(\mathscr{S})$ the group generated by the 27 lines and by $F_{0} \subset F$ the subgroup of principal divisors. Then, F is equipped with an operation of $W\left(E_{6}\right)$ such that F_{0} is a $W\left(E_{6}\right)$-submodule. We have $\operatorname{Pic}(\mathscr{S}) \cong F / F_{0}$.
ii) If S is a smooth cubic surface over \mathbb{Q} then $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ operates canonically on the set \mathscr{L}_{S} of the 27 lines on $S_{\overline{\mathbb{Q}}}$. Fix a bijection $i_{S}: \mathscr{L}_{S} \xrightarrow{\cong} \mathscr{L}$ respecting the intersection pairing. This induces a group homomorphism $\iota_{S}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow W\left(E_{6}\right)$. We denote its image by $G \subset W\left(E_{6}\right)$.
2.3. Lemma. - There is a constant c such that, for all smooth cubic surfaces S over \mathbb{Q},

$$
1 \leq \beta(S) \leq c
$$

Proof. By definition, $\beta(S)=\# H^{1}\left(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)\right)$. Using the notation just introduced, we may write $H^{1}\left(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)\right)=H^{1}\left(G, F / F_{0}\right)$.

Note that this cohomology group is always finite. Indeed, since G is a finite group and F / F_{0} is a finite $\mathbb{Z}[G]$-module, the description via the standard complex shows it is finitely generated. Further, it is annihilated by $\# G$.
$H^{1}\left(G, F / F_{0}\right)$ depends only on the subgroup $G \subset W\left(E_{6}\right)$ occurring. For that, there are finitely many possibilities. This implies the claim.
2.4. Remark. - A more precise consideration [Ma, Proposition 31.3] yields a canonical isomorphism $H^{1}\left(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)\right) \cong \operatorname{Hom}\left(\left(N F \cap F_{0}\right) / N F_{0}, \mathbb{Q} / \mathbb{Z}\right)$. Here, N is the norm map under the operation of G.

As an application of this, one may inspect the 350 conjugacy classes of subgroups of $W\left(E_{6}\right)$ using GAP. The calculations show that the lemma is actually true for $c=9$.
2.5. Lemma. - There are positive constants c_{1} and c_{2} such that, for all smooth cubic surfaces S over \mathbb{Q} satisfying $S\left(\mathbb{A}_{\mathbb{Q}}\right) \neq \emptyset$,

$$
c_{1} \leq \alpha(S) \leq c_{2}
$$

Proof. Again, we claim that $\alpha(S)$ is completely determined by the group $G \subset W\left(E_{6}\right)$. Thus, suppose that we do not have the full information available about what surface S is but are given the group G only.

The assumption $S\left(\mathbb{A}_{\mathbb{Q}}\right) \neq \emptyset$ makes sure that $\operatorname{Pic}(S) \cong \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)^{G}[$ KT, Remark 3.2.ii)]. We may therefore write $\operatorname{Pic}(S) \cong\left(F / F_{0}\right)^{G}$. The effective cone $\Lambda_{\text {eff }}(S) \subset \operatorname{Pic}(S) \otimes_{\mathbb{Z}} \mathbb{C} \cong\left(F / F_{0}\right)^{G} \otimes_{\mathbb{Z}} \mathbb{C}$ is generated by the symmetrizations of the classes $\ell_{1}, \ldots, \ell_{27}$ of the 27 lines in F. In particular, it is determined by G, completely. Further, we have $K=-\frac{1}{9}\left(\ell_{1}+\ldots+\ell_{27}\right)$. These data are sufficient to compute $\alpha(S)$ according to its very definition.
2.6. Remark. - Here, we do not know the optimal values of c_{1} and c_{2} in explicit form. $\alpha(S)$ has not yet been computed in all cases.

2.2 An estimate for the L-factor

2.2.1. - In the case of the diagonal cubic surface $S^{\left(a_{0}, \ldots, a_{3}\right)} \subset \mathbf{P}_{\mathbb{Q}}^{3}$, given by $a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0$ for $a_{0}, \ldots, a_{3} \in \mathbb{Z} \backslash\{0\}$, the 27 lines on $S^{\left(a_{0}, \ldots, a_{3}\right)}$ may easily be written down explicitly. Indeed, for each pair $(i, j) \in(\mathbb{Z} / 3 \mathbb{Z})^{2}$, the system

$$
\begin{aligned}
& \sqrt[3]{a_{0}} x_{0}+\zeta_{3}^{i} \sqrt[3]{a_{1}} x_{1}=0 \\
& \sqrt[3]{a_{2}} x_{2}+\zeta_{3}^{j} \sqrt[3]{a_{3}} x_{3}=0
\end{aligned}
$$

of equations defines a line on $S^{\left(a_{0}, \ldots, a_{3}\right)}$. Decomposing the index set $\{0, \ldots, 3\}$ differently into two subsets of two elements each yields all the lines. In particular, we see that the 27 lines may be defined over $K=\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{a_{1} / a_{0}}, \sqrt[3]{a_{2} / a_{0}}, \sqrt[3]{a_{3} / a_{0}}\right)$.
2.2.2. - This is an abelian extension of $\mathbb{Q}\left(\zeta_{3}\right)$. Therefore, the irreducible representations of $\operatorname{Gal}(K / \mathbb{Q})$ are at most two-dimensional. Besides the trivial representation, there is the non-trivial Dirichlet character λ of $\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}$. The twodimensional irreducible representations are actually representations of a factor group of the form $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{a_{0}^{e_{0}} \cdot \ldots \cdot a_{3}^{e_{3}}}\right) / \mathbb{Q}\right) \cong S_{3}$ for $e_{0}, \ldots, e_{3} \in\{0,1,2\}$.
2.2.3. Lemma. - Let a and b be integers different from zero. Then,

$$
\left|\operatorname{Disc}\left(\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{a b^{2}}\right) / \mathbb{Q}\right)\right| \leq 3^{9} a^{4} b^{4}
$$

Proof. We have, at first,

$$
\begin{aligned}
\left|\operatorname{Disc}\left(\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{a b^{2}}\right) / \mathbb{Q}\right)\right| & \leq\left|\operatorname{Disc}\left(\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}\right)\right|^{3} \cdot \operatorname{Disc}\left(\mathbb{Q}\left(\sqrt[3]{a b^{2}}\right) / \mathbb{Q}\right)^{2} \\
& =27 \cdot \operatorname{Disc}\left(\mathbb{Q}\left(\sqrt[3]{a b^{2}}\right) / \mathbb{Q}\right)^{2} .
\end{aligned}
$$

Further, by $\left[\mathrm{Mc}\right.$, Chapter 2, Exercise 41], we know $\left|\operatorname{Disc}\left(\mathbb{Q}\left(\sqrt[3]{a b^{2}}\right) / \mathbb{Q}\right)\right| \leq 3^{3} a^{2} b^{2}$. This shows $\left|\operatorname{Disc}\left(\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{a b^{2}}\right) / \mathbb{Q}\right)\right| \leq 3^{9} a^{4} b^{4}$.
2.2.4. Proposition. - For each $\varepsilon>0$, there exist positive constants c_{1} and c_{2} such that

$$
c_{1} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\varepsilon}<\lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S_{\left.\frac{\left(a_{0}, \ldots, a_{3}\right)}{}\right)}\right)<c_{2} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon}}\right.
$$

for all $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$. Here, $t=\operatorname{rkPic}(S)$.
Proof. The Galois representation $\operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}^{\left(a_{0}, \ldots, a_{3}\right)}\right) \otimes_{\mathbb{Z}} \mathbb{C}$ contains the trivial representation t times as a direct summand. Therefore,

$$
L\left(s, \chi_{\operatorname{Pic}\left(S S_{\bar{Q}}^{\left(a_{0}, \ldots, a_{3}\right)}\right)}\right)=\zeta(s)^{t} \cdot L\left(s, \chi_{P}\right)
$$

where ζ denotes the Riemann zeta function and P is a representation which does not contain trivial components. All we need to show is

$$
c_{1} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\varepsilon}<L\left(1, \chi_{P}\right)<c_{2} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon} .
$$

$L\left(\cdot, \chi_{P}\right)$ is the product [Ne , Chapter VII, Theorem (10.4).ii)] of not more than six factors of the form $L(\cdot, \lambda)$ for λ the non-trivial Dirichlet character of $\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}$ and at most three factors which are Artin- L-functions $L\left(\cdot, \nu^{K}\right)$ for two-dimensional irreducible representations.

Here, $K=\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{a_{0}^{e_{0}} \cdot \ldots \cdot a_{3}^{e_{3}}}\right)$ for certain $e_{0}, \ldots, e_{3} \in\{0,1,2\}$. As $L(1, \lambda)$ does not depend on a_{0}, \ldots, a_{3}, at all, it will suffice to show

$$
c_{1}(\varepsilon) \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\varepsilon}<L\left(1, \nu^{K}\right)<c_{2}(\varepsilon) \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon}
$$

for each $\varepsilon>0$.
ν^{K} is the only irreducible two-dimensional character of $\operatorname{Gal}(K / \mathbb{Q}) \cong S_{3}$. For that reason, by virtue of [Ne , Chapter VII, Corollary (10.5)], we have

$$
\begin{aligned}
\zeta_{K}(s) & =\zeta_{\mathbb{Q}}(s) \cdot L(s, \lambda) \cdot L\left(s, \nu^{K}\right)^{2} \\
& =\zeta_{\mathbb{Q}\left(\zeta_{3}\right)}(s) \cdot L\left(s, \nu^{K}\right)^{2}
\end{aligned}
$$

for a complex variable s. It, therefore, suffices in our particular situation to estimate the residue $\operatorname{res}_{s=1} \zeta_{K}(s)$ of the Dedekind zeta function of K.

An estimate from above has been given by C. L. Siegel. In view of the analytic class number formula, his [$\mathrm{Si}, \mathrm{Satz} 1$ 1] gives

$$
\begin{aligned}
\operatorname{res}_{s=1} \zeta_{K}(s) & <C[\log \operatorname{Disc}(K / \mathbb{Q})]^{5} \\
& \leq C\left[\log \left(3^{9} a_{0}^{4} a_{1}^{4} a_{2}^{4} a_{3}^{4}\right)\right]^{5} \\
& =C\left[4 \log \left|a_{0} \cdot \ldots \cdot a_{3}\right|+9 \log 3\right]^{5}
\end{aligned}
$$

for a certain constant C. The final term is less than $c_{2}(\varepsilon) \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon}$ for every $\varepsilon>0$.
On the other hand, H. M. Stark [St, formula (1)] shows

$$
\underset{s=1}{\substack{\text { ress }}} \zeta_{K}(s)>C(\varepsilon) \cdot \operatorname{Disc}(K / \mathbb{Q})^{-\varepsilon / 4}
$$

for every $\varepsilon>0$ which implies $\underset{s=1}{\operatorname{res}} \zeta_{K}(s)>c_{1}(\varepsilon) \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\varepsilon}$.

2.3 An estimate for the factors at the finite places

2.3.1. Notation. - i) For a prime number p and an integer $x \neq 0$, we put $x^{(p)}:=p^{\nu_{p}(x)}$. Note $x^{(p)}=1 /\|x\|_{p}$ for the normalized p-adic valuation.
ii) For integers x_{1}, \ldots, x_{n}, not all equal to zero, we write

$$
\operatorname{gcd}_{p}\left(x_{1}, \ldots, x_{n}\right):=\left[\operatorname{gcd}\left(x_{1}, \ldots, x_{n}\right)\right]^{(p)}
$$

Observe, if $x_{1}, \ldots, x_{n} \neq 0$ then we have $\operatorname{gcd}_{p}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{gcd}\left(x_{1}^{(p)}, \ldots, x_{n}^{(p)}\right)$.
iii) By putting $\nu(x):=\min _{\xi \in \mathbb{Z}_{p}} \nu(\xi)$, we carry the p-adic valuation from \mathbb{Z}_{p} over to $\mathbb{Z} / p^{r} \mathbb{Z}$.

$$
x=\left(\xi \bmod p^{r}\right)
$$

Note that any $0 \neq x \in \mathbb{Z} / p^{r} \mathbb{Z}$ has the form $x=\varepsilon \cdot p^{\nu(x)}$ where $\varepsilon \in\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{*}$ is a unit. Clearly, ε is unique only in the case $\nu(x)=0$.
2.3.2. Definition. - For $\left(a_{0}, \ldots, a_{3}\right) \in \mathbb{Z}^{4}, r \in \mathbb{N}$, and $\nu_{0}, \ldots, \nu_{3} \leq r$, put

$$
\begin{aligned}
N_{\nu_{0}, \ldots, \nu_{3} ; a_{0}, \ldots, a_{3}}^{(r)}:= & \left\{\left(x_{0}, \ldots, x_{3}\right) \in\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{4} \mid\right. \\
& \left.\nu\left(x_{0}\right)=\nu_{0}, \ldots, \nu\left(x_{3}\right)=\nu_{3} ; a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0 \in \mathbb{Z} / p^{r} \mathbb{Z}\right\} .
\end{aligned}
$$

For the particular case $\nu_{0}=\ldots=\nu_{3}=0$, we will write $Z_{a_{0}, \ldots, a_{3}}^{(r)}:=N_{0, \ldots, 0 ; a_{0}, \ldots, a_{3}}^{(r)}$. I.e.,

$$
Z_{a_{0}, \ldots, a_{3}}^{(r)}=\left\{\left(x_{0}, \ldots, x_{3}\right) \in\left[\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{*}\right]^{4} \mid a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0 \in \mathbb{Z} / p^{r} \mathbb{Z}\right\}
$$

We will use the notation $z_{a_{0}, \ldots, a_{3}}^{(r)}:=\# Z_{a_{0}, \ldots, a_{3}}^{(r)}$.
2.3.3. Sublemma. - If $p^{k} \mid a_{0}, \ldots, a_{3}$ and $r>k$ then we have

$$
z_{a_{0}, \ldots, a_{3}}^{(r)}=p^{4 k} \cdot z_{a_{0} / p^{k}, \ldots, a_{3} / p^{k}}^{(r-k)} .
$$

Proof. Since $a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=p^{k}\left(a_{0} / p^{k} \cdot x_{0}^{3}+\ldots+a_{3} / p^{k} \cdot x_{3}^{3}\right)$, there is a surjection

$$
\iota: Z_{a_{0}, \ldots, a_{3}}^{(r)} \longrightarrow Z_{a_{0} / p^{k}, \ldots, a_{3} / p^{k}}^{(r-k)},
$$

given by $\left(x_{0}, \ldots, x_{3}\right) \mapsto\left(\left(x_{0} \bmod p^{r-k}\right), \ldots,\left(x_{3} \bmod p^{r-k}\right)\right)$. The kernel of the homomorphism of modules underlying ι is $\left(p^{r-k} \mathbb{Z} / p^{r} \mathbb{Z}\right)^{4}$.
2.3.4. Lemma. - Assume $\operatorname{gcd}_{p}\left(a_{0}, \ldots, a_{4}\right)=p^{k}$. Then, there is an estimate

$$
z_{a_{0}, \ldots, a_{4}}^{(r)} \leq 3 p^{3 r+k}
$$

Proof. Suppose first that $k=0$. This means, one of the coefficients is prime to p. Without restriction, assume $p \nmid a_{0}$.

For any $\left(x_{1}, x_{2}, x_{3}\right) \in\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{3}$, there appears an equation of the form $a_{0} x_{0}^{3}=c$. It cannot have more than three solutions in $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{*}$. Indeed, for p odd, this follows
directly from the fact that $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{*}$ is a cyclic group. On the other hand, in the case $p=2$, we have $\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{*} \cong \mathbb{Z} / 2^{r-2} \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Again, there are only up to three solutions possible.

The general case may now easily be deduced from Sublemma 2.3.3. Indeed, if $k<r$ then

$$
z_{a_{0}, \ldots, a_{3}}^{(r)}=p^{4 k} \cdot z_{a_{0} / p^{k}, \ldots, a_{3} / p^{k}}^{(r-k)} \leq p^{4 k} \cdot 3 p^{3(r-k)}=3 p^{3 r+k} .
$$

On the other hand, if $k \geq r$ then the assertion is completely trivial since

$$
z_{a_{0}, \ldots, a_{3}}^{(r)}=\# Z_{a_{0}, \ldots, a_{3}}^{(r)}<p^{4 r} \leq p^{3 r+k}<3 p^{3 r+k}
$$

2.3.5. Remark. - The proof shows that in the case $p \equiv 2(\bmod 3)$ one could reduce the coefficient to 1 . Unfortunately, this observation does not lead to a substantial improvement of our final result.
2.3.6. Lemma. - Let $r \in \mathbb{N}$ and $\nu_{0}, \ldots, \nu_{3} \leq r$. Then,

$$
\# N_{\nu_{0}, \ldots, \nu_{3} ; a_{0}, \ldots, a_{3}}^{(r)}=\frac{z_{p^{2 \nu_{0}} a_{0}, \ldots, p^{3 \nu_{3}} a_{3}}^{(r)} \cdot \varphi\left(p^{r-\nu_{0}}\right) \cdot \ldots \cdot \varphi\left(p^{r-\nu_{3}}\right)}{\varphi\left(p^{r}\right)^{4}} .
$$

Proof. As $p^{3 \nu_{0}} a_{0} x_{0}^{3}+\ldots+p^{3 \nu_{3}} a_{3} x_{3}^{3}=a_{0}\left(p^{\nu_{0}} x_{0}\right)^{3}+\ldots+a_{3}\left(p^{\nu_{3}} x_{3}\right)^{3}$, we have a surjection

$$
\pi: Z_{p^{3 \nu_{0}} a_{0}, \ldots, p^{3 \nu_{3}} a_{3}}^{(r)} \longrightarrow N_{\nu_{0}, \ldots, \nu_{3} ; a_{0}, \ldots, a_{3}}^{(r)},
$$

given by $\left(x_{0}, \ldots, x_{3}\right) \mapsto\left(p^{\nu_{0}} x_{0}, \ldots, p^{\nu_{3}} x_{3}\right)$.
For $i=0, \ldots, 3$, consider the mapping $\iota: \mathbb{Z} / p^{r} \mathbb{Z} \rightarrow \mathbb{Z} / p^{r} \mathbb{Z}, x \mapsto p^{\nu_{i}} x$. If $\nu_{i}=r$ then ι is the zero map. All $\varphi\left(p^{r}\right)=(p-1) p^{r-1}$ units are mapped to zero. Otherwise, observe that ι is $p^{\nu_{i}}: 1$ on its image. Further, $\nu(\iota(x))=\nu_{i}$ if and only if x is a unit. By consequence, π is $\left(K^{\left(\nu_{0}\right)} \ldots \ldots \cdot K^{\left(\nu_{3}\right)}\right): 1$ when we put $K^{(\nu)}:=p^{\nu}$ for $\nu<r$ and $K^{(r)}:=(p-1) p^{r-1}$. Summarizing, we could have written $K^{(\nu)}:=\varphi\left(p^{r}\right) / \varphi\left(p^{r-\nu}\right)$. The assertion follows.
2.3.7. Corollary. - Let $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$. Then, for the local factor $\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)$, one has

$$
\begin{aligned}
& \tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)=\operatorname{det}\left(1-p^{-1} \operatorname{Frob}_{p} \mid \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)^{I_{p}}\right) \\
& \cdot \lim _{r \rightarrow \infty} \sum_{\nu_{0}, \ldots, \nu_{3}=0}^{r} \frac{z_{p^{3 \nu_{0}} a_{0}, \ldots, p^{3 \nu_{3} a_{3}}}^{(r)} \cdot \varphi\left(p^{r-\nu_{0}}\right) \cdot \ldots \cdot \varphi\left(p^{r-\nu_{3}}\right)}{p^{3 r} \cdot \varphi\left(p^{r}\right)^{4}} .
\end{aligned}
$$

Proof. [PT, Corollary 3.5] implies that

$$
\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)=\operatorname{det}\left(1-p^{-1} \operatorname{Frob}_{p} \mid \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)^{I_{p}}\right) \cdot \lim _{r \rightarrow \infty} \sum_{\nu_{0}, \ldots, \nu_{3}=0}^{r} \frac{\# N_{\nu_{0}, \ldots, \nu_{3} ; a_{0}, \ldots, a_{3}}^{(r)}}{p^{3 r}} .
$$

Lemma 2.3.6 yields the assertion.
2.3.8. Proposition. - Let $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$. Then, for each ε such that $0<\varepsilon<\frac{1}{3}$, one has

$$
\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \leq\left(1+\frac{1}{p}\right)^{7} \cdot 3\left(\frac{1}{1-\frac{1}{p^{1-3 \varepsilon}}}\right)\left(\frac{1}{1-\frac{1}{p^{\varepsilon}}}\right)^{3} \cdot\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)}\right)^{\frac{1-\varepsilon}{3}}\left(a_{3}^{(p)}\right)^{\varepsilon} .
$$

Proof. We use the formula from Corollary 2.3.7. The eigenvalues of the Frobenius on $\operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)^{I_{p}}$ are all roots of unity. Therefore, the first factor is at most $(1+1 / p)^{7}$. Further, by Lemma 2.3.4,

$$
\begin{aligned}
z_{p^{3 \nu_{0}} a_{0}, \ldots, p^{3 \nu_{3}} a_{3}}^{(r)} / p^{3 r} & \leq 3 \operatorname{gcd}_{p}\left(p^{3 \nu_{0}} a_{0}, \ldots, p^{3 \nu_{3}} a_{3}\right) \\
& =3 \operatorname{gcd}\left(p^{3 \nu_{0}} a_{0}^{(p)}, \ldots, p^{3 \nu_{3}} a_{3}^{(p)}\right)
\end{aligned}
$$

Writing $k_{i}:=\nu_{p}\left(a_{i}\right)=\nu_{p}\left(a_{i}^{(p)}\right)$, we see

$$
\begin{aligned}
z_{p^{3 \nu_{0} a_{0}}, \ldots, p^{3 \nu_{3} a_{3}}}^{(r)} / p^{3 r} & \leq 3 \operatorname{gcd}\left(p^{3 \nu_{0}+k_{0}}, \ldots, p^{3 \nu_{3}+k_{3}}\right) \\
& =3 p^{\min \left\{3 \nu_{0}+k_{0}, \ldots, 3 \nu_{3}+k_{3}\right\}}
\end{aligned}
$$

We estimate the minimum by a weighted arithmetic mean with weights $\frac{1-\varepsilon}{3}, \frac{1-\varepsilon}{3}$, $\frac{1-\varepsilon}{3}$, and ε,

$$
\left.\begin{array}{rl}
\min \left\{3 \nu_{0}+k_{0}, \ldots, 3 \nu_{3}+k_{3}\right\} \leq & \frac{1-\varepsilon}{3} \cdot\left(3 \nu_{0}+k_{0}\right)
\end{array}\right) \frac{1-\varepsilon}{3} \cdot\left(3 \nu_{1}+k_{1}\right), ~ \begin{aligned}
& +\frac{1-\varepsilon}{3} \cdot\left(3 \nu_{2}+k_{2}\right)+\varepsilon\left(3 \nu_{3}+k_{3}\right) \\
= & (1-\varepsilon)\left(\nu_{0}+\nu_{1}+\nu_{2}\right)+3 \varepsilon \nu_{3} \\
& +\frac{1-\varepsilon}{3}\left(k_{0}+k_{1}+k_{2}\right)+\varepsilon k_{3} .
\end{aligned}
$$

This shows

$$
\begin{aligned}
& z_{p^{3 \nu_{0}} a_{0}, \ldots, p^{3 \nu_{3}} a_{3}}^{(r)} / p^{3 r} \leq 3 p^{(1-\varepsilon)\left(\nu_{0}+\nu_{1}+\nu_{2}\right)+3 \varepsilon \nu_{3}+\frac{1-\varepsilon}{3}\left(k_{0}+k_{1}+k_{2}\right)+\varepsilon k_{3}} \\
&=3 p^{(1-\varepsilon)\left(\nu_{0}+\nu_{1}+\nu_{2}\right)+3 \varepsilon \nu_{3}} \cdot\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)}\right)^{\frac{1-\varepsilon}{3}} \\
&\left(a_{3}^{(p)}\right)^{\varepsilon} .
\end{aligned}
$$

We may therefore write

$$
\begin{aligned}
\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \leq & \left(1+\frac{1}{p}\right)^{7} \cdot 3\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)}\right)^{\frac{1-\varepsilon}{3}}\left(a_{3}^{(p)}\right)^{\varepsilon} \\
& \cdot \lim _{r \rightarrow \infty} \sum_{\nu_{0}, \ldots, \nu_{3}=0}^{r} \frac{p^{(1-\varepsilon)\left(\nu_{0}+\nu_{1}+\nu_{2}\right)+3 \varepsilon \nu_{3}} \cdot \varphi\left(p^{r-\nu_{0}}\right) \cdot \ldots \cdot \varphi\left(p^{r-\nu_{3}}\right)}{\varphi\left(p^{r}\right)^{4}} .
\end{aligned}
$$

Here, the term under the limit is precisely the product of three copies of the finite sum

$$
\sum_{\nu=0}^{r} \frac{p^{(1-\varepsilon) \nu} \cdot \varphi\left(p^{r-\nu}\right)}{\varphi\left(p^{r}\right)}=\sum_{\nu=0}^{r-1} \frac{1}{\left(p^{\varepsilon}\right)^{\nu}}+\frac{p}{p-1} \frac{1}{\left(p^{\varepsilon}\right)^{r}}
$$

and one copy of the finite sum

$$
\sum_{\nu=0}^{r} \frac{p^{3 \varepsilon \nu} \cdot \varphi\left(p^{r-\nu}\right)}{\varphi\left(p^{r}\right)}=\sum_{\nu=0}^{r-1} \frac{1}{\left(p^{1-3 \varepsilon}\right)^{\nu}}+\frac{p}{p-1} \frac{1}{\left(p^{1-3 \varepsilon}\right)^{r}} .
$$

For $r \rightarrow \infty$, geometric series do appear while the additional summands tend to zero.
2.3.9. Remark. - Unfortunately, the constants

$$
C_{p}^{(\varepsilon)}:=\left(1+\frac{1}{p}\right)^{7} \cdot 3\left(\frac{1}{1-\frac{1}{p^{1-3 \varepsilon}}}\right)\left(\frac{1}{1-\frac{1}{p^{\varepsilon}}}\right)^{3}
$$

have the property that the product $\prod_{p} C_{p}^{(\varepsilon)}$ diverges. On the other hand, we have at least that $C_{p}^{(\varepsilon)}$ is bounded for $p \rightarrow \infty$, say $C_{p}^{(\varepsilon)} \leq C^{(\varepsilon)}$.
2.3.10. Lemma. - Let $C>1$ be any constant. Then, for each $\varepsilon>0$, one has

$$
\prod_{\substack{p \text { prime } \\ p p x}} C \leq c \cdot x^{\varepsilon}
$$

for a suitable constant c (depending on ε).
Proof. This follows directly from [Na , Theorem 7.2] together with [Na , Section 7.1, Exercise 7].
2.3.11. Proposition. - For each ε such that $0<\varepsilon<\frac{1}{3}$, there exists a constant c such that

$$
\prod_{p \text { prime }} \tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \leq c \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{1}{3}-\frac{\varepsilon}{8}} \cdot \prod_{p \text { prime }} \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}^{\frac{1}{3}-\varepsilon}
$$

for all $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$.
Proof. The product over all primes of good reduction is bounded by virtue of Sublemma 2.3.12 below. It, therefore, remains to show that

$$
\prod_{\substack{p \text { prime } \\ p \mid 3 c_{0}, \ldots 3}} \tau_{a^{3}}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \leq c \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{1}{3}-\frac{\varepsilon}{8}} \cdot \prod_{p \text { prime }} \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}^{\frac{1}{3}-\varepsilon} .
$$

For this, by Proposition 2.3.8, we have at first

$$
\begin{aligned}
\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) & \leq C_{p}^{(\varepsilon)} \cdot\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)}\right)^{\frac{1}{3}-\frac{\varepsilon}{4}} \cdot\left(a_{3}^{(p)}\right)^{\frac{3}{4} \varepsilon} \\
& =C_{p}^{(\varepsilon)} \cdot\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)} a_{3}^{(p)}\right)^{\frac{1}{3}-\frac{\varepsilon}{4}} \cdot\left(a_{3}^{(p)}\right)^{-\frac{1}{3}+\varepsilon} .
\end{aligned}
$$

Here, the indices $0, \ldots, 3$ are interchangeable. Hence, it is even allowed to write

$$
\begin{aligned}
\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) & \leq C_{p}^{(\varepsilon)} \cdot\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)} a_{3}^{(p)}\right)^{\frac{1}{3}-\frac{\varepsilon}{4}} \cdot\left(\max _{i} a_{i}^{(p)}\right)^{-\frac{1}{3}+\varepsilon} \\
& =C_{p}^{(\varepsilon)} \cdot\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)} a_{3}^{(p)}\right)^{\frac{1}{3}-\frac{\varepsilon}{4}} \cdot \min _{i}\left\|a_{i}\right\|_{p}^{\frac{1}{3}-\varepsilon}
\end{aligned}
$$

Now, we multiply over all prime divisors of $a_{0} \cdot \ldots \cdot a_{3}$. Thereby, on the right hand side, we may twice write the product over all primes since the two rightmost factors are equal to one for $p \nmid 3 a_{0} \cdot \ldots \cdot a_{3}$, anyway.

$$
\begin{aligned}
\prod_{\substack{p \text { prime } \\
p \mid 3 a_{0} \ldots a_{3}}} \tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) & \leq \prod_{\substack{p \text { prime } \\
p \mid 3 a_{0} \ldots a_{3}}} C_{p}^{(\varepsilon)} \cdot \prod_{p \text { prime }}\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)} a_{3}^{(p)}\right)^{\frac{1}{3}-\frac{\varepsilon}{4}} \cdot \prod_{p \text { prime }} \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}^{\frac{1}{3}-\varepsilon} \\
& =\prod_{\substack{p \text { prime } \\
p \mid 3 a_{0} \ldots a_{3}}} C_{p}^{(\varepsilon)} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{1}{3}-\frac{\varepsilon}{4}} \cdot \prod_{p \text { prime }} \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}^{\frac{1}{3}-\varepsilon}
\end{aligned}
$$

when we observe that $\prod_{p} a^{(p)}=|a|$. Further, we have $C_{p}^{(\varepsilon)} \leq C^{(\varepsilon)}$ and, by Lemma 2.3.10,

$$
\prod_{\substack{p \text { prime } \\ p \mid a_{0} \ldots a_{3}}} C^{(\varepsilon)} \leq c \cdot\left|3 a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{8}}
$$

We finally estimate $3^{\frac{\varepsilon}{8}}$ by a constant. The assertion follows.
2.3.12. Sublemma. - There are two positive constants c_{1} and c_{2} such that, for all $a_{0}, \ldots, a_{3} \in \mathbb{Z} \backslash\{0\}$,

$$
c_{1}<\prod_{\substack{p \text { prime } \\ p \nmid\} a_{0} \ldots a_{3}}} \tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)<c_{2} .
$$

Proof. For a prime p of good reduction, Hensel's Lemma implies

$$
\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)=\operatorname{det}\left(1-p^{-1} \operatorname{Frob}_{p} \mid \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)\right) \cdot \frac{\# S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{F}_{p}\right)}{p^{2}}
$$

Further, for the number of points on a non-singular cubic surface over a finite field, the Lefschetz trace formula can be made completely explicit [Ma, Theorem 27.1]. It shows $\# S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{F}_{p}\right)=p^{2}+p \cdot \operatorname{tr}\left(\operatorname{Frob}_{p} \mid \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)\right)+1$.

Denoting the eigenvalues of the $\operatorname{Frobenius~on~} \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)$ by $\lambda_{1}, \ldots, \lambda_{7}$, we find

$$
\begin{aligned}
& \tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)=\left(1-\lambda_{1} p^{-1}\right)\left(1-\lambda_{2} p^{-1}\right) \cdot \ldots \cdot\left(1-\lambda_{7} p^{-1}\right) \\
& \cdot\left[1+\left(\lambda_{1}+\cdots+\lambda_{7}\right) p^{-1}+p^{-2}\right] \\
&=\left(1-\sigma_{1} p^{-1}+\sigma_{2} p^{-2} \mp \ldots-\sigma_{7} p^{-7}\right)\left(1+\sigma_{1} p^{-1}+p^{-2}\right) \\
&= 1+\left(1-\sigma_{1}^{2}+\sigma_{2}\right) p^{-2}-\left(\sigma_{1}-\sigma_{1} \sigma_{2}+\sigma_{3}\right) p^{-3} \pm \\
& \quad \pm \ldots-\left(\sigma_{5}-\sigma_{1} \sigma_{6}+\sigma_{7}\right) p^{-7}+\left(\sigma_{6}-\sigma_{1} \sigma_{7}\right) p^{-8}-\sigma_{7} p^{-9}
\end{aligned}
$$

where σ_{i} denote the elementary symmetric functions in $\lambda_{1}, \ldots, \lambda_{7}$.
We know $\left|\lambda_{i}\right|=1$ for all i. Estimating very roughly, we have $\left|\sigma_{j}\right| \leq\binom{ 7}{j} \leq 7^{j}$ and see

$$
\begin{aligned}
1-99 p^{-2}-7 \cdot 99 p^{-3}-\ldots-7^{7} \cdot 99 p^{-9} \leq & \tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \leq \\
& \leq 1+99 p^{-2}+7 \cdot 99 p^{-3}+\ldots+7^{7} \cdot 99 p^{-9} .
\end{aligned}
$$

I.e., $1-99 p^{-2} \frac{1}{1-7 / p}<\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)<1+99 p^{-2} \frac{1}{1-7 / p}$. The infinite product over all $1-99 p^{-2} \frac{1}{1-7 / p}$ (respectively $1+99 p^{-2} \frac{1}{1-7 / p}$) is convergent.

The left hand side is positive for $p>13$. For the small primes remaining, we need a better lower bound. For this, note that a cubic surface over a finite field \mathbb{F}_{p} always has at least one \mathbb{F}_{p}-rational point. This yields $\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \geq(1-1 / p)^{7} / p^{2}>0$.

2.4 An estimate for the factor at the infinite place

2.4.1. Fact. - Let $U \subset \mathbb{R}^{n+1}$ be an open subset and $X \subset U$ be a hypersurface defined by the equation $f=0$. Assume that $\frac{\partial f}{\partial x_{0}} \neq 0$ outside a zero set of X. Then, on $X, \omega_{\text {Leray }}$ is given by the differential form

$$
\frac{1}{\left|\frac{\partial f}{\partial x_{0}}\right|} d x_{1} \wedge \ldots \wedge d x_{n}
$$

Proof. Let $x \in X$ be a point such that $\frac{\partial f}{\partial x_{0}}(x) \neq 0$. The theorem on implicit functions yields an open neighbourhood O of x and a function $g: O \rightarrow \mathbb{R}$ such that $f\left(g\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)=0$. This means, near x, X is given by the parametrization $i:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(g\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)$. We immediately see $\partial g / \partial x_{i}=-\frac{\partial f}{\partial x_{i}} / \frac{\partial f}{\partial x_{0}}$.

The hypersurface measure on the image of i is classically given by

$$
\omega_{\mathrm{hyp}}=\left[\sqrt{1+\left(\partial g / \partial x_{1}\right)^{2}+\ldots+\left(\partial g / \partial x_{n}\right)^{2}} d x_{1} \wedge \ldots \wedge d x_{n}\right]
$$

which may be rewritten in the form $\omega_{\text {hyp }}=\left[\frac{|\operatorname{grad} f|}{\left|\frac{\partial f}{\partial x_{0}}\right|} d x_{1} \wedge \ldots \wedge d x_{n}\right]$. Recall that the Leray measure is defined by $\omega_{\text {Leray }}=\frac{1}{\mid \text { grad } f \mid} \omega_{\text {hyp }} \frac{\partial x_{0}}{}$
2.4.2. Corollary. - Let $a_{0}, \ldots, a_{3} \in \mathbb{R} \backslash\{0\}$. Then,

$$
\omega_{\text {Leray }}^{C S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R})}=\left[\frac{1}{3\left|a_{0}\right| x_{0}^{2}} d x_{1} \wedge d x_{2} \wedge d x_{3}\right] .
$$

Proof. We apply Fact 2.4 .1 to $U=\mathbb{R}^{4}$ and $f\left(x_{0}, \ldots, x_{3}\right):=a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}$. Note that $\left\{\left(x_{0}, \ldots, x_{3}\right) \in C S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R}) \mid x_{0}=0\right\}$ is a zero set according to the Leray measure as it is for the hypersurface measure.
2.4.3. Lemma. - Let $a_{0}, \ldots, a_{3} \in \mathbb{R} \backslash\{0\}$. Then,

$$
\tau_{\infty}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R})\right)=\frac{1}{2 \sqrt[3]{\left|a_{0} \cdot \ldots \cdot a_{3}\right|}} \int_{\left|x_{0}\right| \leq \sqrt[3]{\mid S_{0}(1, \ldots, \ldots, 1}(\mathbb{R})} \omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})} .
$$

Proof. According to the definition of $\tau_{\infty}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R})\right)$ and the corollary above, we need to show

$$
\frac{1}{6\left|a_{0}\right|} \int_{\substack{C S\left(a_{0}, \ldots, a_{3}\right)(\mathbb{R}) \\\left|x_{0}\right| \leq 1, \ldots,\left|x_{3}\right| \leq 1}} \frac{1}{x_{0}^{2}} d x_{1} \wedge d x_{2} \wedge d x_{3}=\frac{1}{6 \sqrt[3]{\left|a_{0} \cdot \ldots \cdot a_{3}\right|}} \int_{\substack{\left.C S^{(1,}, \ldots, 1\right) \\\left|X_{0}\right| \leq \sqrt[3]{\left|\mathbb{R}_{0}\right|}\left|, \ldots,\left|X_{3}\right| \leq \sqrt[3]{\left|a_{3}\right|}\right.}} \frac{1}{X_{2}^{2}} d X_{1} \wedge d X_{2} \wedge d X_{3} .
$$

For that, consider the linear mapping $l: C S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R}) \rightarrow C S^{(1, \ldots, 1)}(\mathbb{R})$ given by $\left(x_{0}, \ldots, x_{3}\right) \mapsto\left(\sqrt[3]{a_{0}} x_{0}, \ldots, \sqrt[3]{a_{3}} x_{3}\right)$. Then,

$$
l^{*}\left(\frac{1}{X_{0}^{2}} d X_{1} \wedge d X_{2} \wedge d X_{3}\right)=\frac{\sqrt[3]{a_{1} a_{2} a_{3}}}{a_{0}^{2 / 3}} \frac{1}{x_{0}^{2}} d x_{1} \wedge d x_{2} \wedge d x_{3}
$$

This immediately yields the assertion when we take into consideration that orientations are chosen in such a way that both integrals are positive.
2.4.4. Proposition. - For real numbers $0<b_{0} \leq b_{1} \leq b_{2} \leq b_{3}$, we have

$$
\int_{\substack{(1, \ldots, 1)(\mathbb{R}) \\ b_{0}, \ldots,\left|x_{3}\right| \leq b_{3}}} \omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})} \leq\left(64+\frac{64}{3} \log 3+\frac{1}{3} \sqrt[3]{3} \omega_{2}\right) b_{0}+64 b_{0} \log \frac{b_{1}}{b_{0}}
$$

where ω_{2} is the two-dimensional hypersurface measure of the l_{3}-unit sphere

$$
S^{2}:=\left\{\left.\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}| | x_{1}\right|^{3}+\left|x_{2}\right|^{3}+\left|x_{3}\right|^{3}=1\right\} .
$$

Proof. First step. We cover the domain of integration by 25 sets as follows. We put $R_{0}:=\left[-b_{0}, b_{0}\right]^{4} \cap C S^{(1, \ldots, 1)}(\mathbb{R})$. Further, for each $\sigma \in S_{4}$, we set

$$
\begin{equation*}
R_{\sigma}:=\left\{\left(x_{0}, \ldots, x_{3}\right) \in \mathbb{R}^{4}| | x_{\sigma(0)}\left|\leq \cdots \leq\left|x_{\sigma(3)}\right|,\left|x_{i}\right| \leq b_{i}, \text { and } b_{0} \leq\left|x_{\sigma(3)}\right|\right\}\right. \tag{R}
\end{equation*}
$$

Second step. One has $\int_{R_{\sigma}} \omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})} \leq \int_{R_{\mathrm{id}}} \omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})}$ for every $\sigma \in S_{4}$.
Consider the map $i_{\sigma}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ given by $\left(x_{0}, \ldots, x_{3}\right) \mapsto\left(x_{\sigma(0)}, \ldots, x_{\sigma(3)}\right)$. Since $C S^{(1, \ldots, 1)}(\mathbb{R})$ is defined by a symmetric cubic form, it is invariant under i_{σ}. We claim that

$$
i_{\sigma}\left(R_{\sigma}\right) \subseteq R_{\mathrm{id}}
$$

Indeed, let $\left(x_{0}, \ldots, x_{3}\right) \in R_{\sigma}$. Then, $i_{\sigma}\left(x_{0}, \ldots, x_{3}\right)=\left(x_{\sigma(0)}, \ldots, x_{\sigma(3)}\right)$ has the properties $\left|x_{\sigma(0)}\right| \leq \ldots \leq\left|x_{\sigma(3)}\right|$ and $b_{0} \leq\left|x_{\sigma(3)}\right|$. In order to show $i_{\sigma}\left(x_{0}, \ldots, x_{3}\right) \in R_{\mathrm{id}}$, all we need to verify is $\left|x_{\sigma(i)}\right| \leq b_{i}$ for $i=0, \ldots, 3$.

For this, we use that the b_{i} are sorted. We have $\left|x_{\sigma(3)}\right| \leq b_{\sigma(3)} \leq b_{3}$. Further, $\left|x_{\sigma(2)}\right| \leq b_{\sigma(2)}$ and $\left|x_{\sigma(2)}\right| \leq\left|x_{\sigma(3)}\right| \leq b_{\sigma(3)}$ one of which is at most equal to b_{2}. Similarly, $\left|x_{\sigma(1)}\right| \leq b_{\sigma(1)},\left|x_{\sigma(1)}\right| \leq\left|x_{\sigma(2)}\right| \leq b_{\sigma(2)}$, and $\left|x_{\sigma(1)}\right| \leq\left|x_{\sigma(3)}\right| \leq b_{\sigma(3)}$, the smallest of which is not larger than b_{1}. Finally, $\left|x_{\sigma(0)}\right| \leq b_{\sigma(0)},\left|x_{\sigma(0)}\right| \leq\left|x_{\sigma(1)}\right| \leq b_{\sigma(1)}$, $\left|x_{\sigma(0)}\right| \leq\left|x_{\sigma(2)}\right| \leq b_{\sigma(2)}$, and $\left|x_{\sigma(0)}\right| \leq\left|x_{\sigma(3)}\right| \leq b_{\sigma(3)}$. This shows $\left|x_{\sigma(0)}\right| \leq b_{0}$.

Since $x_{0}^{3}+\ldots+x_{3}^{3}$ is a symmetric form, the Leray measure on $C S^{(1, \ldots, 1)}(\mathbb{R})$ is invariant under the canonical operation of S_{4} on $C S^{(1, \ldots, 1)}(\mathbb{R}) \subset \mathbb{R}^{4}$. Therefore, we have $\left(i_{\sigma}\right)_{*} \omega_{\text {Leray }}^{C C^{(1, \ldots, 1)}(\mathbb{R})}=\omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})}$ for each $\sigma \in S_{4}$.

Altogether,

$$
\int_{R_{\sigma}} \omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})} \leq \int_{i_{\sigma}^{-1}\left(R_{\mathrm{id}}\right)} \omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})}=\int_{R_{\mathrm{id}}}\left(i_{\sigma}\right)_{*} \omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})}=\int_{R_{\mathrm{id}}} \omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})}
$$

Third step. We have $\int_{R_{0}} \omega_{\text {Leray }}^{C C^{(1, \ldots, 1)}(\mathbb{R})} \leq \frac{1}{3} \sqrt[3]{3} \omega_{2} b_{0}$.
By virtue of Corollary 2.4.2, we have

$$
\begin{aligned}
\int_{R_{0}} \omega_{\text {Leray }}^{C C^{(1, \ldots, 1)}(\mathbb{R})} & =\frac{1}{3} \int_{R_{0}} \frac{1}{x_{3}^{2}} d x_{0} \wedge d x_{1} \wedge d x_{2} \\
& =\frac{1}{3} \iiint_{\pi\left(R_{0}\right)} \frac{1}{\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)^{2 / 3}} d x_{0} d x_{1} d x_{2}
\end{aligned}
$$

where $\pi: C S^{(1, \ldots, 1)}(\mathbb{R}) \rightarrow \mathbb{R}^{3},\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{0}, x_{1}, x_{2}\right)$, denotes the projection to the first three coordinates.

We enlarge the domain of integration to

$$
R^{\prime}:=\left\{\left.\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}| | x_{0}\right|^{3}+\left|x_{1}\right|^{3}+\left|x_{2}\right|^{3} \leq 3 b_{0}^{3}\right\} .
$$

Then, by homogeneity, we see

$$
\iiint_{R^{\prime}} \frac{1}{\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)^{2 / 3}} d x_{0} d x_{1} d x_{2}=\omega_{2} \cdot \int_{0}^{\sqrt[3]{3} b_{0}} \frac{1}{r^{2}} \cdot r^{2} d r=\omega_{2} \cdot \sqrt[3]{3} b_{0}
$$

Fourth step. We have $\int_{R_{\mathrm{id}}} \omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})} \leq\left(\frac{8}{3}+\frac{8}{9} \log 3\right) b_{0}+\frac{8}{3} b_{0} \log \frac{b_{1}}{b_{0}}$.
Observe $\left|x_{3}\right|=\left|\sqrt[3]{x_{0}^{3}+x_{1}^{3}+x_{2}^{3}}\right| \leq \sqrt[3]{\left|x_{0}\right|^{3}+\left|x_{1}\right|^{3}+\left|x_{2}\right|^{3}}$. For $\left(x_{0}, \ldots, x_{3}\right) \in R_{\mathrm{id}}$, this implies $\left|x_{3}\right| \leq \sqrt[3]{3}\left|x_{2}\right|$ and $\left|x_{2}\right| \geq b_{0} / \sqrt[3]{3}$. We find

$$
\begin{aligned}
& \int_{R_{\mathrm{id}}} \omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})}=\frac{1}{3} \int_{R_{\mathrm{id}}} \frac{1}{x_{3}^{2}} d x_{0} \wedge d x_{1} \wedge d x_{2} \\
& \leq \frac{1}{3} \int_{R_{\mathrm{id}}} \frac{1}{x_{2}^{2}} d x_{0} \wedge d x_{1} \wedge d x_{2} \\
& <\frac{1}{3} \int_{\substack{-b_{0} \\
b_{0}}}^{b_{0}} \int_{\left|x_{1}\right| \in\left[\left|x x_{0}\right|, b_{1}\right]} \int_{\substack{\left|x_{2}\right| \geq b_{0} / \sqrt[3]{3} \\
\left|x_{2}\right| \geq\left|x_{1}\right|}} \frac{1}{x_{2}^{2}} d x_{2} d x_{1} d x_{0} \\
& \leq \frac{1}{3} \int_{-b_{0}}^{b_{0}} \int_{\left.\left|x_{1}\right| \in| | x_{0} \mid, b_{1}\right]} \frac{2}{\max \left\{b_{0} / \sqrt[3]{3},\left|x_{1}\right|\right\}} d x_{1} d x_{0} \\
& \leq \frac{2}{3}\left[\int_{-b_{0}}^{b_{0}} \int_{\left|x_{1}\right| \in\left[\left|x_{0}\right|, b_{0} / \sqrt[3]{3}\right]} \frac{\sqrt[3]{3}}{b_{0}} d x_{1} d x_{0}+\int_{-b_{0}}^{b_{0}} \int_{\left|x_{1}\right| \in\left[b_{0} / \sqrt[3]{3}, b_{1}\right]} \frac{1}{\left|x_{1}\right|} d x_{1} d x_{0}\right] \\
& \leq \frac{2}{3} \cdot \frac{4 b_{0}^{2}}{\sqrt[3]{3}} \cdot \frac{\sqrt[3]{3}}{b_{0}}+\frac{2}{3} \int_{-b_{0}}^{b_{0}} 2 \log \frac{\sqrt[3]{3} b_{1}}{b_{0}} d x_{0} \\
& =\frac{8}{3} b_{0}+\frac{8}{3} b_{0} \log \frac{\sqrt[3]{3} b_{1}}{b_{0}} \\
& =\left(\frac{8}{3}+\frac{8}{9} \log 3\right) b_{0}+\frac{8}{3} b_{0} \log \frac{b_{1}}{b_{0}} \text {. }
\end{aligned}
$$

2.4.5. Corollary. - For every $\varepsilon>0$, there exists a constant c such that

$$
\tau_{\infty}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R})\right) \leq c \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\frac{1}{3}+\varepsilon} \cdot \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{\infty}^{\frac{1}{3}}
$$

for each $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$.
Proof. We assume without restriction that $\left|a_{0}\right| \leq \ldots \leq\left|a_{3}\right|$. Then, Lemma 2.4.3 and Proposition 2.4.4 together show that, for certain explicit positive constants c_{1} and c_{2},

$$
\begin{aligned}
\tau_{\infty}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R})\right) & \leq\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\frac{1}{3}} \cdot\left(c_{1}\left|a_{0}\right|^{\frac{1}{3}}+c_{2}\left|a_{0}\right|^{\frac{1}{3}} \log \sqrt[3]{\frac{\left|a_{1}\right|}{\left|a_{0}\right|}}\right) \\
& =\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\frac{1}{3}} \cdot\left|a_{0}\right|^{\frac{1}{3}}\left(c_{1}+\frac{1}{3} c_{2} \log \frac{\left|a_{1}\right|}{\left|a_{0}\right|}\right) \\
& \leq\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\frac{1}{3}} \cdot \min _{i=0, \ldots, 3} \|\left. a_{i}\right|^{\frac{1}{3}} \cdot\left(c_{1}+\frac{1}{3} c_{2} \log \left|a_{0} \cdot \ldots \cdot a_{3}\right|\right)
\end{aligned}
$$

There is a constant c such that $c_{1}+\frac{1}{3} c_{2} \log \left|a_{0} \cdot \ldots \cdot a_{3}\right| \leq c\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon}$ for every $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$.

2.5 The Tamagawa number

2.5.1. Proposition. - For every $\varepsilon>0$, there exists a constant $C>0$ such that

$$
\frac{1}{\tau^{\left(a_{0}, \ldots, a_{3}\right)}} \geq C \cdot \frac{\mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon}}
$$

for each $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$.
Proof. We may assume that ε is small, say $\varepsilon<\frac{2}{3}$. Then, immediately from the definition of $\tau^{\left(a_{0}, \ldots, a_{3}\right)}$, we have

$$
\begin{aligned}
& \tau^{\left(a_{0}, \ldots, a_{3}\right)} \\
= & \alpha\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right) \cdot \beta\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right) \cdot \lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S_{\bar{\Omega}}^{\left(a_{0}, \ldots, a_{3}\right)}\right)}\right) \cdot \tau_{H}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{A}_{\mathbb{Q}}\right)^{\operatorname{Br}}\right) \\
\leq & \alpha\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right) \cdot \beta\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right) \cdot \lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S_{\bar{\Omega}}^{\left(a_{0}, \ldots, a_{3}\right)}\right)}\right) \cdot \tau_{H}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{A}_{\mathbb{Q}}\right)\right) \\
= & \alpha\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right) \cdot \beta\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right) \cdot \lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S_{\mathbb{Q}}^{\left(a_{0}, \ldots, a_{3}\right)}\right)}\right) \cdot \prod_{\nu \in \operatorname{Val}(\mathbb{Q})} \tau_{\nu}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{\nu}\right)\right) .
\end{aligned}
$$

Let us collect estimates for the factors. First, by Proposition 2.2.4, we have

$$
\lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S_{\overline{\mathfrak{a}}}^{\left(a_{0}, \ldots, a_{3}\right)}\right)}\right)<c_{1} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{16}}
$$

for a certain constant c_{1}. Further, Proposition 2.3.11 yields

$$
\prod_{p \text { prime }} \tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \leq c_{2} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{1}{3}-\frac{\varepsilon}{16}} \cdot \prod_{p \text { prime }} \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}^{\frac{1}{3}-\frac{\varepsilon}{2}} .
$$

Finally, Corollary 2.4.5 shows

$$
\tau_{\infty}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R})\right) \leq c \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\frac{1}{3}+\frac{\varepsilon}{2}} \cdot \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{\infty}^{\frac{1}{3}}
$$

We assert that the three inequalities together imply the following estimate for Peyre's constant $\tau^{\left(a_{0}, \ldots, a_{3}\right)}=\tau\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right)$,
$\tau^{\left(a_{0}, \ldots, a_{3}\right)} \leq c_{3} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{2}} \cdot \prod_{p \text { prime }} \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}^{\frac{1}{3}} \cdot \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{\infty}^{\frac{1}{3}} \cdot \prod_{p \text { prime }}\left[\min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}\right]^{-\frac{\varepsilon}{2}}$.
Indeed, this is trivial in the case $\tau^{\left(a_{0}, \ldots, a_{3}\right)}=0$. Otherwise, $S^{\left(a_{0}, \ldots, a_{3}\right)}$ has an adelic point. Lemmas 2.5 and 2.3 show that we may estimate the factors α and β
by constants. By consequence,

$$
\begin{aligned}
\frac{1}{\tau^{\left(a_{0}, \ldots, a_{3}\right)}} & \geq \frac{1}{c_{3}} \cdot \frac{\prod_{p \text { prime }}\left[\min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}\right]^{-\frac{1}{3}} \cdot\left[\min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{\infty}\right]^{-\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{2}} \cdot \prod_{p \text { prime }}\left[\min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}\right]^{-\frac{\varepsilon}{2}}} \\
& =\frac{1}{c_{3}} \cdot \frac{\prod_{p \text { prime }} \max _{i=0, \ldots, 3}\left\|\frac{1}{a_{i}}\right\|_{p}^{\frac{1}{3}} \cdot \max _{i=0, \ldots, 3}\left\|\frac{1}{a_{i}}\right\|_{\infty}^{\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{2}} \cdot \prod_{p \text { prime }}\left[\max _{i=0, \ldots, 3} a_{i}^{(p)}\right]^{\frac{\varepsilon}{2}}} \\
& =\frac{1}{c_{3}} \cdot \frac{\mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{2}} \cdot \prod_{p \text { prime }}\left[\max _{i=0, \ldots, 3} a_{i}^{(p)}\right]^{\frac{\varepsilon}{2}}}
\end{aligned}
$$

It is obvious that $\max _{i=0, \ldots, 3} a_{i}^{(p)} \leq\left|a_{0}^{(p)} \cdot \ldots \cdot a_{3}^{(p)}\right|$ and $\prod_{p \text { prime }}\left|a_{0}^{(p)} \cdot \ldots \cdot a_{3}^{(p)}\right|=\left|a_{0} \cdot \ldots \cdot a_{3}\right|$.
This shows

$$
\begin{aligned}
\frac{1}{\tau^{\left(a_{0}, \ldots, a_{3}\right)}} & \geq \frac{1}{c_{3}} \cdot \frac{\mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{2}} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{2}}} \\
& =\frac{1}{c_{3}} \cdot \frac{\mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon}} .
\end{aligned}
$$

2.5.2. Lemma. - Let $\left(a_{0}: \ldots: a_{3}\right) \in \mathbf{P}^{3}(\mathbb{Q})$ be any point such that $a_{0} \neq 0, \ldots, a_{3} \neq 0$. Then,

$$
\mathrm{H}_{\text {naive }}\left(a_{0}: \ldots: a_{3}\right) \leq \mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{3} .
$$

Proof. First, observe that $\left(a_{0}: \ldots: a_{3}\right) \mapsto\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)$ is a welldefined map. Hence, we may assume without restriction that $a_{0}, \ldots, a_{3} \in \mathbb{Z}$ and $\operatorname{gcd}\left(a_{0}, \ldots, a_{3}\right)=1$. This yields $\mathrm{H}_{\text {naive }}\left(a_{0}: \ldots: a_{3}\right)=\max _{i=0, \ldots,}\left|a_{i}\right|$.

On the other hand, $\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)=\left(a_{1} a_{2} a_{3}: \ldots: a_{0}^{i=0, \ldots a_{1} a_{2}}\right)$. Consequently,

$$
\mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right) \leq\left[\max _{i=0, \ldots, 3}\left|a_{i}\right|\right]^{3}=\mathrm{H}_{\text {naive }}\left(a_{0}: \ldots: a_{3}\right)^{3} .
$$

From this, the asserted inequality emerges when the roles of a_{i} and $\frac{1}{a_{i}}$ are interchanged.
2.5.3. Corollary. - Let $a_{0}, \ldots, a_{3} \in \mathbb{Z}$ such that $\operatorname{gcd}\left(a_{0}, \ldots, a_{3}\right)=1$. Then,

$$
\left|a_{0} \cdot \ldots \cdot a_{3}\right| \leq \mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{12} .
$$

Proof. Observe that $\left|a_{0} \cdot \ldots \cdot a_{3}\right| \leq \max _{i=0, \ldots, 3}\left|a_{i}\right|^{4}=H_{\text {naive }}\left(a_{0}: \ldots: a_{3}\right)^{4}$ and apply Lemma 2.5.2.
2.5.4. Theorem. - For each $\varepsilon>0$, there exists a constant $C(\varepsilon)>0$ such that, for all $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$,

$$
\frac{1}{\tau^{\left(a_{0}, \ldots, a_{3}\right)}} \geq C(\varepsilon) \cdot \mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}-\varepsilon} .
$$

Proof. We may assume that $\operatorname{gcd}\left(a_{0}, \ldots, a_{3}\right)=1$. Then, by Proposition 2.5.1,

$$
\frac{1}{\tau^{\left(a_{0}, \ldots, a_{3}\right)}} \geq C(\varepsilon) \cdot \frac{\mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{3}{12}}}
$$

Corollary 2.5.3 yields $\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{12}} \leq \mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\varepsilon}$.
2.5.5. Corollary (Fundamental finiteness). - For each $T>0$, there are only finitely many diagonal cubic surfaces $S^{\left(a_{0}, \ldots, a_{3}\right)}: a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0$ in $\mathbf{P}_{\mathbb{Q}}^{3}$ such that $\tau^{\left(a_{0}, \ldots, a_{3}\right)}>T$.
Proof. This is an immediate consequence of the comparison to the naive height established in Theorem 2.5.4.

References

[EJ] Elsenhans, A.-S. and Jahnel, J.: On the smallest point on a diagonal quartic threefold, J. Ramanujan Math. Soc. 22 (2007), 189-204
[KT] Kresch, A. and Tschinkel, Y.: Effectivity of Brauer-Manin obstructions, Adv. Math. 218 (2008), 1-27
[Ma] Manin, Yu. I.: Cubic forms, North-Holland Publishing Co. and American Elsevier Publishing Co., Amsterdam-London and New York 1974
[Mc] Marcus, D. A.: Number fields, Springer, New York-Heidelberg 1977
[Mu] Murty, M. R.: Applications of symmetric power L-functions, in: Lectures on automorphic L-functions, Fields Inst. Monogr. 20, Amer. Math. Soc., Providence 2004, 203-283
[Na] Nathanson, M. B.: Elementary methods in number theory, Graduate Texts in Mathematics 195, Springer, New York 2000
[Ne] Neukirch, J.: Algebraic number theory, Grundlehren der Mathematischen Wissenschaften 322, Springer, Berlin 1999
[Pe] Peyre, E.: Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995), 101-218
[PT] Peyre, E. and Tschinkel, Y.: Tamagawa numbers of diagonal cubic surfaces, numerical evidence, Math. Comp. 70 (2001), 367-387
[Si] Siegel, C. L.: Abschätzung von Einheiten, Nachr. Akad. Wiss. Göttingen, Math.Phys. Kl. II 1969 (1969), 71-86
[St] Stark, H. M.: Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152

[^0]: Key words and phrases. Diagonal cubic surface, Diophantine equation, E. Peyre's Tamagawatype number

