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The constructive membership problem for
discrete free subgroups of rank 2 of SL2(R)

B. Eick, M. Kirschmer and C. Leedham-Green

Abstract

We exhibit a practical algorithm to solve the constructive membership problem for discrete free
subgroups of rank 2 in PSL2(R) or SL2(R). This algorithm, together with methods to check if
a two-generator subgroup of PSL2(R) or SL2(R) is discrete and free, have been implemented in
Magma for groups defined over real algebraic number fields. A report on this implementation is
included.

1. Introduction

The Tits alternative asserts that a finitely generated subgroup G of GLn(K) for a field K
is either solvable-by-finite or contains a non-cyclic free subgroup. Algorithms to decide the
Tits alternative over the rational field Q have been described by Beals [3], Ostheimer [15]
and Assmann & Eick [1]. An algorithm for arbitrary fields has been introduced by Detinko,
Flannery & O’Brien [8].

The case that the matrix group G is solvable-by-finite is considered to be the ‘tame’ case. In
this case, further structural investigations of the group G are possible, see for example [1] and
[8]. The case that the matrix group G contains a non-cyclic free subgroup is considered to be
the ‘wild’ case. In this case there seem hardly any methods available to investigate the structure
of G further. In particular, there is no algorithm available to construct explicit generators of a
non-cyclic free subgroup of G in general.

An important general problem in algorithmic group theory is the so-called constructive
membership problem. The problem is solved for a group H by an algorithm that takes as input
a subgroup G of H, given by a finite generating set {g1, . . . , gm}, and an element g of H, and
returns a word in {g1, . . . , gm} that evaluates to g if g lies in G, and returns false otherwise.
In the ‘tame’ case that G is solvable-by-finite, there is some hope that the structure of G can
be used to solve the constructive membership problem, see [1] for a special case and [7] for a
discussion of the problem. In the ‘wild’ case that G contains a non-cyclic free subgroup, there
is no general method available to solve this problem. In fact, Michailova [14, page 42] showed
that this problem is undecidable in general.

Here, we first show how the constructive membership problem can be solved for a free group
acting on a topological space provided that a certain special type of fundamental domain for
the group is available, see Theorem 2.1 and Algorithm 1. We then show how this can be used
to solve the constructive membership problem for discrete free two-generator subgroups of
PSL2(R) or SL2(R) using the action of these groups via Möbius transformations. This extends
the work on PSL2(R) by Purzitsky [16, 17], see Section 4.

In Algorithm 2 we give a method of deciding whether a given two-generator subgroup G of
SL2(R) or PSL2(R) is discrete and free. This algorithm is implicitly contained in Kern-Isberner
and Rosenberger [19], [12]. If the group G is discrete and free, then this algorithm produces as a
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side-product a special generating set for G which will underpin our solution to the constructive
membership problem.

Our paper includes a report on an implementation in Magma [5] of our methods for
subgroups G of SL2(K) for real algebraic number fields K.

Acknowledgements. The authors would like to thank Gerhard Rosenberger and Norman
Purzitsky for helpful discussions.

2. The constructive membership problem

Let G be a group acting on a topological space X. For Y ⊆ X let Yo denote the interior of Y
and let Yc denote the closure of Y. Further, a subset F of X is called a fundamental domain for
G if the following two conditions are satisfied: (1) for each x ∈ X there exists some g ∈ G so
that g · x ∈ Fc, and (2) if z ∈ Fo and g ∈ G \ {1}, then g · z 6∈ Fc. The following theorem and
its attached algorithm show how the constructive membership problem can be solved for free
groups acting on a topological space with a special type of fundamental domain.

Theorem 2.1. Let G = 〈g1, . . . , gm〉 act on the topological space X. Suppose that there
exist pairwise disjoint subsets X+

1 , . . . ,X+
m,X

−
1 , . . . ,X−m of X so that

(a) gi · (X \ (X+
i )o) ⊆ X−i and g−1i · (X \ (X−i )o) ⊆ X+

i for 1 ≤ i ≤ m, and
(b) F = X \ (X+

1 ∪ . . . ∪ X+
m ∪ X−1 ∪ . . . ∪ X−m) is a fundamental domain for G with Fo 6= ∅.

Then G is free on {g1, . . . , gm} and the constructive membership problem can be solved by the
following algorithm.

Algorithm 1. (ConstructiveMembership)
Let H be a group that acts on a topological space X.
Input: Generators g1, . . . , gm for a subgroup G of H, sets X+

i ⊂ X and X−i ⊂ X for 1 ≤ i ≤ m
satisfying the conditions of Theorem 2.1, some point z′ ∈ Fo and an element g ∈ H.
Output: A word w = w(f1, . . . , fm) with w(g1, . . . , gm) = g if g is an element of G and false
otherwise; here f1, . . . , fm are abstract elements generating a free group F .

(1) Initialize w = 1 ∈ F and let z = g · z′.
(2) While z /∈ Fc do

(a) If z ∈ X+
i for some i ∈ {1, . . . ,m}, then replace z by gi · z and w by wf−1i .

(b) If z ∈ X−i for some i ∈ {1, . . . ,m}, then replace z by g−1i · z and w by wfi.
(3) Evaluate v = w(g1, . . . , gm).
(4) If z = z′ and v = g then return w; otherwise return false.

Proof. We first observe that G is free. Suppose g = genin . . . g
e2
i2
ge1i1 where n ≥ 1, ej 6= 0 and

ij ∈ {1, . . . ,m} for 1 ≤ j ≤ n such that ij 6= ij+1 for 1 ≤ j < n. Let z ∈ Fo. By induction on
n, we have g · z ∈ X+

in
∪ X−in . Thus g · z 6= z ∈ Fo and therefore g 6= 1. In fact, this part of the

proof is a version of the well-known Ping-Pong Lemma.
We now consider Algorithm 1 and show as a first step that this always terminates. By the

definition of a fundamental domain, there exists a minimal reduced word W in the free group
F whose evaluation V = W (g1, . . . , gm) satisfies V · z ∈ Fc. Suppose that W ends with gi.
Then z ∈ V −1 · Fc ⊆ X+

i and hence the algorithm would set w = f−1i during the first iteration
and replace z by gi · z. Similarly, if W ends with g−1i , then z ∈ V −1 · Fc ⊆ X−i and hence the
algorithm would set w = fi during the first iteration and replace z by g−1i · z. By induction on
the length of W , it follows that the while loop in Step (2) of the algorithm terminates after
finitely many iterations.
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Next we show that Algorithm 1 produces the desired output. First assume that the algorithm
terminates with z = z′ and v = g. Then g = w(g1, . . . , gn) ∈ G and the algorithm produces the
correct output in this case. Conversely, if g ∈ G, then g has to respect the fundamental domain
F and thus z = z′ and v = g follows. Hence if the algorithm returns false, then g 6∈ G.

Remark 2.2. Write the word w determined by Algorithm 1 as w = ge1i1 · · · g
er
ir

with ei ∈ Z.
Then Algorithm 1 determines w in e1 + . . .+ er steps. The performance of the algorithm can
be improved significantly if each syllable g

ej
ij

can be determined in one step instead of in ej
steps. In our later applications we exhibit some improvements of this type.

3. Möbius transformations and GL2(R)

In this section we recall various well-known results on GL2(R) and its geometry. For background
and details we refer to the book by Beardon [4].

The elements of GL2(R) act via Möbius transformations on the extended complex plane
Ĉ = C ∪ {∞}. More precisely:

M =

(
a b
c d

)
acts as µ : Ĉ→ Ĉ : z 7→M · z :=

az + b

cz + d

with µ(∞) =∞ if c = 0, and µ(∞) = a/c and µ(−d/c) =∞ if c 6= 0. This action induces a
group homomorphism

ϕ : GL2(R)→ Aut(Ĉ)

whose kernel is K = {aI | a ∈ R, a 6= 0}. Hence ϕ also induces an action of PGL2(R) =
GL2(R)/K on Ĉ.

The cross-ratio of a quadruple (x1, . . . , x4) of pairwise distinct elements in C is

cross(x1, x2, x3, x4) =
(x1 − x3)(x2 − x4)

(x2 − x3)(x1 − x4)
.

By continuity, this definition can be extended to the case where one of the xi equals ∞.
The following lemma asserts that the cross-ratio is invariant under the action of Möbius
transformations.

Lemma 3.1.
(a) Let (x1, x2, x3, x4) be a quadruple of pairwise distinct elements in Ĉ and M ∈ GL2(R).

Then cross(x1, x2, x3, x4) = cross(M · x1,M · x2,M · x3,M · x4).
(b) Given triples (x1, x2, x3) and (y1, y2, y3) of pairwise distinct elements in R̂ := R ∪ {∞},

there exists an element M ∈ GL2(R) such that M · xi = yi for i = 1, 2, 3.

Proof. For a proof of part (a) see for example [4, Section 4.4]. For part (b), note that the

Möbius transformation f : z 7→ (z−x1)(x2−x3)
(z−x3)(x2−x1)

maps x1, x2, x3 to 0, 1,∞ respectively. Similarly,

we find a transformation g that maps y1, y2, y3 to 0, 1,∞. Hence M ∈ GL2(R) with Möbius
transformation µ : z 7→ g−1(f(z)) has the desired form.

We consider in more detail the subgroup SL2(R) of GL2(R). Traces of products and
commutators [M,N ] = MNM−1N−1 of elements in SL2(R) play an important role throughout
this paper. We note the following.

Lemma 3.2. Let M and N be elements of SL2(R). Then
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(a) tr(M)tr(N) = tr(MN) + tr(MN−1) = tr(MN) + tr(M−1N).
(b) tr[M,N ] = tr(M)2 + tr(N)2 + tr(MN)2 − tr(M)tr(N)tr(MN)− 2.

Recall that an element M ∈ SL2(R) is

(a) elliptic if tr(M)2 ∈ [0, 4),
(b) parabolic if tr(M)2 = 4,
(c) hyperbolic if tr(M)2 ∈ (4,∞).

These properties can also be characterized by the number of fixed points on R̂. A non-trivial
element of SL2(R)is elliptic if it has no fixed point on R̂, it is parabolic if it has only one fixed
point on R̂ and it is hyperbolic if it has two fixed points on R̂.

As observed in [4, Page 78], the group SL2(R) is a topological group with respect to the
metric d on SL2(R) defined by d(M,N) = ||M −N ||, where ||M || =

√
tr(MM t). A subgroup

G of SL2(R) is said to be discrete if G is discrete with respect to this topology. In other words,
a subgroup G of SL2(R) is discrete if inf{||M − I|| |M ∈ G,M 6= ±I} 6= 0. The following
theorem recalls some elementary facts about discrete groups.

Theorem 3.3. Let G ≤ SL2(R).

(a) If G contains an elliptic element of infinite order, then G is not discrete.
(b) If G contains no elliptic elements, then G is elementary or discrete.

Proof. See [11], Theorem 2.4.5 and Theorem 2.2.3.

A subgroupG of SL2(R) in which tr[M,N ] = 2 holds for every pairM,N ∈ G of infinite order
is called elementary. The following lemma shows that two-generator elementary subgroups of
SL2(R) are solvable.

Lemma 3.4.

(a) Two elementsM,N ∈ SL2(R) have a common fixed point in Ĉ if and only if tr[M,N ] = 2
holds.

(b) Let G = 〈M,N〉 ≤ SL2(R) with tr[M,N ] = 2. Then G is solvable, and tr[S, T ] = 2 holds
for every pair S, T ∈ G.

Proof. (a) See for example [4, Theorem 4.3.5].
(b) If tr[M,N ] = 2, then M and N have a common fixed point in Ĉ by (a). As M and N
generate G, it follows that this fixed point is fixed by every element in G. We conjugate G so
that this fixed point is∞. This conjugates G into the subgroup of upper triangular matrices U
in SL2(C). As U is solvable, it follows that G is solvable. Further, G′ consists of unitriangular
elements and hence each element in G′ has trace 2.

As a final point in this introductory section, we introduce some notation that we use
throughout. Consider the natural homomorphism SL2(R)→ PSL2(R) with kernel {±I}. Then
for M ∈ SL2(R) or G ≤ SL2(R) we denote with M or G, respectively, their images under
this natural homomorphism. Thus each element M ∈ PSL2(R) has exactly two preimages in
SL2(R), namely M and −M . Let H be a subgroup of PSL2(R). Then H is said to be discrete
if the preimage of H under the natural homomorphism SL2(R)→ PSL2(R) is discrete.



THE MEMBERSHIP PROBLEM FOR LINEAR GROUPS Page 5 of 16

4. Deciding if a two-generator subgroup of SL2(R) is discrete and free

Suppose that we are given two matrices A,B ∈ SL2(R) and denote G = 〈A,B〉. Our aim
in this section is to describe a practical method to check whether G is discrete and free of
rank 2. If this is the case, then G is free on {A,B} as well as on any other generating set
with 2 elements (see [13, Proposition 2.7]). The following preliminary remark asserts that this
problem for subgroups of SL2(R) is equivalent to the corresponding problem for PSL2(R).

Lemma 4.1. Let G ≤ SL2(R) be a two-generator group with image G ≤ PSL2(R). Then G
is discrete and free of rank 2 if and only if G is free and discrete of rank 2.

Proof. Clearly G is discrete if and only if G is discrete by the definition of discreteness. Let
ϕ : G→ G be the natural epimorphism. If G is free, then it contains no element of finite order.
Conversely, if G is free, then there is a homomorphism G→ G which maps A and B to A and
B respectively. Thus, in both cases, ϕ is one to one.

Definition 4.2. An elementary Nielsen transformation takes as input a finite tuple
(g1, g2, . . . , gn) of elements in some group and outputs the tuple after performing one of the
following operations on it.

– Interchange gi and gj for some i 6= j.
– Replace gi by g−1i .
– Replace gi by gig

−1
j for some i 6= j.

A Nielsen transformation is a finite product of elementary Nielsen transformations.

Lemma 4.3. Let G = 〈A,B〉 be a subgroup of SL2(R) which is discrete and free of rank
2. If U, V ∈ SL2(R) such that G = 〈U, V 〉 then tr[U, V ] = tr[A,B]. In particular, tr[A,B] is an
invariant of G and does not depend on the generators (A,B).

Proof. The group G is free by Lemma 4.1. Hence there exists some Nielsen transformation
t such that (A,B) = t(U, V ) (see [13, Proposition 4.1]). Thus (rA, sB) = t(U, V ) for some
r, s ∈ {±1}. The result now follows from tr[A,B] = tr[rA, sB] and the fact that Nielsen
transformations preserve traces of commutators.

The following theorem provides the basis for our algorithm to determine whether a two-
generator subgroup of SL2(R) is discrete and free.

Theorem 4.4. Let A,B ∈ SL2(R) and let G = 〈A,B〉.
(a) If G is discrete and free of rank 2, then |tr(M)| ≥ 2 for all M ∈ G.
(b) Suppose that |tr(A)| ≥ 2 and |tr(B)| ≥ 2.

(i) If tr[A,B] = 2, then G is solvable.
(ii) If tr[A,B] ∈ (−2, 2), then G is not free of rank 2 or not discrete.

(iii) If tr[A,B] ≤ −2, then G is discrete and free of rank 2.
(iv) If tr[A,B] > 2, then G is discrete and free of rank 2 if and only if there exist

U, V ∈ SL2(R) with G = 〈U, V 〉 and tr(U) ≥ 2 and tr(V ) ≥ 2 and tr(UV −1) ≤ −2.
(v) If tr[A,B] > 2, then G is discrete and free of rank 2 if and only if there exist

U, V ∈ SL2(R) with G = 〈U, V 〉 and 2 ≤ tr(U) ≤ tr(V ) ≤ −tr(UV −1).
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Proof. (a) If M ∈ G and |tr(M)| < 2 then either M is a non-trivial element of finite order
and thus G is not free or M has infinite order and G is not discrete by Theorem 3.3(a).
(bi) follows from Lemma 3.4.
(bii) is an immediate consequence of (a).
(biii) and (biv) are covered by [19, Satz 1].
(bv) If a pair (U, V ) as in (bv) is given, then this satisfies the condition of (biv). Conversely, if
a pair (U, V ) as in (biv) is given, then it is not difficult to construct a pair (U ′, V ′) as needed
for (bv). After exchanging U and V we may assume that tr(U) ≤ tr(V ). Thus if −tr(UV −1) ≥
tr(V ) we can simply choose U ′ = U and V ′ = V . Otherwise set U ′ = U and V ′ = −UV −1.
Then −tr(U ′V ′−1) = tr(V ) ≥ tr(V ′). Hence after exchanging U ′ and V ′ if necessary, the traces
satisfy 2 ≤ tr(U ′) ≤ tr(V ′) ≤ −tr(U ′V ′−1).

Definition 4.5. Let G = 〈A,B〉 ≤ SL2(R) and suppose that G is discrete and free of rank
2. We call a pair of matrices (U, V ) in SL2(R) a witness pair for G if

(a) G = 〈U, V 〉.
(b) 2 ≤ tr(U) ≤ tr(V ) if tr[A,B] ≤ −2.
(c) 2 ≤ tr(U) ≤ tr(V ) ≤ −tr(UV −1) if tr[A,B] > 2.

Note that property (a) implies that tr[A,B] = tr[U, V ] (see Lemma 4.3). Also note that a
witness pair generates a subgroup G̃ of SL2(R) which is isomorphic to G, but not necessarily
equal. However, its action via Möbius transformations is equal to that of G as G and G̃ have
the same image in PSL2(R).

The following algorithm decides whether a two-generator subgroup of SL2(R) is discrete and
free of rank 2.

Algorithm 2. (Discrete-And-Free-of-Rank-2)
Input: A,B ∈ SL2(R).
Output: If G = 〈A,B〉 is discrete and free of rank 2, then the algorithm returns true and a
witness pair for G. Otherwise the algorithm returns false.

(1) If |tr(A)| < 2 or |tr(B)| < 2 or tr[A,B] ∈ (−2, 2], then return false.
(2) Choose U, V ∈ SL2(R) such that A = U , B = V and tr(U), tr(V ) > 0.
(3) If tr(V ) < tr(U), then exchange U and V .
(4) If tr[U, V ] ≤ −2, then return true and (U, V ).
(5) Set S := {UV,UV −1} and m = min{|tr(T )| : T ∈ S}.
(6) If m < 2, then return false.
(7) If m < tr(U), then

(a) Replace V by U . Then replace U by a matrix in {±T | T ∈ S} that has trace m.
(b) Goto (5).

(8) If m < tr(V ), then
(a) Replace V by a matrix in {±T | T ∈ S} that has trace m.
(b) Goto (5).

(9) If tr(UV −1) > 0, then replace V by V −1.
(10) Return true and the pair (U, V ).

Theorem 4.6. Algorithm 2 terminates and produces the stated output.

Proof. We first show that the algorithm terminates. The proof of [12, Lemma 2] shows
that, after finitely many steps, the set S contains an element of negative trace. The proof of
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Theorem 4.4 shows that after at most one more iteration, the algorithm has produced a witness
pair (U, V ) for G.

We now show that the algorithm is correct. The replacements of the generating set in (7) and
(8) are Nielsen transformations. Hence G = 〈U, V 〉 and tr[U, V ] = tr[A,B] hold throughout.
Further, from step (4) onward, we have 2 ≤ tr(U) ≤ tr(V ). If the algorithm returns false, then
it either has encountered an elliptic element or tr[A,B] = 2. Hence G is not discrete or not free
of rank 2 by Theorem 4.4. If the algorithm returns true, it has produced a witness pair (U, V )
for G. Thus G is discrete and free of rank 2 by Theorem 4.4.

Remark 4.7. If one keeps track of the Nielsen transformations performed in steps (3)–(9)
of Algorithm 2, one can additionally produce explicit words u and v so that U = u(A,B) and
V = v(A,B) hold.

5. The constructive membership problem in SL2(R)

Let A,B ∈ SL2(R) and let G = 〈A,B〉 be discrete and free of rank 2. We consider an element
M ∈ SL2(R) and we wish to decide whether M is an element in G and, if so, then write it as a
word in A and B. We first reduce this problem to the corresponding problem for witness pairs.

Lemma 5.1. Let (U, V ) be a witness pair for G and let M ∈ SL2(R). Let u and v be words
with U = u(A,B) and V = v(A,B). Then M can be written as a word w′ in {A,B} if and
only if M can be written as a word w in {U, V } with w(u(A,B), v(A,B)) = M ; in the latter
case we obtain w′(A,B) as w′(A,B) = w(u(A,B), v(A,B)).

Proof. If M ∈ G, then M ∈ G and thus M = w(U, V ). Hence M = w(u(A,B), v(A,B)). As
G is free on {A,B}, this implies that M = w(u(A,B), v(A,B)).

We now show how Theorem 2.1 can be applied to solve the constructive membership problem
for a witness pair (U, V ). For this purpose we need to identify the regions X±j for j ∈ {1, 2}
and an element z′ ∈ Fo. We distinguish the cases that tr[A,B] ≤ −2 and tr[A,B] > 2 in the
following.

5.1. The case tr[A,B] ≤ −2

The regions which we define and use in this section have also been used by Purzitsky, [16,
Theorem 8], to show that the group G is discrete and free.

Lemma 5.2. Let (U, V ) be a witness pair for G = 〈A,B〉 with tr[A,B] ≤ −2. Then U and
V are both hyperbolic and, up to conjugation in GL2(R), of the form

U =

(
k 0
0 1/k

)
and V =

(
a b
1 d

)
for some k > 1 and a, d > 0 with ad ≥

(
k2+1
k2−1

)2
> 1.

Proof. Let t = tr(U) ≥ 0. We may assume that

U =

(
0 1
−1 t

)
and V =

(
a b
c d

)
.
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Then tr[U, V ] = t2 + tr(V )2 + tr(UV )2 − tr(UV )tr(V )t− 2 and, as tr[U, V ] ≤ −2, we see that
tr(UV )tr(V )t ≥ t2 + tr(V )2 + tr(UV )2. Thus either min{t, tr(V ), tr(UV )} > 2 or tr(UV ) =
tr(V ) = t = 0. In the first case, U and V are hyperbolic. In the second case, tr(UV ) = 0 shows
b = c and tr(V ) = 0 implies d = −a. But then 1 = det(V ) = −a2 − b2 yields a contradiction.
By Lemma 3.1 there exists some S ∈ GL2(R) such that SUS−1 fixes 0 and∞. After conjugating
U and V with S or ( 0 1

1 0 ) · S we may assume that

U =

(
k 0
0 1/k

)
for some k > 1 and V =

(
a b
c d

)
.

Then c 6= 0 by Lemma 3.4. After conjugating U and V with ( c 0
0 1 ) we may finally assume that

c = 1. The condition

−2 ≥ tr[U, V ] = (2− k2 − 1/k2)︸ ︷︷ ︸
<0

ad+ (k2 + 1/k2)

implies that ad ≥ (k2+1)2

(k2−1)2 > 1. Hence a, d > 0 since tr(V ) = a+ d > 2.

If U, V ∈ SL2(R) with tr[U, V ] ≤ −2 have the form as in Lemma 5.2, then we say that they
are normalized.

For the remainder of this section we suppose that the matrices

U =

(
k 0
0 1/k

)
and V =

(
a b
1 d

)
from Lemma 5.2 form a normalized witness pair for G = 〈A,B〉 with tr[A,B] ≤ −2.

Lemma 5.3.

(a) We have tr[U, V ] = −2 if and only if ad =
(

k2+1
k2−1

)2
.

(b) If tr[U, V ] < −2, then there exist x, y ∈ Q such that

0 < x < a−
√
a/d and a+

√
a/d < k2x

−d+
√
d/a < y < 0 and − d−

√
d/a > k2y.

Proof. Part (a) follows immediately from k2 − tr[U, V ] + 1/k2 = (k − 1/k)2ad. Suppose

now tr[U, V ] < −2. Then
√
ad > k2+1

k2−1 or equivalently k2 >
√
ad+1√
ad−1 =

a+
√

a/d

a−
√

a/d
. Thus the interval(

(a+
√
a/d)/k2, a−

√
a/d
)

is non-empty. Any element x from this interval satisfies the first

two inequalities. A similar argument shows how to choose y.

If tr[U, V ] = −2 we set x = a−
√
a/d > 0 and y = −d+

√
d/a < 0. Otherwise we choose

x, y ∈ Q satisfying the conditions of Lemma 5.3(b).
Let H := {x′ + iy′ ∈ C | y′ > 0} be the upper half complex plane and for two real numbers

r, s let C(r, s) := {z ∈ H | |z − (s+ r)/2| ≤ |s− r|/2} i.e. the region enclosed by the real axis
and the geodesic which meets the real axis in r and s.

We define

X+
1 := C(x, y), X−1 := H \ (U · X+

1 )o = H \ C(k2x, k2y)o,

X+
2 := C(−d−

√
d/a,−d+

√
d/a), X−2 := V · X+

2 = C(a−
√
a/d, a+

√
a/d).
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k2y k2xy x

X−1F

X+
1X+

2
X−2

Figure 1. Regions

Lemma 5.4. The sets X+
1 ,X

+
2 ,X

−
1 ,X

−
2 are pairwise disjoint and satisfy the conditions (a)

and (b) of Theorem 2.1 for g1 = U and g2 = V . Let F = H \ (X+
1 ∪ X−1 ∪ X+

2 ∪ X−2 ). Then
z′ := i

√
−xy(1 + k2)/2 ∈ Fo where i =

√
−1.

Proof. The sets are pairwise disjoint by Lemma 5.3. The inclusions in condition (a) involving
U are obvious, as Lemma 5.2 implies that Uh = k2h for all h ∈ H. For the inclusions involving
V note that the fixed points (a− d−

√
(a+ d)2 − 4)/2 and (a− d+

√
(a+ d)2 − 4)/2 of V

are contained in X+
2 and X−2 respectively. Further, V maps the boundary of X+

2 to the boundary
of X−2 .

Next we consider condition (b). First note that FU = H \ (X+
1 ∪ X−1 ) and FV = H \ (X+

2 ∪
X−2 ) are fundamental domains for 〈U〉 and 〈V 〉, respectively. If tr[U, V ] < −2 then these two
regions are not tangent. Thus it follows from Klein’s combination theorem (see for example [10,
pp. 190–192]) that F = FU ∩ FV is a fundamental domain for G. In the case that tr[U, V ] = −2,
the tangent points of the regions FU and FV are a±

√
a/d and d±

√
d/a. These are precisely

the fixed points of the four parabolic elements [Ue, V f ] ∈ G where e, f ∈ {±1}. In this case,
the set F is also a fundamental domain for G (see [18, Theorem 1]).

Finally, the boundaries of the sets X+
1 and X−1 intersect L := {λi | λ > 0} in p := i

√
−xy

and k2p respectively. Thus z′ = (p+ k2p)/2 is not contained in the closure of X+
1 ∪ X−1 . Since

(X+
2 )c and (X−2 )c do not meet L, we obtain that z′ ∈ Fo.

The following lemma and remark improve Algorithm 1 in the case considered in this section
as suggested by Remark 2.2.

Lemma 5.5. Let c = (x+ y)/2. If z = x′ + iy′ ∈ X−1 ∪ (X+
1 )o, then U ` · z ∈ H \ (X−1 ∪

(X+
1 )o) for

` =

⌈
log((cx′ +

√
(cx′)2 − |z|2xy)/|z|2)

log(k2)

⌉
. (5.1)

Proof. The boundary of X+
1 is a circle with center c and radius (x− y)/2. Thus the condition

k2`z = U ` · z /∈ (X+
1 )o is equivalent to

(x− y)2/4 ≤ |k2`(x′ + iy′)− c|2 = k4`|z|2 − 2k2`x′c+ c2

⇐⇒ 0 ≤ k4`|z|2 − 2k2`x′c+ xy

⇐⇒ k2` ≥ (x′c+
√

(x′c)2 − |z|2xy)/|z|2

Hence the value ` given by equation (5.1) is the least ` such that U ` · z /∈ (X+
1 )o.
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Remark 5.6. Let ω1 < ω2 be the two fixed points of V and let S =
(

1 −ω1
−1 ω2

)
. Then

V ′ := SV S−1 =
(

k′ 0
0 1/k′

)
where k′ = (a+ d+

√
(a+ d)2 − 4)/2 > 1. The matrix S maps the

fundamental domain FV = H \ (X+
2 ∪ X−2 ) for 〈V 〉 to a fundamental domain for 〈V ′〉. Further,

S maps geodesics to geodesics and V ′ · z = k′
2
z for all z ∈ H. Hence

S · X+
2 = C(x′, y′) and S · X−2 = H \ C(k′

2
x′, k′

2
y′)o

for some x′ > 0 > y′. In particular, given any z ∈ H, we can use Lemma 5.5 to compute ` ∈ Z
such that V ` · z ∈ FV .

5.2. The case tr[A,B] > 2

The regions we use have also been considered by Purzitsky in [17, Section 3] to show that
G is discrete and free. Throughout this section, we assume that (U, V ) is a witness pair for G.
Note that U and V have no common fixed points by Lemma 3.4. We distinguish three cases to
determine sets X+

1 ,X
+
2 ,X

−
1 ,X

−
2 that satisfy the requirements of Theorem 2.1.

5.2.1. The case tr(U) = tr(V ) = 2 Here U and V both have a unique fixed point in Ĉ.
After conjugating U and V simultaneously with some element in GL2(R) (see Lemma 3.1) we
may assume that U fixes ∞ and V fixes 0. Then

U =

(
1 λ
0 1

)
and V =

(
1 0
µ 1

)
.

Further, −2 ≥ tr(U−1V ) = 2− λµ shows that (after conjugating U and V with
(−1 0

0 1

)
if

necessary) we may assume that λ, µ > 0. We define the following sets.

X+
1 := {x+ iy ∈ H | x ≤ −λ/2}, X−1 := {x+ iy ∈ H | x ≥ λ/2},

X+
2 := C(−2/µ, 0), X−2 := C(0, 2/µ).

5.2.2. The case 2 = tr(U) < tr(V ) Now U has a unique fixed point and V has two fixed
points in R̂. After conjugating U and V simultaneously with some element in GL2(R) (see
Lemma 3.1), we may assume that U fixes ∞ and V fixes ±1. Then

U =

(
1 λ
0 1

)
and V =

(
a b
b a

)
with a > 1.

From −2 > tr(U−1V ) = 2a− bλ it follows that λb > 0. Thus (after conjugating U and V
with

(−1 0
0 1

)
if necessary) we may assume λ > 0, b > 0. Then we define the following sets.

X+
1 := {x+ iy ∈ H | x ≤ −λ/2}, X−1 := {x+ iy ∈ H | x ≥ λ/2},

X+
2 := C(−(a+ 1)/b,−(a− 1)/b), X−2 := C((a− 1)/b, (a+ 1)/b).

5.2.3. The case 2 < tr(U) ≤ tr(V )

Lemma 5.7. Let (U, V ) be a witness pair for G = 〈A,B〉 such that 2 < tr(U) ≤ tr(V ) and
tr[A,B] > 2. Further let ωU , ω

′
U and ωV , ω

′
V be the fixed points of U and V respectively. Then

the cross ratio c := cross(ωU , ω
′
U , ωV , ω

′
V ) is positive.

Proof. Since the fixed points of U and V are pairwise different, the cross ratio exists. As
cross ratios are preserved under Möbius transformations, we may assume that

U =

(
k 0
0 1/k

)
and V =

(
a b
1 d

)
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just as in the proof of Lemma 5.2. Then 2 < tr[U, V ] = −(k − 1/k)2ad+ k2 + 1/k2 is equivalent
to ad < 1. But then (a− d)2 > (a+ d)2 − 4 shows that both fixed points of V have the same
sign. Since the fixed points of U are 0 and ∞ this implies that cross(ωU , ω

′
U , ωV , ω

′
V ) > 0.

Let c be the cross ratio from Lemma 5.7. Then k := 1+
√
c

1−
√
c

satisfies c = cross(−1, 1,−k, k).

Lemma 3.1 implies that there exists some S ∈ GL2(R) such that SUS−1 fixes ±1 and SV S−1

fixes ±k.
Thus we may assume that

U =

(
a b
b a

)
and V =

(
x (x2 − 1)/y
y x

)
with x ≥ a > 1.

Further, since −2 > tr(U−1V ) = 2ax− by(1 + (x2 − 1)/y2) we may assume (after conjugating
U and V with

(−1 0
0 1

)
if necessary) that b > 0, y > 0. We then define the following sets.

X+
1 := C(−(a+ 1)/b,−(a− 1)/b), X−1 := C((a− 1)/b, (a+ 1)/b),

X+
2 := C(−(x+ 1)/y,−(x− 1)/y), X−2 := C((x− 1)/y, (x+ 1)/y).

5.2.4. Conclusion Similarly to Section 5.1 we say that a pair U, V ∈ SL2(R) with tr[U, V ] >
2 is normalized if (U, V ) has the form as in Section 5.2.1, 5.2.2 or 5.2.3.

We show that the sets X+
1 ,X

+
2 ,X

−
1 ,X

−
2 satisfy the requirements of Theorem 2.1 in all cases

discussed in this section. Let FU = H \ (X+
1 ∪ X−1 ) and FV = H \ (X+

2 ∪ X−2 ).

Lemma 5.8. The sets X+
1 ,X

+
2 ,X

−
1 ,X

−
2 are pairwise disjoint and satisfy the conditions (a)

and (b) of Theorem 2.1 for g1 = U and g2 = V . If F = H \ (X+
1 ∪ X−1 ∪ X+

2 ∪ X−2 ) then z′ :=
i ∈ Fo.

Proof. The fact that the four sets are disjoint follows from a case by case discussion using
tr(U), tr(V ),−tr(U−1V ) ≥ 2. We only give the details for the case 5.2.3. By symmetry, it
suffices to show that X−1 ∩ X−2 is empty. Using the identity 1 = det(U) = a2 − b2, we see

that −2 ≥ tr(U−1V ) = 2ax− by(1 + x2−1
y2 ) is equivalent to by > (x+ 1)(a+ 1) or by < (x−

1)(a− 1). These two inequalities are equivalent to x+1
y < b

a+1 = a−1
b and x−1

y > b
a−1 = a+1

b

respectively. Hence X−1 ∩ X−2 is empty.
The condition (a) from Theorem 2.1 can easily be checked. Let us now prove condition

(b). The fact that FU is a fundamental domain for 〈U〉 is obvious if tr(U) = 2, since then U
is a translation by λ and FU is a vertical strip of width λ. A similar argument holds for V
(after conjugation with

(
0 1
−1 0

)
) whenever tr(V ) = 2. Suppose now tr(U) > 2. One observes

that (X+
1 )o and (X−1 )o each contain one fixed point of U . Since U maps the boundary of

X+
1 to the boundary of X−1 it follows that FU is a fundamental domain for 〈U〉. The case

tr(V ) > 2 is handled similarly. The fact that F is a fundamental domain for G now follows
from Klein’s combination theorem. Note that the regions FU and FV are tangent if and only if
2 = tr(U) = tr(V ) = −tr(U−1V ). But then the tangent points are precisely the fixed points of
the parabolic transformations U−1V and UV −1. Finally, the inclusion i ∈ Fo follows directly.

The following remark allows Algorithm 1 to be speeded up significantly in the way suggested
by Remark 2.2.

Remark 5.9. Suppose z ∈ H. Again, one can easily compute the exponents nU , nV ∈ Z
such that UnU · z ∈ FU and V nV · z ∈ FV .
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If U is a translation, the computation of nU is obvious. Similarly, if tr(V ) = 2, then after
conjugating with S :=

(
0 1
−1 0

)
, SV S−1 is also a translation. Hence the computation of nV is

clear.
Finally, if X ∈ {U, V } is hyperbolic, we proceed exactly as in Remark 5.6. There exists some

T ∈ GL(2,R) such that TXT−1 is a diagonal matrix. Further, T · FX is the area between two
geodesics, and the exponent nX can now be computed using equation (5.1).

5.3. The membership test

Algorithms 1 and 2 together with our fundamental domains from Sections 5.1 and 5.2
finally yield a constructive membership test for all discrete and free two-generator subgroups
of SL2(R). We close this section by stating this algorithm explicitly.

Algorithm 3. (ConstructiveMembershipSL2(R))
Input: Three matrices A,B,M ∈ SL2(R) such that G = 〈A,B〉 is discrete and free of rank 2.
Output: A word w = w(a, b) with w(A,B) = M if M is an element of G and false otherwise;
here a, b are abstract elements freely generating a free group F .

(1) Compute a witness pair (U ′, V ′) for G and words u, v ∈ F such that U ′ = u(A,B) and
V ′ = v(A,B) using Algorithm 2.

(2) Compute some S ∈ GL2(R) such that (U, V ) := (SU ′S−1, SV ′S−1) is normalized.
(3) Let z′ ∈ H and X+

1 ,X
−
1 ,X

+
2 ,X

−
2 be as in Lemma 5.4 or 5.8 depending on whether

tr[A,B] ≤ −2 or tr[A,B] > 2.
(4) Decide if SMS−1 can be written as a word w′ in U and V . This is done by calling

Algorithm 1 with input g1 = U , g2 = V , the sets X±j , the point z′ and g = SMS−1.
(5) If no such w′ exists, then return false.
(6) If w′(u(A,B), v(A,B)) 6= M , then return false.
(7) Return true and w := w′(u(a, b), v(a, b)).

Note that if one omits step (6), then the algorithm decides membership in PSL2(R).

6. Implementation

6.1. Comments on the ground fields

Our algorithms take as input two matrices A and B with entries in a field K such that there
exists a field monomorphism ε : K → R. Via ε, we can view K as a subfield of R and the group
G generated by A and B thus acts on H.

Further, the algorithms require that given a ∈ K, the following tasks can be performed.
(1) Test whether a > 0.
(2) If a ≥ 0, compute

√
a ∈ K. If

√
a 6∈ K, then it must be possible to extend K to K(

√
a).

Real algebraic number fields have these two properties (see [6, Section 3.6.2]) and we have
implemented Algorithms 2 and 3 in Magma [5] for this class of fields.

6.2. Comparison with facilities already in Magma

Currently, Magma can solve the constructive membership problem for infinite matrix groups
only in the following two cases.

(1) For congruence subgroups of PSL2(Z), i.e. subgroups that contain the kernel Γ(N) of
the canonical homomorphism PSL2(Z)→ PSL2(Z/NZ) for some integer N ≥ 2. A congruence
subgroup of PSL2(Z) is not free of rank 2, unless it has index 6 in PSL2(Z).
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(2) For arithmetic Fuchsian groups with no cusps. These are the full unit groups of orders
in quaternion algebras ramified at all but one infinite place. Such groups are not free of rank
2.

Hence there is only small overlap between our implementation and existing features of
Magma.

6.3. Examples and runtimes

We now exhibit some explicit runtimes. All timings are done on a Core i7 860.

Example 6.1. For n ∈ N let ζn be a primitive n-th root of unity and θn = ζn + ζ−1n . Let
Kn = Q(θn). Then Kn is the maximal totally real subfield of the cyclotomic number field
Cn = Q(ζn). The map ε : Cn → C, ζn 7→ exp(2πi/n) induces an embedding of Kn into R. Let
d(n) denote the degree of Kn over Q. Then every element in Kn can be described as f(θn)
where f(x) ∈ Q[x] with deg(f) < d(n).

Let Wn denote the set of elements in Kn which can be written as f(θ)/b with some integer
1 ≤ b ≤ 100 and some f(x) ∈ Z[x] with coefficients in the range [−104, 104]. Then Wn is a
large, but finite subset of Kn and we can choose random elements in Wn. Using these random
elements in Wn we can determine a wide range of interesting examples of matrices in SL2(Kn).

Using this strategy, we have chosen 10,000 pairs of matrices A,B ∈ SL2(Kn) with
tr(A), tr(B) ≥ 2 and tr[A,B] > 2. For each pair we called Algorithm 2 to see whether G =
〈A,B〉 is discrete and free of rank 2. If this was the case, we used Algorithm 3 to check if
( 1 2
0 1 ) ∈ G. The timings of these tests are summarised in Table 1.

Table 1. Timings for Example 6.1 (in seconds).

n 2 5 11 25 55

d(n) 1 2 5 10 20

time for 10,000 calls
to Algorithm 2

0.2 13 25 74 272

average time to
decide if

(
1 2
0 1

)
∈ G

< 0.1 0.6 13 201 3924

Example 6.2. A well known example of a discrete and free group is G = Γ(2) = 〈A,B〉 ≤
SL2(Q) with

A =

(
1 2
0 1

)
and B =

(
1 0
2 1

)
.

These generators satisfy tr[A,B] = 18 > 2 and tr(A) = 2 = tr(B). Hence we are in the case
of Section 5.2.1. Note that tr(AB−1) = −2 and hence (A,B) is a witness pair for G. Further,
this pair is normalized as in Section 5.2.1. Our implementation of Algorithm 3 chooses S =
I, (U, V ) = (A,B), z′ = i ∈ H, X+

1 = {x+ iy ∈ H | x ≤ −1}, X−1 = {x+ iy ∈ H | x ≥ 1}, X+
2 =

C(−1, 0) and X−2 = C(0, 1) in steps (2) and (3). Thus in this example we can choose K = Q
and it is not necessary to extend K.
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Let M be a random word of length k in {A,B}. Such a word can be constructed by
multiplying k random elements in {A,B,A−1, B−1} if one takes care that no two adjacent
factors are mutually inverse. We have summarized the time needed for the constructive
membership test M ∈ G in Table 6.2.

Table 2. Timings for Example 6.2.

k ≤ 100 ≤ 1000 ≤ 10, 000 ≤ 20, 000

sec < 0.1 < 0.1 < 5 < 35

The main reason for the non-linear increase in time is the growth of the matrix entries during
the intermediate steps of the algorithm.

Example 6.3. Let G = 〈A,B〉 ≤ SL2(Q) where

A =

(
2 1
1 1

)
and B =

(
1 1
2 3

)
.

Then tr(A) = 3, tr(B) = 4 and tr[A,B] = −9. Hence G is discrete and free of rank 2 by
Theorem 4.4 and (A,B) is a witness pair for G.

Our implementation of Algorithm 3 now chooses

S =
1

10

(
6
√

5 + 20 7
√

5 + 5

−10 5
√

5 + 5

)
, z′ =

74

20
i,

U = SAS−1 =
1

2

(√
5 + 3 0

0 −
√

5 + 3

)
, V = SBS−1 =

1

5

(
2
√

5 + 10 11

5 −2
√

5 + 10

)
,

X+
1 = C

(
967

1000
,
−37

100

)
, X−1 = C

(
2901

√
5 + 6769

2000
,
−111

√
5− 259

200

)
,

X+
2 = C

(
−
√

5− 15

10
,

9
√

5− 25

10

)
and X−2 = C

(
−
√

5 + 15

10
,

9
√

5 + 25

10

)
.

In particular, the membership test can be performed over the field K ′ = Q(
√

5). Note that the
choice of z′ from above differs slightly from Lemma 5.4, as we try to keep the field K ′ as small
as possible.

Let M be a word of length k in {A,B}. We have summarized the time needed for the
constructive membership test M ∈ G in Table 6.3.

Table 3. Timings for Example 6.3.

k ≤ 100 ≤ 1000 ≤ 2000 ≤ 10, 000

sec < 0.1 < 2 < 10 < 600
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7. Open problems

It would be of interest to extend the method for detecting whether an input group is discrete
and free as well as the membership test for such groups to arbitrary rank m ≥ 2. For this
purpose one would need to find suitable fundamental domains as described in Theorem 2.1 for
arbitrary m. Similarly, it would be of interest to extend the method described here to discrete
free products of arbitrary cyclic groups. While Theorem 2.1 would generalize to free products
of cyclic groups, again it is unclear how to determine the special fundamental domain for a
given subgroup of SL2(R) in this case.

Further, it would be of interest to generalize the method described here to SLn(R) for
arbitrary n ≥ 2. This however incorporates the problem that one needs to find a suitable
topological action of the matrix groups of higher degrees. And, clearly, one has to keep in mind
that the constructive membership problem is not always decidable in larger degree matrix
groups.
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