
ON POLYNOMIAL DECOMPOSITIONSJ�URGEN KL�UNERSUNIVERSIT�AT HEIDELBERG,IM NEUENHEIMER FELD 368, 69120 HEIDELBERG, GERMANYE-MAIL ADDRESS: KLUENERS@IWR.UNI-HEIDELBERG.DEAbstract. We present a new polynomial decompositionwhich generalizes thefunctional and homogeneousbivariatedecompositionof irreduciblemonic poly-nomials in Q[t]. With these decompositions it is possible to calculate the rootsof an imprimitive polynomial by solving polynomial equations of lower degree.1. IntroductionThe purpose of this paper is to introduce the norm decomposition which enablesus to compute the roots of a monic irreducible imprimitive polynomial f 2 Q[t] bysolving polynomial equations of lower degree. We call an irreducible polynomial fimprimitive if the number �eld generated by a root of f contains non{trivial sub-�elds. We will see that for each sub�eld there exists a norm decomposition. Thenorm decomposition generalizes the functional [Kozen and Landau, 1989] and ho-mogeneous bivariate decomposition [von zur Gathen and Weiss, 1995]. There existimprimitive polynomials having neither a functional nor a homogeneous bivariatedecomposition. However, these polynomials always have a norm decomposition.Furthermore, the computing times by our algorithm are much shorter than theones for a homogeneous bivariate decomposition.If a functional decomposition f = g(h) with g; h 2 Q[t] exists we can calculatethe roots �1; : : : ; �m of g, and then the roots of h� �i (1 � i � m) in order to getthe roots of f . Note that there are very e�cient algorithms to compute functionaldecompositions.In the homogeneous bivariate decomposition the polynomial f is written in theform f = ĝ(h1; h2) where ĝ 2 Q[t; u] is homogeneous and h1; h2 2 Q[t]. A drawbackof the known algorithms for computing a homogeneous bivariate decomposition isthat they require an expensive factorization of the polynomial f in K[t], where Kis the number �eld generated by a root of f . If f has a homogeneous bivariatedecomposition then f = hm2 g(h1h2 ), where g(t) = ĝ(t; 1) and m = deg(ĝ). Since f isirreducible we obtain the roots of f by �rst computing the roots �1; : : : ; �m of gand then the roots of the polynomials h1 � �ih2 (1 � i � m).It is well known that the existence of sub�elds Q(�) � Q(�)[Casperson et al., 1996, Dixon, 1990, Hulpke, 1995, Kl�uners and Pohst, 1997,Lazard and Valibouze, 1993] is equivalent to f j g(h) where f; g 2 Q[t] are theminimal polynomials of � resp. �, h 2 Q[t]; deg(g) � deg(f). This is ageneralization of the functional decomposition. [Lazard and Valibouze, 1993]illustrate by an example how to represent the roots of f by a \nested" system ofequations which can be obtained via computing sub�elds.The functional decomposition of irreducible (and reducible) polynomials is veryuseful for many applications. There are very e�cient algorithms in theory andpractice [Kozen and Landau, 1989] to compute functional decompositions. It ispossible to compute functional decompositions of polynomials of degree 100 in lessthan a minute. 1



2 J. KL�UNERSWe want to look at polynomials where no functional decomposition is possible.A �rst approach was done in [von zur Gathen and Weiss, 1995] who de�ned thehomogeneous bivariate decomposition. They describe in section 2 applications torobotics, which was one motivation to look at decomposition algorithms. An otherapplication given in their paper is the relation to decompositions of rational func-tions. The authors proved a connection between block systems and homogeneousbivariate decompositions. It happens that there are polynomials with non-trivialblock systems but there exists no non-trivial homogeneous bivariate decomposition.Our approach generalizes and improves the homogeneous bivariate decomposi-tion in a way that for each block system there exists a norm decomposition. Thesedecompositions can be computed in a very e�cient way using the sub�eld algo-rithm presented in [Kl�uners and Pohst, 1997]. We remark that this algorithm isexponential time in the worst case. A lot of computed examples show that it worksvery well in practice. We will discuss the e�ciency in section 6.The norm decomposition is an important step to the solvability by radicals. Simi-lar to [Landau and Miller, 1985] the problem is reduced to primitive extension. Thereduction given in [Landau and Miller, 1985] is computed in polynomial time basedon factorization algorithms. In practice this approach is limited to polynomials ofsmall degree. 2. PreliminariesLet f 2 Q[t] be an irreducible monic polynomial of degree n, K = Q(�), and �a root of f .De�nition 2.1. Let g 2 Q[t] be an irreducible monic polynomial with zeros � =�1; : : : ; �m, and L = Q(�) an algebraic number �eld. We de�ne�(i) : L! Q(�i) : m�1Xj=0 bj�j 7! m�1Xj=0 bj�ji (bj 2 Q):We extend this de�nition to the polynomial algebra:�(i) : L[t]! Q(�i)[t] : kXj=0 cjtj 7! kXj=0 c(i)j tj (c(i)j 2 Q(�i)):For h 2 L[t] we de�ne the normNL(h) := Ng(h) := mYi=1h(i) 2 Q[t]:We remark that the norm of a polynomial h 2 L[t] does not depend on the choiceof a basis of L=Q.De�nition 2.2. Let f 2 Q[t] be an irreducible monic polynomial of degree n.1. We call f = g(h) with g; h 2 Q[t] and 1 < deg(g) < n a functional decompo-sition.2. We call f = ĝ(h1; h2) with homogeneous ĝ 2 Q[t; u], h1; h2 2 Q[t], deg(hi) �nm (i = 1; 2), and 1 < m = deg(ĝ) < n a homogeneous bivariate decomposi-tion.3. We call f = Ng(h) a (norm) decomposition if g 2 Q[t] is irreducible with1 < deg(g) < n and h 2 L[t], where L is the number �eld generated by a zeroof g.The functional decomposition can be regarded as a special case of a homogeneousbivariate decomposition (h2 = 1).



ON POLYNOMIAL DECOMPOSITIONS 3Theorem 2.3. The functional decomposition and the homogeneous bivariate de-composition of an irreducible monic polynomial f 2 Q[t] are special cases of anorm decomposition.Proof. Let f = g(h) with g; h 2 Q[t] and � be a root of g. Then we getf = g(h) = mYi=1(h � �(i)) = Ng(h� �):Assuming g = g1g2 we get f = g1(h)g2(h). Since f is irreducible we get g isirreducible.Let f = ĝ(h1; h2) be a homogeneous bivariate decomposition. Letting g(t) =ĝ(t; 1) and m = deg(g) we get f = hm2 � g(h1h2 ):Now f and h2 have no common root since deg(h2) < deg(f), henceg(h1(�)h2(�) ) = 0:Thus there exists a root � = h1(�)h2(�) of g such that h1(�) � �h2(�) = 0. Let ~h :=h1 � �h2 and ~g be the minimal polynomial of �. Since � is a root of N~g(~h) 2 Q[t]we have N~g(~h) = f . From deg(g) deg(~h) � deg(f) and ~g j g it follows that ~g = g,thus g is irreducible.In the next example we see that the norm decomposition is a strict generalizationof the homogeneous bivariate and the functional decomposition. It is easy to see(Lemma 3.5) that norm decompositions of polynomials of degree 4 correspond tohomogeneous bivariate decompositions.Example 2.4. Let f(t) = t6 � 12t5 + 54t4 � 134t3 + 153t2 � 162t + 81. We getthe norm decomposition f = Ng(h), where g(t) = t3 � 18t2 + 81t� 81 and h(t) =t2 + 36�30�+2�29 t + � and � a zero of g. Using Lemmas 3.4 and 3.5 we see thatthere is neither a homogeneous bivariate nor a functional decomposition of f .Remark 2.5. For f = Ng(h) we can express the zeros of f in the following way:First we calculate the zeros �1; : : : ; �m of g. In a second step we determine thezeros of h(i) (1 � i � m). Instead of solving an equation of degree n we �rst solvean equation of degree m and then m equations of degree nm .In the following we give a description of sub�elds Q(�) of Q(�). Let f and g bethe minimal polynomials of � resp. �. Then the sub�eld Q(�) can be described by apair (g; !), where ! 2 Q[t] and !(�) = �. We call ! the embedding polynomial (ofQ(�) in Q(�)). If we replace ! with ! mod f we can suppose that deg(!) < deg(f).The following Lemma is an immediate consequence.Lemma 2.6. Let f; g 2 Q[t] be monic, irreducible polynomials and �; � be a rootof f resp. g. For ! 2 Q[t] the following is equivalent:1. Q(�) is a sub�eld of Q(�) with !(�) = �.2. f j g(!).[Kl�uners and Pohst, 1997] developed an e�cient algorithm to compute all sub-�elds of an algebraic number �eld K = Q(�) given by the minimal polynomial f of�. Each sub�eld L = Q(�) is characterized by a pair of polynomials (g; !) whereg 2 Q[t] is the minimal polynomial of � and ! 2 Q[t] is the embedding polynomialwith !(�) = �. We remark that the sub�eld algorithm [Kl�uners and Pohst, 1997]works for monic irreducible polynomials in Z[t]. It can be extended to non-monic



4 J. KL�UNERSirreducible polynomials inZ[t] which is equivalent to monic irreducible polynomialsin Q[t]. 3. Subfields and DecompositionsUsing Lemma 2.6 we easily see that functional decomposition is a special caseof sub�eld computation. In this section we prove that there is a correspondencebetween sub�elds and norm decompositions. Furthermore we give a method tocompute a norm decomposition which corresponds to a given sub�eld.Lemma 3.1. Let f; g 2 Q[t] be monic, irreducible polynomials and �; � be a rootof f resp. g. Then the following is equivalent:1. Q(�) is a sub�eld of Q(�) and h 2 Q(�)[t] is the minimal polynomial of �over Q(�).2. f = Ng(h).Proof. Let Q(�) be a sub�eld of Q(�) and h be the minimal polynomial of � overQ(�). It follows that � is a zero of Ng(h). Since deg(Ng(h)) = deg(f) and bothpolynomials are monic it follows that f = Ng(h).Letting f = Ng(h) it follows that h(�) = 0. This implies that Q(�) is a sub�eldof Q(�) and h is the minimal polynomial of � over Q(�).We have seen that to each sub�eld there corresponds a decomposition and viceversa. This leads to the following de�nition.De�nition 3.2. We call two decompositions equivalent if they correspond to thesame sub�eld.The next theorem enables us to compute a norm decomposition correspondingto a sub�eld in a very e�cient way.Theorem 3.3. Let L = Q(�) be a sub�eld of K = Q(�) and f; g 2 Q[t] be theminimal polynomials of � resp. �. Let ! 2 Q[t] be the embedding polynomial with!(�) = �. De�ne h := gcdL[t](f; ! � �):Then Ng(h) is a norm decomposition of f .Proof. From f(�) = 0 and !(�) � � = 0 it follows that h(�) = 0. The assertionfollows if we know that h is the minimal polynomial of � over L. Since h(�) = 0 itsu�ces to prove that deg(h) � [K : L]. The only isomorphism from L to �Q whichleaves � invariant is the identity because � is a primitive element of L=Q. Thereare exactly [K : L] isomorphisms from K to �Q which leave � invariant. Thus thereexist exactly [K : L] zeros ~� of f with !(~�) = �. Since h j ! � � this impliesdeg(h) � [K : L].We compute the greatest common divisor of polynomials over number �eldsby a modular algorithm presented in [Encarnaci�on, 1995]. The previous theoremprovides us with a decomposition of f from a sub�eld of K. It is interesting to notethat we are able to compute a functional or homogeneous bivariate decompositionif it exists, in spite of the dependency on the generating polynomial g rather thanthe corresponding sub�eld. The following Lemma is an immediate consequence ofTheorem 8 of [Kozen and Landau, 1989].Lemma 3.4. Let f = Ng(h) be a norm decomposition. There exists an equivalentfunctional decomposition of f if and only if ~h := h � h(0) 2 Q[t]. In that case weobtain the functional decomposition f = ~g(~h), where ~g is the minimal polynomialof h(0) over Q.



ON POLYNOMIAL DECOMPOSITIONS 5Lemma 3.5. Let f = Ng(h) be a norm decomposition. There exists an equivalenthomogeneous bivariate decomposition if and only if h = h1� ~�h2 with hi 2 Q[t] (i =1; 2), and ~� 2 L. In this case let ~g the minimal polynomial of ~�. Then f = ĝ(h1; h2)is a homogeneous bivariate decomposition, where ĝ 2 Q[t; u] is homogeneous andĝ(t; 1) = ~g(t).Proof. If f has an equivalent homogeneous bivariate decomposition it follows fromthe proof of Theorem 2.3 that h = h1 � ~�h2.Now we assume that h = h1 � ~�h2. Let � be a zero of h. Fromh(�) = 0 = h1(�)� ~�h2(�) and ~g( ~�) = 0it follows that ~g(h1(�)h2(�) = 0. Let ĝ 2 Q[t; u] be a homogeneous polynomial withĝ(t; 1) = ~g(t). This implies f = ĝ(h1; h2).We remark that the sub�eld algorithm in [Kl�uners and Pohst, 1997] calculates thegenerating polynomial g in a way that we can choose ~g = g in Lemmas 3.4 and 3.5.Therefore we �nd a functional or homogeneous bivariate decomposition if it exists.In general, small coe�cients of the generating polynomials of the computed sub-�elds yield decompositions with small coe�cients as well. We use the OrderShortfunction in Kash [Daberkow et al., 1997] which produces a shorter generating poly-nomial for a number �eld together with the embedding from one representation tothe other. The algorithm is based on the LLL-algorithm [Lenstra et al., 1982] anda slight modi�cation of the algorithm presented in [Cohen, 1993, section 4.4.2].4. Towers of algebraic number fieldsIn this section we develop an algorithmwhich expresses the roots of a polynomialf if we know a tower of sub�elds of K. We have the following situation: K = Q(�)is a number �eld generated by the polynomial f , L = Q(�) is a sub�eld of Kgenerated by g1, and M = Q() is a sub�eld of L generated by g2 of degree l. Inan optimal case we know the embedding polynomials !1; !2 2 Q[t] with !1(�) = �and !2(�) =  in which we can express the roots of f in the following way:Lemma 4.1. Let h1 = gcdL[t](f; !1 � �) and h2 = gcdM [t](g1; !2 � ). Then weobtain f = Ng1 (h1) = NNg2 (h2)(h1):Proof. In Theorem 3.3 we proved f = Ng1 (h1) and g1 = Ng2 (h2). The assertionfollows immediately.In general, we have the following situation: Q� M = Q() � L = Q(�) � K =Q(�) and we know the embeddings !1(�) = � and � (�) = . In order to use theabove Lemma we have to calculate the embedding !2(�) = .Lemma 4.2. Let  = Pn�1i=0 ci�i and �j = Pn�1i=0 bi;j�i (0 � j � m � 1). LetB = (bi;j) 0�i�n�10�j�m�1, �c = (c0; : : : ; cn�1)t, and �x = (x0; : : : ; xm�1)t with B�x = �c.Then  =Pm�1j=0 xj�j .Proof. The system of linear equations has exactly one solution since  2 Q(�).After decomposing f = NNg2 (h2)(h1) we have two representations for the poly-nomial h2 2 L[t]. The �rst one represents the coe�cients of h2 in the basis1; �; : : : ; �m�1. We call this an absolute representation. The other representa-tion uses the basis fi�j j 0 � i � l � 1; 0 � j � ml � 1g. We call this a relativerepresentation. In most cases the relative representation gives a shorter descriptionof the zeros. Our algorithm produces either representation.



6 J. KL�UNERS5. ExamplesWe give four examples to demonstrate how e�cient this algorithm works.[Hulpke, 1995] gave a list of examples which demonstrates that the other knownmethods are limited to examples of small degree and small size of coe�cients. The�rst step of most of the other methods is the factorization of polynomials overnumber �elds. We give the computing time (if possible) for this factorization toget an impression how complicate it is to factorize polynomials. All computationswere done on a Sun-Ultra-2 300 Mhz using KASH 1.9 under SunOS 5.6.Let f(t) = t8 � 8t7 + 1448t6 � 8576t5 � 203394t4 + 870600t3 + 3596804t2 �8957592t + 4818366 which has �ve decompositions of the form f = NNg(h1)(h2).The computation was done in 0.8 seconds. The corresponding factorization of fover the number �eld generated by a zero of f took 0.7 seconds. One of thesedecomposition is:1. g(t) = t2 � 12t+ 142. h1(t) = t2 + (�6 + �)t + 53. h2(t) = t2 � 2t+ (15(�1970 + 783 + 6252 � 2243))4. h2(t) = t2 � 2t+ ((325� 224�) + (145� 125�))We remarked in the introduction that the norm decomposition reduces the prob-lem of solvability by radicals to primitive extensions. If the degree of these exten-sions is not bigger than four it is easy to express the roots by radicals. In ourexample we use the printed decomposition and get:�1;2 = 6 + �1p22 with �1 = �1:j1 ;j2 = 3� � � �2p22 with �2 = �1; hence1;2;3;4 = ��1p22 + �2p22with �1 = �1; �2 = �1:�k1;k2 = 1 + �3p�324 + 224� � 145 + 125� with �3 = �1, hence,�1;2;3;4;5;6;7;8 =1 + �3p�324+224(6+�1p22)�145(��1p22+�2p22 )+125(6+�1p22)(��1p22+�2p22 )with �1 = �1; �2 = �1; �3 = �1:Let f(t) = t12+9t11+3t10�73t9�177t8�267t7�315t6�267t5�177t4�73t3+3t2+9t+ 1 be the polynomial given in [Lazard and Valibouze, 1993]. We computethree inequivalent norm decompositions without any prior knowledge about thepolynomial.After 3.1 seconds we get the following three decompositions of the formNNg(h1)(h2) in an absolute representation (or a relative representation,respectively). The factorization of f over the number �eld generated by a zeroof f took 5.9 seconds. We remark that the \nested" equations in[Lazard and Valibouze, 1993] give a shorter representation of the zeros of f . Themain reason is that they choose optimal polynomials for this special example. Inthe following � and  denote zeros of g and h1, respectively. For reasons of spacewe only give one decomposition.1. g(t) = t2 � 3t� 32. h1(t) = t2 + (�2 + �)t + 13. h2(t) = t3 + (6 + 5 � 2 � 3)t2 + (1 +  � 22)t� 14. h2(t) = t3 + ((9 � �) + (�3 + 2�))t2 + (3 + (�3 + 2�))t � 1



ON POLYNOMIAL DECOMPOSITIONS 7Now we consider two larger examples.f(t) = t32 � 32t31 + 496t30 � 4888t29 + 34340t28 � 183880t27 + 786400t26 �2779240t25 + 8268310t24 � 20688072t23 + 42882496t22 � 72010200t21 + 97632348t20 �97228120t19 � 33958464t18 + 705826648t17 � 2475191663t16 + 5229698952t15 �7657389040t14 + 11103317744t13 � 18441575432t12 + 23625143936t11 � 2686129440t10 �79950368240t9 +226681340832t8 � 351779300352t7 +414312426688t6 � 379633855232t5 +329006420544t4 � 240737112960t3 + 154135928576t2 � 63365093120t + 18408410368.The number �eld generated by a zero of f has three non-trivial sub�elds, twoof degree 4 and one of degree 16. We computed two decompositions of the formNNg(h1)(h2) in 46 seconds. About 40% of the time was used to �nd shorter repre-sentations for the sub�elds (OrderShort). The factorization of f over the number�eld generated by a zero of f was impossible within 3 days. One decomposition is:1. g(t) = t4 + 8t3 + 24t2 + 31t+ 162. h1(t) = t4 + (�2 � )t3 + 3. h2(t) = t2+( 1686(�21732�20736�158422�95833+252484+243425+148056+135727�105668�55659�777610�619811+34312+144413+129614+103315))t+( 1196(17676+ 17416+ 148662+ 92373� 253364�236385 � 142636 � 138047 + 120868 + 55199 + 814410 + 664211 �49312 � 161213 � 144814 � 117115))4. h2(t) = t2 + (12 ((4 + 4�) + (�30� 40� � 16�2 � 2�3)2 + (23+ 24� + 8�2 +�3)3))t+ (14 ((12 + 12� + 4�2) + (�56 � 96� � 48�2 � 8�3) + (34 + 24� �2�3)2 + (37 + 56� + 24�2 + 3�3)3))This example demonstrates that the relative representation is much shorter thanthe absolute one.The last example I got from Daniel Lazard. The number �eld given by a zeroof f has two non trivial sub�elds, one of degree 5 and one of degree 8. It took 19minutes to compute the decompositions. In this example we do not have includedthe time to �nd nicer representations. We do not give any output to save space.One problem of our algorithm is to choose a good prime to do the computations.In this examples the chosen prime was not the best one. If we choose the prime byhand we can do the computation within 102 seconds. The factorization of f overthe number �eld generated by a zero of f was impossible within 3 days.f(t) = 6436343t40 � 34700284t39 � 905589810t38 + 3408895573t37 + 59330876659t36 �114609011287t35 � 2146765884442t34 + 581668312493t33 + 47966892655022t32 +58086065686110t31 � 664273174842926t30 � 1793570319828018t29 +4914461478555900t28 + 25106824391937532t27 � 2093649224751164t26 �173336635271317655t25 � 254426897796933790t24 + 392882585322815188t23 +1781903363906052715t22 + 2300821073721698022t21 � 3044251267070794660t20 �19453432571061340687t19 � 20250691917531161954t18 + 55227774448506262996t17 +135619533598051236796t16 � 36220213376169001613t15 � 366983017878149748835t14 �189737074857945494650t13 + 514466502292905094369t12 + 578377903845523688438t11 �309701724291250465911t10 � 734169416313703303879t9 � 83270519500276293878t8 +459451216519714656526t7 + 230165980213575319883t6 � 112015867904431532196t5 �117712533422275973284t4 � 11355446119881189384t3 + 18171476841490003710t2 +7152980982346226040t + 8115971355298981696. ComparisonThe algorithms for computing functional decompositions[Kozen and Landau, 1989] are very e�cient in theory and in practice. We want tolook at irreducible polynomials in Q[t] where no functional decomposition exists.We give a concept of decomposition which is the best possible in the sense that toevery block system there exists a decomposition. One advantage of our



8 J. KL�UNERSrepresentation is that we describe the decomposition in an elegant way by anequation (f = Ng(h)).Most of the known algorithms [Landau and Miller, 1985, Hulpke, 1995], and[Lazard and Valibouze, 1993] are based on the factorization of polynomials overnumber �elds resp. the factorization of polynomials of high degree over the ra-tionals. These factorizations are known to be in polynomial time [Landau, 1985,Lenstra et al., 1982]. It is well known that in practice the factorization methodbased on Hensel's lemma and the recombination procedure is used. This approachis exponential time in the worst case but it works well in practice. Thereforewe have a problem where polynomial time algorithms are known but many com-puted examples show that these algorithms are limited to small examples. Wecomputed a lot of examples up to degree 60 to demonstrate the e�ciency of thealgorithm. We have a lot of examples where it is possible to compute all de-compositions within a minute and it is impossible to factorize the minimal poly-nomial over the number �eld within a day. We remark that the algorithm pre-sented in [Casperson et al., 1996] needs no factorization. It is directly based onthe lattice reduction [Lenstra et al., 1982]. Practical experiments [Hulpke, 1995,Kl�uners and Pohst, 1997] show that this method is limited to small examples, too.The algorithm presented in this paper is mainly based on two steps. First thecomputation of sub�elds and second the computation of greatest common divisorsof polynomials over number �elds (Theorem 3.3). The second step can be donein a very e�cient way using modular algorithms presented in [Encarnaci�on, 1995].We give a short analysis of the used sub�eld algorithm [Kl�uners and Pohst, 1997].Roughly speaking the algorithm can be divided into two parts. First a combina-torical approach is used to �nd the block systems. Once a block system is knownthe e�cient Hensel lifting resp. Newton lifting procedure is used to determine thecorresponding sub�eld. The latter part of the algorithm is in polynomial time. Itmay happen in the worst case that exponentially many combinations have to beconsidered to determine the block systems. The number of combinations is depen-dent on the degree and the Galois group of the given �eld. It turns out that we arein the worst case if the Galois group is elementary Abelian. In the Abelian casethere is a very e�cient algorithm [Acciaro and Kl�uners, 1998] which computes allautomorphisms of the given �eld. Knowing this it is easy to compute the sub�elds.Since the number of combinations is not dependent on the size of the coe�cientsthe sub�eld algorithm is polynomial time in the size of the coe�cients.References[Acciaro and Kl�uners, 1998] Acciaro, V. and Kl�uners, J. (1998). Computing automorphisms ofabelian number �elds. to appear in Math. Comput.[Casperson et al., 1996] Casperson, D., Ford, D., and McKay, J. (1996). Ideal decompositions andsub�elds. J. Symb. Comput., 21:133{137.[Cohen, 1993] Cohen, H. (1993).A Course in Computational Algebraic Number Theory. Springer.[Daberkow et al., 1997] Daberkow, M., Fieker, C., Kl�uners, J., Pohst, M., Roegner, K., andWildanger, K. (1997). KANT V4. J. Symb. Comput., 24(3):267{283.[Dixon, 1990] Dixon, J. (1990). Computing sub�elds in algebraic number �elds. J. Austral. Math.Soc. (Series A), 49:434{448.[Encarnaci�on, 1995] Encarnaci�on, M. (1995). Computing GCDs of polynomials over algebraicnumber �elds. J. Symb. Comput., 20:299{313.[Hulpke, 1995] Hulpke, A. (1995). Block systems of a Galois group. Exp. Math., 4(1):1{9.[Kl�uners and Pohst, 1997] Kl�uners, J. and Pohst, M. (1997). On computing sub�elds. J. Symb.Comput., 24(3):385{397.[Kozen and Landau, 1989] Kozen, D. and Landau, S. (1989). Polynomial decomposition algo-rithms. J. Symb. Comput., 7:445{456.[Landau, 1985] Landau, S. (1985). Factoring polynomials over algebraic number �elds. SIAMJ.Comput., 14:184{195.
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