
A DATABASE FOR FIELD EXTENSIONS OF THE RATIONALSJ�URGEN KL�UNERS AND GUNTER MALLEAbstrat. We announe the reation of a database for number �elds. Wedesribe the ontents and the methods of aess, indiate the origin of thepolynomials and formulate the aims of this olletion of �elds.1. IntrodutionWe report on a database of �eld extensions of the rationals, its properties andthe methods used to ompute it. At the moment the database enompasses roughly100,000 polynomials generating distint number �elds over the rationals, of degreesup to 15. It ontains polynomials for all transitive permutation groups up to thatdegree, and even for most of the possible ombinations of signature and Galoisgroup in that range. Moreover, whenever these are known, the �elds of minimaldisriminant with given group and signature have been inluded. The database anbe downloaded fromwww.iwr.uni-heidelberg.de/iwr/ompalg/minimum/minimum.htmlor fromwww.mathematik.uni-kassel.de/~malle/minimum/minimum.htmland aessed via the omputer algebra system Kant [10℄.One of the aims of the ompilation of this database was to test the limitations ofurrent methods for the realization of groups as Galois groups. It turned out thatthese methods have limitations if the signature of the resulting Galois extension isalso presribed.2. Galois realizations with presribed signatureLet K=Q be a number �eld of degree n. We denote by r1 the number of realembeddings of K and by r2 the number of pairs of omplex embeddings. Then wehave n = r1 + 2r2. The pair (r1; r2) is alled the signature of K. The extensionK=Q is alled totally real if r2 = 0. The solution of embedding problems oftenrequires the knowledge of �eld extensions with a presribed signature. This is onereason for the attempt to realize all groups in all possible signatures.Now let G be the Galois group of the Galois losure of K=Q. Then for any em-bedding of K into C omplex onjugation is an element of G, that is, G in itspermutation representation on the onjugates of the �xed group of K ontains aninvolution with r1 �xed points. Clearly this restrits the signatures whih mayour for a given Galois group. It leads to the following question:Given a �nite permutation group G and a onjugay lass C of involutions inG, does there exist a number �eld K=Q whose Galois losure has group G suh thatthe image of omplex onjugation lies in lass C?1



2 J�URGEN KL�UNERS AND GUNTER MALLEObviously a positive solution to this problem would in partiular solve the inverseproblem of Galois theory. In a letter to Matzat, dated 20th of July 1992, Serre hasremarked that the onverse is true at least for totally real extensions:Proposition 1. (Serre) If all �nite groups our as Galois groups over Q, then all�nite groups our as Galois groups of totally real extensions of Q.Proof. Let G be a �nite group. We use a speial ase of a result of Haran and Jarden[20℄, Cor. 6.2: There exists a �nite group ~G and an epimorphism � : ~G! G havingall involutions of ~G in the kernel. Indeed, assume that G is generated by r elements,and let  : Fr ! G be a orresponding epimorphism from the free pro�nite groupFr of rank r onto G. Then S := Fr n ker( ) is a ompat subset whih is invariantunder onjugation. Hene S2 := fg2 j g 2 Sg is ompat and invariant underonjugation as well and 1 =2 S2. Thus there exists a normal subgroup ~N � Fr of�nite index with ~N \ S2 = ;. De�ning N := ~N \ ker( ) we have N \ S2 = ; andN has �nite index in Fr. Then ~G := Fr=N with � : ~G ! G indued by  is asrequired.Now let K=Q be a Galois extension with group ~G and � : ~G ! G as abovewith H = ker(�). Assume that KH=Q is not totally real. Then some involutionof G ats as omplex onjugation. But by onstrution of ~G this involution lifts toan element of order bigger than 2 in ~G = Gal(K=Q), ontraditing the fat thatomplex onjugation has order 2. ThusKH=Q is a totally real realization for G. �For the expliit onstrution of �elds with given signature, we may distinguishtwo ases. In the solvable ase, lass �eld theory may be used as in the generalinverse problem. The onstrution of extensions with non-solvable groups usuallyis done via the rigidity method. But this seems less adapted to the ase where inaddition the signature is presribed. In fat, Serre [32℄, p.91, has shown, that rigid-ity with three branh points never gives totally real Galois extensions for groupsG 6= S3. At the moment we are redued to ad ho methods for onstruting ex-tensions with arbitrary signature.2.1. Symmetri groups. Let's �rst treat the symmetri groups. We propose aneven stronger statement.Proposition 2. Let n 2 N, 0 � k � n=2, and fi 2 Qpi [X ℄ (i = 1; : : : ; r) separablepolynomials of degree n, where pi 6= pj for i 6= j. Then there exist in�nitelymany number �elds K=Q with Galois group Sn, signature (n�2k; k) and suh thatK 
 Qpi �= Qpi [X ℄=(fi) for i = 1; : : : ; r.Proof. Let g0 2 Z[X℄ be a separable polynomial with n � 2k real and k pairs ofomplex zeros, for example the polynomial Qn�2ki=1 (X � i)Qki=1((X � i)2 + 1). Bythe main theorem on elementary symmetri funtions and Hilbert's irreduibilitytheorem there exist irreduible polynomials with group Sn arbitrarily lose to g0(for example with respet to the metri indued by taking the maximal absolutevalue of the oeÆients). To �nd suh a polynomial onstrutively, hoose threefurther primes pr+1; : : : ; ps, s := r + 3. Furthermore, let gi 2 Z[X℄, i = 1; : : : ; r,be separable polynomials suh that Qpi [X ℄=(fi) �= Qpi [X ℄=(gi), i = 1; : : : ; r, andgr+1; : : : ; gs 2 Z[X ℄ separable suh that the only non-linear irreduible fator of the



A DATABASE FOR FIELDS 3redution gi (mod pi) (r + 1 � i � s) has degree n, n� 1, 2 respetively.Write gi = nXj=0 ai;jXj for i = 0; : : : ; s:By the weak approximation theorem [25, Theorem 1.11℄ we may hoose b0; : : : ; bn 2Q suh that f := nXi=0 biX i 2 Q[X ℄satis�es the following two onditions:� jbj�a0;j j (j = 0; : : : ; n) is suÆiently small so that f has the same signatureas g0,� jbj � ai;j jpi are suÆiently small so that Q[X ℄=(f) 
 Qpi �= Qpi [X ℄=(gi) fori = 1; : : : ; s. (Lemma of Krasner, [25, Proposition 5.5℄).Then f has the same signature as g0, and Q[X ℄=(f) 
 Qpi �= Qpi [X ℄=(fi), i =1; : : : ; r, are as required. Finally, fatorization modulo pr+1; : : : ; ps shows thatGal(f) is 2-fold transitive, hene primitive, and ontains a transposition. By atheorem of Jordan this implies that Gal(f) = Sn.By varying the additional primes, respetively by enlarging the set of primes, wemay learly obtain in�nitely many examples. �2.2. Alternating groups. The ase of alternating groups is already more ompli-ated, and it is the only other ase whih we an solve uniformly. We �rst rephrasea result of Mestre into a universal lifting property (see [2℄ for de�nitions and otherresults in this diretion):Theorem 3. The group An has the universal lifting property over �elds of hara-teristi 0. More preisely, if K is a �eld of harateristi 0 and g(X) 2 K[X ℄a separable polynomial with square disriminant then there exists a polynomialf(t;X) 2 K(t)[X ℄ generating a regular Galois extension of K(t) with group An,n � 3, suh that the splitting �elds of g(X) and f(0; X) oinide.Proof. Let g(X) 2 K[X ℄ of degree n � 3 with square disriminant. First assumethat n is odd. Then by the result of Mestre (see [24℄, IV.5.12) there exists apolynomial h(X) 2 K(X) of degree n � 1 suh that f(t;X) := g(X) � th(X) 2K(t)[X ℄ has Galois group An over K(t).Now assume that n is even. Replaing X by X � a for a suitable a 2 K we mayassume that g1(X) := Xg(X) is separable. Sine g1 has again a square disriminantand odd degree, by the �rst part there exists a polynomial f1(t;X) = g1(X)�th(X)with group An+1. Note that this implies that h(0) 6= 0. By [24℄, IV.5.12(b), thepolynomial ~f(t;X) := (g1(X)h(t)� g1(t)h(X))=(X � t) 2 K(t)[X ℄has group An. Moreover, ~f(0; X) = Xg(X)h(0)=X = h(0)g(X) is a non-zero salarmultiple of g(X), so f(t;X) := ~f(t;X)=h(0) has all the required properties. �Note that the signature of a �eld with even Galois group is neessarily of theform (n � 2k; k) with k even. For alternating groups, all these signatures an berealized over Q.



4 J�URGEN KL�UNERS AND GUNTER MALLECorollary 4. Let n 2 N and 0 � k � n=2 even. Then there exist in�nitely manynumber �elds K=Q with Galois group An and signature (n� 2k; k).Proof. For 1 � i � k=2 let ui(X) 2 Z[X℄ be distint totally omplex polynomials ofdegree 4 with Galois groupA4, for example ui(X) = (X�i)4�7(X�i)2�3(X�i)+1.Then g(X) := n�2kYi=1 (X � i) k=2Yi=1ui(X)is separable with square disriminant and signature (n�2k; k). By Theorem 3 thereexists a polynomial f(t;X) 2 Q(t)[X ℄ with Galois group An suh that f(0; X) =g(X). Sine g is separable, for any t0 lose to 0 the speialization f(t0; X) has thesame signature as g. By the Hilbert irreduibility theorem there exist in�nitelymany suh t0 for whih the Galois group is preserved under speialization. �Note that for symmetri and alternating groups the onjugay lasses of involu-tions are parameterized by the yle types, so the preeding results show that anyinvolution in an alternating or symmetri group an our as omplex onjugationin a Galois extension of the rationals.2.3. Further simple groups. The non-abelian simple groups with faithful permu-tation representations of degree at most 15 are L2(7);L2(8);L2(11);M11;M12;L3(3),L2(13) and the alternating groups. For the groups L2(7), L2(11), M11 and M12 to-tally real realizations were found in [23℄, by onstruting the Hurwitz spaes forertain n-tuples of onjugay lasses, where n � 4. These onstrutions involvea onsiderable amount of alulation and seem to be restrited to small degree.At the moment we are not aware of any totally real extensions of Q with groupL2(8);L3(3) or L2(13), nor with the almost simple groups P�L2(8), PGL2(11) orPGL2(13). 3. How to onstrut polynomialsIn this setion we give a short overview about the methods we used to onstrutthe polynomials ontained in the database.3.1. Methods from the geometry of numbers. Let K be a number �eld ofdegree n with absolute disriminantD. For � 2 K we denote by � = �1; : : : ; �n 2 Cthe onjugates of � and de�ne T2(�) := Pni=1 j�2i j. Now Theorem 6.4.2 in [7℄(attributed to Hunter) states that there exists an algebrai integer � 2 K n Q suhthat T2(�) � B, where B only depends on n;D. This an be used to derive boundsfor the oeÆients of the harateristi polynomial of a primitive element of K. Adesription of this method an be found in [8, Setion 9.3℄. In the ase that allonjugates �1; : : : ; �n are real we have used a slightly di�erent approah.Let f(X) 2 Z[X ℄ be a totally real separable polynomial of degree n (that is,the stem �eld of f has n di�erent real embeddings). Then all derivatives of fare also totally real and separable. Conversely given a totally real polynomialg(X) 2 Z[X℄ of degree n�1 � 2 there are only �nitely many totally real polynomialsf(X) 2 Z[X℄ suh that f 0 = g. Moreover the onstant terms of suh polynomialsf onsist of all integers in an interval I whih an be omputed from g. Indeed,denote by �1 < : : : < �n�1 the (di�erent real) roots of g and let f0 denote any



A DATABASE FOR FIELDS 5integral polynomial with derivative f 00 = g. Assume for de�niteness that the highestoeÆient of g is positive. Denote bym := maxff0(�n�1�2i) j 0 � i � (n� 2)=2gthe maximum of the minima of f0, and byM := minff0(�n�2�2i) j 0 � i � (n� 3)=2gthe minimum of the maxima. Then learly f0 �  is totally real if and only if 2 I := f� 2 R j m � � �Mg.The above onsiderations show the following (see also [8, p. 448℄, for example):Lemma 5. For �xed an; an�1; an�2 2 Z there exist only �nitely many totally realpolynomials f(X) =Pni=0 aiX i 2 Z[X℄, and these may be enumerated e�etively.Indeed, suh polynomials an only exist if f (n�2) is totally real. Sine f (n�2) ofdegree 2 is ompletely determined by an; an�1; an�2, there are only �nitely manypossibilities for f (n�3), and now indution proves the assertion.By the theorem of Hunter any primitive extension K of Q of degree n an be gen-erated by a moni polynomial f(X) = Pni=0 aiX i 2 Z[X ℄ of degree n suh that0 � an�1 � n=2 and with T2-norm bounded by a funtion in the disriminant d(K).Moreover the T2-norm bounds the third highest oeÆient an�2.Hene Lemma 5 an be used to enumerate totally real �elds of bounded disrimi-nants. It seems that this strategy produes muh fewer polynomials to be onsid-ered, as ompared to the approah whih �rst tries to bound the disriminant andthen to sieve for totally real polynomials. For example, in the ase of totally realdegree 8 extensions (see Theorem 13), only 869062 polynomials were produed andhad to be proessed further. (Among the orresponding �elds only 4896 had Galoisgroup di�erent from S8.)3.2. Speializing from polynomials over Q(t). Let G be a �nite group. Weall the �eld extension K=Q(t) a G-realization, if it is Galois with group G andregular, whih means that Q is algebraially losed in K. When a group has a G-realization over Q, it is an immediate onsequene that there exist in�nitely manydisjoint number �elds L=Q with Galois group G: Suppose we have a polynomialf 2 Q(t)[X ℄ suh that the splitting �eld of f is a regular extension with Galoisgroup G. By speializing t to a 2 Q we get that Gal(f(a;X)) is a subgroup of G.Hilbert's irreduibility theorem states that Gal(f(a;X)) = G for in�nitely manya 2 Q. See for example [32, Setion 4.6℄ for a method to �nd in�nitely many a 2 Qwith that property. This allows to onstrut polynomials with Galois group G overQ when we have an expliit polynomial f 2 Q(t;X). In some luky ases we areable to get proper subgroups of G.3.3. Methods from lass �eld theory. Suppose we want to onstrut a polyno-mial f suh that Gal(f) = G for some permutation group G. Furthermore supposethat in a orresponding �eld extension the stem �eld N of f has a sub�eld L suhthat N=L is an Abelian extension with Galois group A. Then we an try the fol-lowing approah. The Galois group of (the splitting �eld of) L an be determinedgroup theoretially and is denoted by H . Given a �eld L with Galois group H wegenerate relative Abelian extensions with Galois group A using lass �eld theory.The Galois groups over Q of suh extensions are subgroups of the wreath produtA oH . Experiments show that most of the omputed �elds have the wreath produt



6 J�URGEN KL�UNERS AND GUNTER MALLEor the diret produt as Galois group. But we also get other Galois groups. Oneadvantage of this method is that we are able to ontrol the �eld disriminants of theomputed �elds. Therefore we an prove minimal disriminants for suh groups.E.g. this was applied suessfully to degree 8 �elds having a degree 4 sub�eld [9℄.For a omplete desription we refer the reader to [8, Setion 9.2℄. We remark thatwe have used the lass �eld algorithm desribed in [15℄ and implemented in [10℄.Cohen [8, Theorem 9.2.6℄ remarks that the lass �eld methods an be extended to�elds where the Galois group of N=L is a dihedral group of order 2n, where n isodd. C. Fieker and the �rst author [16℄ an extend this method to the ase whereN=L is a Frobenius group with Abelian kernel. For example this applies to theFrobenius groups Zl o Zp, where p is prime and p j l � 1.3.4. Embedding obstrutions. Suppose we want to onstrut a �eld extensionof degree 4 with yli group Z4 applying the methods of the preeding paragraphand take L := Q(p�1). Then we will �nd out that there are no extensions N=Lsuh that Gal(N=Q) �= Z4. It would be nie to know in advane whether L is agood hoie or not. Let K be a number �eld and L=K be a �nite �eld extensionwith Galois group H and 1 �! U �! G �! H �! 1be an exat sequene of groups. Then a �eld N=L is alled a proper solutionof the embedding problem, if Gal(N=K) �= G. For the general theory we refer thereader to [24, Chapter IV℄. Here we restrit ourselves to the speial ase with kernelU �= Z2. Then U is a subgroup of the enter of G and we have the following result[24, IV.7.2℄.Proposition 6. Let N = L(p�) with � 2 L be a proper solution of the givenembedding problem with kernel Z2. Then all solution �elds are of the form Na :=L(pa�) with a 2 K�.Furthermore we get a loal-global priniple. Let L=K be a number �eld withGalois group H and suppose we have the embedding problem1 �! Z2 �! G �! H �! 1:Denote by PK the set of prime ideals of OK inluding the in�nite ones. For p 2 PKand P a prime ideal of OL lying over p we denote by LP=Kp the orrespondingloal extension. We write �H for the Galois group of LP=Kp. We get the followingindued embedding problem:1 �! Z2 �! �G �! �H �! 1:This embedding problem has a solution if it has a proper solution or if the exatsequene is split (see [24, p. 265℄ for the general de�nition of "solution").Proposition 7. Let L=K be a �nite extension with Galois group H. Then theembedding problem 1 ! Z2 ! G ! H ! 1 has a proper solution if and only ifthe indued embedding problems have a solution for all p 2 PK with one possibleexeption.Proof. The theorem follows from [24, Cor. IV.10.2℄ and the subsequent remark anda theorem of Ikeda [24, Th. IV.1.8℄. Reall that split embedding problems withAbelian kernel have proper solutions [24, Th. IV.2.4℄. �



A DATABASE FOR FIELDS 7In our speial ase with kernel Z2 it is easy to see that the indued embeddingproblems have solutions for all p whih are unrami�ed in L or whih have oddrami�ation index in L. If an in�nite prime p is rami�ed the indued embeddingproblem is solvable if and only if it is split.These results give us a pratial method to hek if an embedding problem withkernel Z2 has a proper solution. If there exists a solution �eld of the embeddingproblem it remains to ompute suh a �eld.Proposition 8. Let N = L(p�) be a proper solution of an embedding problemwith kernel Z2. Let S � PK be a �nite subset ontaining all prime ideals with evenrami�ation index in L=K, all in�nite primes, and all prime ideals lying above2Z. Furthermore assume that S ontains enough prime ideals to generate the lassgroup of OK . Then there exists a proper solution ~N=L whih is unrami�ed outside~S, where ~S := fP 2 PL j P � p for some p 2 Sg.Proof. Denote by Ŝ the set of all prime ideals in OL whih are rami�ed in N andare not ontained in ~S. All prime ideals in Ŝ are tamely rami�ed. Furthermore, ifP 2 Ŝ it follows that all onjugate prime ideals are ontained in Ŝ as well. De�ne ato be the produt of all prime ideals ontained in Ŝ. We get that a = bOL, where bis a square-free ideal in OK . Then there exist p1; : : : ; pr 2 S and e1; : : : ; er 2 N suhthat bpe11 � � � perr is a prinipal ideal in OK with generator b, say. ThenNb := L(pb�)is a proper solution unrami�ed outside ~S. �Sine there are only �nitely many relative quadrati extensions unrami�ed out-side a �nite set, the above furnishes a method to expliitly ompute a solution.We remark that in the ase K = Q the ondition about the in�nite primes anbe dropped. In the ase that L is totally real and L(p�) is totally omplex (bothextensions are normal over Q) the �eld L(p��) is a totally real solution �eld.Let us give a few examples how the solvability in the p-adi ase an be deided.Example 1. (1) A degree 2 extension L=Q is embeddable into a Z4 extensionif and only if L is totally real and all odd primes p whih are rami�ed in Lare ongruent 1 mod 4.(2) Let L=Q be an extension with Galois group V4. Then L is embeddable intoa Q8 extension if and only if L is totally real and all odd primes p whihare rami�ed in L have the property that p � 1 mod 4 if and only if p hasodd inertia degree in L.(3) Let L=Q be an extension with Galois group L2(l), where l is a prime withl � 3 mod 8 or l � 5 mod 8. Then L is embeddable into an SL2(p) extensionif and only if L is totally real and all odd primes p whih are rami�ed in Lhave the property that p � 1 mod 4 if and only if p has odd inertia degreein L (see [5℄).The following example is more ompliated and demonstrates most of the e�etswhih may our.There exists a subdiret produt G = SL2(3)�A4 [42℄3 with a faithful transitivepermutation representation of degree 12, usually denoted 12T57. As we have notedin [21, 4.1℄ in order to onstrut an extension with this group we have to �nd anA4-extension whih is embeddable both into an SL2(3)-extension and into a [42℄3-extension. For p 6= 2 the possible non-trivial loal Galois groups of an A4-extensionare Z2; Z3; Z2�Z2. Let E=Qp , p 6= 2, be a p-adi �eld. If the loal Galois group is



8 J�URGEN KL�UNERS AND GUNTER MALLEtotally rami�ed with Galois group Z2 we get that both loal embedding problemsare solvable if p � 1 mod 4. If the loal Galois group is Z2 � Z2 it annot be atotally rami�ed extension (p 6= 2, Abhyankar's lemma [25, p. 236℄). In this asethe embedding problem into SL2(3) an only be solved when p � 3 mod 4. Butthen the 4th roots of unity are not ontained in Qp and the embedding probleminto [42℄3 annot be solved. Therefore we get: Let L=Q be an extension whih isembeddable into a 12T57 extension. Then L is totally real and all odd primes pwhih are rami�ed have inertia degree 1 and satisfy p � 1 mod 4. The onverseis true when L is unrami�ed in 2 or the degree of the ompletion at 2 has degreedivisible by 3.Proposition 9. Let L=Q be an extension with Galois group A4. Then L is embed-dable into a 12T57 extension if and only if the following holds:(1) L is totally real.(2) If p 6= 2 is a rami�ed prime in L then p � 1 mod 4 and p has inertia degree1 in L.(3) If 2 is rami�ed, then the orresponding embedding problem for p = 2 issolvable.Denote by M the sub�eld of L whih has Galois group Z3. Suppose that L isembeddable into a 12T57 extension. Denote by S the set of prime ideals in OMontaining all prime ideals above 2Z, all in�nite primes, all prime ideals whih arerami�ed in L, and enough prime ideals to generate the lass group of OM . Thenthere exists a 12T57 extension ontaining L whih is unrami�ed outside ~S, where~S := fP 2 PL j P � p for some p 2 Sg.Proof. The �rst part of the theorem is already proved. We an solve the orre-sponding embedding problems independently. For the SL2(3)-part we an applyProposition 8. Denote by K one of the degree 6 sub�elds of L. As noted in [21,4.1℄ the embedding problem into [42℄3 is solvable if and only if K=M is embeddableinto a Z4-extension. Therefore we an again apply Proposition 8. �If 2 is rami�ed we annot deide the solvability of the embedding problem just bylooking at the rami�ation behaviour. We have to determine if K=M is embeddableinto a Z4 extension, whih is the ase if and only if �1 is a norm in K=M . Thisan be deided by applying the methods desribed in [1℄.3.5. Computing polynomials from other representations. Suppose we wantto ompute polynomials for a permutation group whih already has a faithful rep-resentation on fewer points, that is, we want to onstrut a di�erent stem �eldof a given Galois extension. In [21, 3.3℄ we have desribed how to ompute suhpolynomials when we know a polynomial belonging to the other representation. Inthis paper we strive to ontrol the disriminant of these �elds. The proof of thefollowing theorem an be found in [22, Proposition 6.3.1℄.Theorem 10. Let N=K be a normal extension with Galois group G and L be the�xed �eld of a subgroup H of G. Let P 6= (0) be a prime ideal of ON with rami�a-tion index e and p := P\OK . Denote by DP and IP the deomposition group andinertia group, respetively. Let RH := fg1; : : : ; gmg be a system of representativesof the double osets of H and DP in G, i.e. G = _Smi=1HgiDP. Then(1) The prime divisors of p in OL are pi := giP \ OL for 1 � i � m.(2) pOL =Qmi=1 peii , where ei := ejgiIPg�1i \Hj .



A DATABASE FOR FIELDS 9Corollary 11. Suppose that P is not wildly rami�ed over p. In this ase wedenote by � a generator of the yli group IP. Then vp(dis(L=K)) = ind(�),where ind(�) := [G : H ℄� number of orbits of � on G=H.Proof. Suppose that pOL = Qmi=1 peii . In the ase of tamely rami�ed extensionswe get that vp(dis(L=K)) = Pmi=1 fi(ei � 1), where fi denotes the degree of theresidue �eld extension (OL=pi)=(OK=p). Obviously this formula does not dependon the number of primes lying above p or their inertia degrees, only on the indexof �. �Example 2. Let G = L2(7), the seond smallest non-abelian simple group. Thefollowing table illustrates the assertion of the previous Corollary. The two olumnsgive the yle types of elements of G in the transitive degree 7 and degree 8 represen-tations, respetively. This allows to ompare the ontribution to the disriminantby tamely rami�ed prime ideals.Table 1. Permutation types for L2(7) in degrees 7 and 8n = 7 n = 817 1813 � 22 241 � 32 12 � 321 � 2 � 4 427 1 � 7We an see that independently of the yle type the disriminant in the degree 8representation remains at least the same as in the degree 7 representation, in ase oftame rami�ation. A ase by ase study shows that the same is true when wild ram-i�ation ours. This opens a way to determining the smallest �elds of degree 8 withGalois group L2(7) by omputing enough �elds of degree 7 with the orrespondingGalois group. 4. Minimal disriminants4.1. Results known to date. One goal of our database is to provide �elds withsmall (absolute value of the) disriminant for eah Galois group and signature. Insmall degrees it is even possible to determine the �eld(s) with smallest disriminant.Let's omment on the present state of knowledge in this area (whih is restritedto degrees less than 10).It is very easy to enumerate the disriminants of quadrati �elds. Belabas [3℄ givesa very eÆient algorithm to enumerate ubi number �elds. For higher degreesmethods from the geometry of numbers and lass �eld theory are applied.In [6℄ all quarti �elds with absolute disriminant smaller than 106 are enumer-ated. There are huge tables of the smallest quinti �elds due to [31℄. These tablesare suÆient to extrat the smallest disriminants for all Galois groups and lassesof involutions for degrees 4 and 5.The general enumeration methods are not powerful enough to give the minimafor all Galois groups in degree 6. The minimal disriminants for all signatures ofdegree 6 are omputed in [30℄. [26, 17, 18, 19℄ have �nished the omputation ofminimal disriminants of all signatures and all primitive Galois groups of degree 6.[27, 4℄ ompute the minimal �elds for imprimitive groups of degree 6. This yields



10 J�URGEN KL�UNERS AND GUNTER MALLEenough information to determine the minimal �elds for all groups and all onjugaylasses of that degree.In degree 7 the minimal �elds of eah signature are known due to [12, 14, 29℄.This overs all signatures of the symmetri groups. We omplete the determinationin degree 7 by proving the following:Theorem 12. The minimal disriminants for the possible pairs (G; r1) of Galoisgroup G and number of real plaes r1 in degree 7 are as shown in Table 2.Table 2. Minimal disriminants in degree 7G r1 = 1 3 5 77 | | | 5948233217: 2 �357911 | | 1921000337: 3 | | | 18174874247: 6 �38014691 | | 12431698517L3(2) | 2007889 | 670188544A7 | 3884841 | 988410721S7 �184607 612233 �2306599 20134393Proof. The �elds generated in [12, 14, 29℄ are suÆient to prove the minimal dis-riminants for all signatures of the symmetri group and the non totally real di-hedral ase. The minima for A7 and L3(2) are found by using methods from thegeometry of numbers (see Setion 3.1) using the fat that the disriminant has tobe a square. The minimal disriminant for the yli ase an easily be determinedusing the theorem of Kroneker-Weber and the fat that a rami�ed prime p musteither be 7 or p � 1 mod 7. All the other groups are Frobenius groups, where wean apply lass �eld theory as desribed in [16℄ to prove the minima. �The polynomialX7 � 2X6 � 7X5 + 11X4 + 16X3 � 14X2 � 11X + 2generates a totally real A7-extension with minimal disriminant, whileX7 � 8X5 � 2X4 + 15X3 + 4X2 � 6X � 2generates one of the two totally real L3(2)-extension with minimal disriminant(the other one is arithmetially equivalent to the �rst one, whih means that thesetwo non-isomorphi �elds have the same Dedekind �-funtion).The smallest totally real oti number �eld is omputed in [28℄. Diaz y Diaz[13℄ determined the smallest totally omplex oti number �eld. To the best ofour knowledge the smallest totally real oti �eld with symmetri Galois group waspreviously unknown. The following theorem an be proved using the methods ofSetion 3.1.Theorem 13. The minimal disriminant for a totally real primitive �eld of de-gree 8 is given by d = 483345053. The orresponding extension is unique up toisomorphism, with Galois group S8, generated by the polynomialX8 �X7 � 7X6 + 4X5 + 15X4 � 3X3 � 9X2 + 1 :For imprimitive oti �elds with a quarti sub�eld [9℄ ompute huge tables usinglass �eld theory whih over all imprimitive groups and all possible signatures suhthat the orresponding �eld has a quarti sub�eld. These tables are not suÆientto �nd all minimal �elds of that shape suh that omplex onjugation lies in a given



A DATABASE FOR FIELDS 11lass of involutions. In [16℄ the minima for oti �elds having a quadrati sub�eldare omputed.It remains to say something about primitive groups in degree 8. In the followingtable we give the primitive groups and the smallest disriminants we know. If thereis no � or � sign this means that this entry is proven to be minimal. The totallyreal S8 ase is already proved in Theorem 13. The minima for the groups 8T25 and8T36 are proved in [16℄.Table 3. Minimal disriminants of primitive groups in degree 8G r1 = 0 2 4 6 88T25 594823321 | | | 97455852912648T36 1817487424 | | | 64235077672968T37 � 37822859361 | | | � 81656590022092968T43 � 418195493 � �1997331875 | | � 3123494887403528T48 � 32684089 | � 351075169 | � 813664215048T49 � 20912329 | � 144889369 | � 466642083618T50 � 1282789 � �4296211 � 15908237 � �65106259 483345053If we knew enough �elds of degree 7 with Galois group L2(7) it would be possibleto ompute the minima for the groups 8T37 �= L2(7) and 8T48 �= 23:L2(7).Diaz y Diaz and Olivier [11℄ have applied a relative version of the geometry ofnumbers methods to ompute tables of imprimitive �elds of degree 9. These tablesdo not over all imprimitive Galois groups of that degree.5. The databaseIn this setion we report on the ontent of the database. As mentioned inthe introdution it ontains about 100,000 polynomials generating distint number�elds over the rationals. Espeially in smaller degrees (up to degree 5) there alreadyexist muh larger tables of number �elds overing all �elds up to a given disriminantbound. It is not very surprising that most of these �elds have symmetri Galoisgroup. The aim of our database is di�erent. We want to over all groups. Morepreisely we want to look at the following problems of inreasing diÆulty:(1) For eah transitive group G �nd a polynomial f 2 Z[x℄ suh that Gal(f) =G.(2) For eah transitive group G and eah lass C of involutions �nd a polyno-mial f 2 Z[x℄ suh that Gal(f) = G and omplex onjugation lies in lassC.(3) For eah transitive group G and eah lass C of involutions �nd a polyno-mial f 2 Z[x℄ suh that Gal(f) = G and omplex onjugation lies in lassC and the stem �eld K of f has minimal absolute disriminant subjet tothese restritions.We have a positive answer to problem 1 for all transitive groups up to degree15, as shown in [21℄. Problem 2 is already muh more diÆult. Let us �rst look ata slightly easier variant of problem 2. Here we only ask that omplex onjugationovers all yle types of involutions in G. The easier problem has a positive answerfor all transitive groups but the following possible exeptions:



12 J�URGEN KL�UNERS AND GUNTER MALLETable 4. Reality types for non-solvable groups
Group Number of real zeroes9T27 = L2(8) 99T30 = P�L2(8) 912T218 = PGL2(11) 1213T7 = L3(3) 1313T8 = A13 5,9,1314T30 = L2(13) 1414T39 = PGL2(13) 1414T62 = A14 615T103 = A15 7,11,15

The missing signatures for the alternating groups are only a pratial problemas we have proved in Theorem 3. In all the other ases the missing signature is thetotally real one; we don't even know a theoretial argument that suh an extensionshould exist.Let us ome bak to problem 2. Write N := NSn(G) for the normalizer in Sn ofG � Sn. Let L=K be an extension of degree n generated by a polynomial f suhthat G is the Galois group of the Galois losure of L=K as permutation group on theroots of f . Then onjugation of G by an element of N amounts to a renumberingof the roots of f . In partiular, if C1; C2 are two onjugay lasses of G fused inN , then whenever we have found an extension suh that omplex onjugation liesin lass C1, a simple renumbering provides an extension with omplex onjugationin C2. Thus in problem 2 we may restrit ourselves to onsideration of lasses of Gmodulo the ation of N . We have onstruted extensions for all these possibilitiesup to degree 11 with the three above mentioned exeptions.Problem 3 is ompletely solved up to degree 7. In degree 8 most transitive groupsare overed but there are some primitive groups left where we annot prove thatwe have found the minimal disriminant.We lose by giving a table ontaining some statistis about the number of polyno-mials in eah degree. The # Classes olumn denotes the total number of onjugaylasses of elements of orders 1 and 2 up to onjugation in the symmetri normalizer.Table 5. Content of the database
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