
FACTORING POLYNOMIALS OVER GLOBAL FIELDS

KARIM BELABAS, MARK VAN HOEIJ, JÜRGEN KLÜNERS, AND ALLAN STEEL

Abstract. We prove polynomial time complexity for a now widely used fac-
torization algorithm for polynomials over the rationals. Our approach also

yields polynomial time complexity results for bivariate polynomials over a fi-
nite field.

Contents

1. Introduction . 1
2. Notation . 3
3. General description. 3
3.1. Sketch of the algorithm . 3
3.2. Sketch of proof . 4
3.3. Further general remarks . 5
4. The case K = Fq(t) . 6
4.1. Representing Ov . 6
4.2. Bounds . 6
4.3. The main idea . 7
4.4. Algorithms . 8
4.5. Practical improvements . 9
4.6. Improving the bounds . 10
5. The case K = Q . 12
5.1. Setup . 12
5.2. A truncated all-coefficient lattice . 13
5.3. Bit accuracy of the modular computations . 16
5.4. One coefficient at a time. 18
References . 20

1. Introduction

Let K be a global field. The goal of this paper is to present a practical algorithm
which factors a polynomial f ∈ K[X] in polynomial time. In the first three sections
we treat the part that applies to all global fields; but we only complete the work for
two global fields K = Fq(t) and K = Q, see Sections 4 and 5 (the general case is
more technical; to treat algebraic number fields we have to combine the first three
sections of this paper with techniques from [Bel03]).

Date: December 31st 2007.
Second author supported by NSF grants 0098034, 0511544 and 0728853.

1

2 KARIM BELABAS, MARK VAN HOEIJ, JÜRGEN KLÜNERS, AND ALLAN STEEL

Let v be a prime ideal of a maximal order O of K. We denote by Kv the
completion of K at v with maximal order Ov and denote by k the residue class
field O/v.

• If K = Q then O = Z and v is a prime ideal generated by a prime number,
which we denote by v, too. Kv is the field of v-adic numbers, Ov its ring
of v-adic integers, and k = Z/vZ.
• If K = Fq(t) then we choose O = Fq[t] and a prime ideal v generated

by an irreducible polynomial in Fq[t], which we denote by v, too. If α is
a root of this polynomial in an algebraic closure of Fq, then k ∼= Fq(α),
Ov ∼= k[[t− α]] and Kv

∼= k((t− α)).

The method of Zassenhaus [Zas69] to factor in K[X] reduces to the case that f is in
O[X], the reduction f̄ of f is separable in k[X], and the leading coefficient lc(f) of
f does not vanish mod v. Since k is finite we can factor f̄ in k[X] using well-known
algorithms. By Hensel’s lemma, the factorization of f̄ lifts to a factorization

f = lc(f)f1 · · · fr

in Kv[X], where lc(f) ∈ K ⊂ Kv and f1, . . . , fr are monic and irreducible in
Kv[X]. Since lc(f) does not vanish mod v, we have f1, . . . , fr ∈ Ov[X]. In practice,
elements of Ov are computed modulo v` for some ` > 0 and lifted to O. For
a ∈ Ov we write “a mod v`” for such a lift of a to O. This notation is extended
to Ov[X] coefficient-wise. By Hensel lifting the irreducible factors of f̄ we can
compute f1, . . . , fr mod v` for any fixed ` > 0.

Let g ∈ K[X] be a monic irreducible factor of f . Then its coefficients can be
bounded in terms of f . Write

g = fe11 · · · ferr ,

where ei ∈ {0, 1} for all 1 ≤ i ≤ r. If ` is large enough compared to the bound on the
coefficients of g, we may test for given e1, . . . , er ∈ {0, 1} whether fe11 · · · ferr ∈ K[X]
by computing lc(f)fe11 · · · ferr mod v` and checking whether this divides f in K[X].
This time, the lift “. . . mod v`” to O[X] is not arbitrary. Choosing the right lift is
straightforward if K is Q or Fq(t) since there are canonical minimal lifts to O, but
care is needed for general global fields (see [Bel03] for the number field case, and
[PO06] for the general case).

This reduces the problem to a finite computation. The Zassenhaus algorithm
finds the ei by an exhaustive enumeration, which works very well if r is small or
the K-rational irreducible factors are plentiful. Otherwise, we face combinatorial
explosion and exponential behavior. That is, about 2r combinations are considered,
where r can be of the order of deg f .

The landmark paper by Lenstra et al. [LLL82] avoids this combinatorial problem
by constructing K-rational factors via lattice basis reduction (LLL-reduction). The
original paper assumes K = Q, but was generalized by Arjen Lenstra [Len82]
(K a number field), then Pohst and Méndez [PO06, PM06] (K any global field).
Unfortunately, although this algorithm runs in polynomial time, it is rather slow
in practice since it requires Hensel lifting to huge accuracy, followed by the LLL-
reduction of correspondingly huge lattices. Van Hoeij [Hoe02] gave a different
solution to the combinatorial problem for K = Q by reducing it to a knapsack
problem using power sums. Belabas [Bel03] generalized van Hoeij’s algorithm to
number fields, but these two papers stated no complexity bound. This approach

FACTORING POLYNOMIALS OVER GLOBAL FIELDS 3

is reminiscent of Sasaki et al. [SSH93] who used power sums to factor a bivariate
f ∈ k[X,Y] over a field k using k-linear algebra for the recombination step.

We shall describe a similar approach over a general global field K, and show it
runs in polynomial time, although details will only be provided for the cases K = Q
and K = Fq(t). Our key idea is to replace power sums by logarithmic derivatives
multiplied by the target polynomial f . This not only simplifies complexity proofs,
but also has practical algorithmic advantages: see Example 4.6. This is related
to Miller’s [Mil92] idempotents approach, but has the advantage that one obtains
a rigorous complexity proof. We give a high-level unified description of the new
algorithm in §3, then treat in detail the cases K = Fq(t) and K = Q in §4 and §5,
respectively.

2. Notation

Throughout the paper we use the following notation. Let K be a global field
of characteristic p ≥ 0 with maximal order O. In particular, the notation Z/pZ
denotes either the finite prime field Fp (p > 0) or the infinite ring Z (p = 0). We
wish to factor over K[X] a separable polynomial f ∈ O[X] of degree n > 1. Let
v be a prime ideal of O such that the leading coefficient lc(f) ∈ O of f does not
vanish mod v, and f mod v is still separable. We denote by Kv the completion
of K at v, with maximal order Ov, maximal ideal v and finite residue field k. Let
f̄ be the image of f in k[X], which is a separable polynomial of degree n. In the
number field case, we can work within a subring of O if the computation of O is
too costly (see [Bel03]), but we ignore this aspect here.

We have the factorizations into monic irreducible factors

f = lc(f)f1 · · · fr ∈ Ov[X], f̄ = lc(f̄)f̄1 · · · f̄r ∈ k[X],

and f = lc(f)g1 · · · gs ∈ K[X].

Obviously, lc(f)gi ∈ O[X] and 1 ≤ s ≤ r ≤ n. We call the fi the local factors and
the gj the K-factors. We fix an integer ` ≥ 1. We cannot compute fi ∈ Ov[X] with
infinite accuracy, but we can compute fi mod v`, which is in O[X].

In order to hide logarithmic factors in complexity estimates, we use the cus-
tomary notation Õ(f) for f(log f)O(1). Finally, let 3 ≥ ω ≥ 2 be a feasible matrix
multiplication exponent, so that two n×n matrices can be multiplied within O(nω)
field operations. Let Idr be the r by r identity matrix and let wtr denote the trans-
pose of the vector w.

3. General description

3.1. Sketch of the algorithm. Our method relies on two main ideas:

3.1.1. Linearize. The logarithmic derivative is a group homomorphism from the
multiplicative group Kv(X)∗ to the additive group Kv(X), with kernel Kv(Xp)∗.
The first idea is to multiply this by f and consider the group homomorphism:

Φ : Kv(X)∗/Kv(Xp)∗ → Kv(X)
g 7→ fg′/g.

Lemma 3.1. If g is in the subgroup of Kv(X)∗/Kv(Xp)∗ generated by the local
factors fi, then Φ(g) ∈ Ov[X]. If g is in the subgroup generated by the K-factors
gj, then Φ(g) ∈ O[X].

4 KARIM BELABAS, MARK VAN HOEIJ, JÜRGEN KLÜNERS, AND ALLAN STEEL

Proof. It is enough to prove the first statement for g = fi a local factor of f . It
then becomes obvious since both f/g and g′ belong to Ov[X] (recall that the fi
are monic and in Ov[X]). It is enough to prove the second statement for g = gj
an irreducible K-factor. Take any non-zero prime ideal of O and let w be the
corresponding valuation on K, which is extended to a valuation on K[X] by taking
w(
∑
ciX

i) = mini w(ci). Again, Φ(g) is the product of g′ and f/g and hence in
K[X]. Since w(g′) ≥ w(g) we get

w(Φ(g)) = w(g′ f/g) ≥ w(g f/g) = w(f) ≥ 0

since f ∈ O[X]. So the valuation of Φ(g) ∈ K[X] is non-negative at any prime
ideal of O and hence Φ(g) ∈ O[X]. �

Compared to [Hoe02], we have replaced power sums by f times the logarithmic
derivative. If g ∈ K[X] is a monic separable polynomial, the i-th power sum (i-th
“trace”) of g is:

Tri(g) :=
∑
α

αi,

where the sum is taken over the roots α of g in an algebraic closure of K. Despite
the relation

g′/g =
∑
i≥0

Tri(g)X−i−1,

our present approach turns out to be more convenient for complexity proofs than
power sums, and also has practical advantages when f is sparse or not monic.

3.1.2. Approximately solve knapsack. Let Gv ⊂ Kv(X)∗/Kv(Xp)∗ be the subgroup
generated by the local factors. Our goal is to find the subgroup G ⊂ Gv generated
by the irreducible K-factors of f . To do this we construct a “knapsack lattice” L
in a similar way as in [Hoe02], except that instead of traces (power sums) of fj we
use the coefficients of Φ(fj), lifted mod v` to O (see Sections 4 and 5 for details).

Compute a basis of small vectors for L, using lattice reduction if the character-
istic is p = 0 and Fp-linear Gaussian elimination if p > 0. The image of K-rational
factors are small and are thus supported on the small basis vectors. Discarding
large basis vectors of L yields a sublattice L′ ⊂ L, associated to a subgroup G′ of
Gv, such that we still have G ⊂ G′. Note that L′ and G′ depend implicitly on `.

3.1.3. Conclusion. We claim that G = G′ provided ` is large enough.

3.2. Sketch of proof. Again, we are deliberately vague here, leaving the details
to Sections 4 and 5. The proof is by contradiction. If G′ is strictly larger than
G, then by Lemma 3.2 below, it contains an element, represented by a rational
function g ∈ Kv(X)∗, such that

(1) At least one fi divides Φ(g),
(2) None of the gj divide Φ(g) where the bar indicates reduction to k[X].
(3) Φ(g) mod v` =: H ∈ O[X] is small. In particular, the size of H is polyno-

mial in the size of f .
Let R := Res(f,H) ∈ O be the resultant of f and H. Then

• Res(f,Φ(g)) = 0, hence v` | R. In fact, v`d | R, where d is the sum of the
degrees of the fi that divide Φ(g). Item (1) implies d > 0.
• R 6= 0, because if R were zero then H would be divisible by some gj , so H

would be divisible by gj , contradicting item (2).

FACTORING POLYNOMIALS OVER GLOBAL FIELDS 5

• The size of R is bounded by a polynomial in the size of f and H, and hence
(by item (3)) in the size of f .

These three points contradict each other if v` is larger than the upper bound for
R. For any strictly larger `, we have G = G′.

Lemma 3.2. Suppose G (G′ and let (b1, . . . , bu) be any (Z/pZ)-basis of Φ(G′) mod
v`. Then there exists an element g ∈ G′ \G such that

(1) fi | Φ(g) ∈ Ov[X] for some 1 ≤ i ≤ r.
(2) gj - Φ(g) for all 1 ≤ j ≤ s.
(3) H := Φ(g) mod v` is of the form bi+eΦ(gj)+

∑
k∈T Φ(gk) for some indices

i, j, some set T ⊂ {1, . . . , s}, and some integer e ∈ Z.

Proof. Elements g ∈ Gv can be written in the form g = fe11 · · · ferr ·Kv(Xp)∗, where
the integers ei are defined mod p. We view ei as an element of Z/pZ, and then
define the support of g as Supp g = {i : ei 6= 0}. Since the fi are pairwise coprime
and irreducible in Ov[X], we have

fi | Φ(fj) ⇐⇒ i 6= j.

So fi | Φ(g) iff ei is zero in Z/pZ, so that gj | Φ(g) iff Supp g
⋂

Supp gj = ∅.
The supports of g1, . . . , gs form a partition of {1, . . . , r}. Choose any element

g ∈ G′ \ G. For all 1 ≤ j ≤ s with Supp gj ∩ Supp g = ∅, replace g by gjg. Then
condition (2) is satisfied (recall that f is separable), and g is still in G′ \G. Write
this g as fe11 · · · ferr ·Kv(Xp)∗ as above. Since g is not in the group G generated by
g1, . . . , gs, there must be some gj for which Sj := {ei : i ∈ Supp gj} contains more
than one element. Take an element e ∈ Sj and replace g by g/gej . Now g satisfies
conditions (1), (2) and (3). �

We have sketched a general proof and omitted the details. Filling in these details
is easy for the case K = Fq(t) (discussed in Section 4). The details for K = Q
require more work, so are deferred to the last section.

3.3. Further general remarks. Concretely, the (Z/pZ)-module G is represented
as follows: For 1 ≤ j ≤ s write the monic irreducibleK-factors as gj = f

wj,1
1 · · · fwj,rr

with wj,1, . . . , wj,r ∈ {0, 1} and write wj := (wj,1, . . . , wj,r)tr ∈ Zr. Now let
W = (Z/pZ)w1 + · · · + (Z/pZ)ws. Knowing W enables us to compute the factors
gj of f . Indeed, given any (Z/pZ)-basis u1, . . . , us of W , we can find {w1, . . . , ws}
by computing the reduced echelon form of u1, . . . , us, or by using the following
shortcut:

Lemma 3.3. For 1 ≤ a, b ≤ r, write a ∼ b if the a-th and b-th entry of u are the
same for every u in u1, . . . , us. This is an equivalence relation and each equivalence
class cl(a) corresponds to a unique wj = (wj,b)1≤b≤r (with wj,b = 1 if a ∼ b and 0
otherwise).

In order to determine W , let L be some subspace of (Z/pZ)r that contains W , for
instance L = (Z/pZ)r. The following lemma enables us to check whether L = W
(compare [Hoe02, Lemma 2.8]).

Lemma 3.4. Let L ⊇W be generated by a (Z/pZ)-basis u1, . . . , us̃ of 0−1 vectors
ui = (ui,1, . . . , ui,r) (1 ≤ i ≤ s̃). We assume that

g̃i(X) :=
r∏
j=1

f
ui,j
j ∈ K[X] for 1 ≤ i ≤ s̃.

6 KARIM BELABAS, MARK VAN HOEIJ, JÜRGEN KLÜNERS, AND ALLAN STEEL

Then s = s̃ and W = L. Furthermore, if

(∗) exactly r elements ui,j are equal to 1 (for 1 ≤ i ≤ s̃, 1 ≤ j ≤ r),

then {g̃i : 1 ≤ i ≤ s} = {gi : 1 ≤ i ≤ s}.

Proof. Since the gj are irreducible in K[X], each g̃i is a product of some gj ’s, hence
L ⊂W . Since W ⊂ L by assumption, it follows that W = L and s = s̃. Condition
(∗) forces the g̃i to be coprime (otherwise, one fj is unused and we cannot have
L = W). Then

∏
i≤s g̃i = f/ lc(f) =

∏
i≤s gi and we are done since none of the g̃i

is equal to 1 (otherwise ui = 0 could not be part of a basis). �

The criterion is used as in Zassenhaus’s algorithm: given (ui,j), compute the g̃i mod
v` from the fj mod v` and check whether each g̃i divides f . We may first use
Lemma 3.3 to ensure condition (∗) is satisfied before attempting to reconstruct
the g̃i.

4. The case K = Fq(t)

4.1. Representing Ov. In this section p > 0, q is a power of p, O = Fq[t], and
the prime ideal v is generated by an irreducible polynomial in Fq[t], which we shall
also denote as v. Let f ∈ O[X] be a separable polynomial. We wish to factor f ,
viewed as element of Fq(t)[X]. Let α be a root of v ∈ Fq[t] in an algebraic closure
of Fq, so that the residue field k = Fq[t]/(v) is isomorphic to Fq(α). Representing
t − α with a new variable t̃, the map t 7→ t̃ + α is an isomorphism from Fq[t]/(v`)
to Fq(α)[t̃]/(t̃`). Taking limits, we obtain an isomorphism from

Ov = lim←−̀Fq[t]/(v`)

to
Fq(α)[[t̃]] = lim←−̀Fq(α)[t̃]/(t̃`).

If g ∈ Ov[X] we write “g mod v`” for the unique lift of g to Fq[t,X] such that

degt(g) < degt(v
`) = `deg v,

where degt denotes the degree with respect to t. We cannot compute fi ∈ Ov with
infinite accuracy; however, for any integer ` > 0 we can compute fi mod v`, which
is an element of Fq[t,X].

Note that the above technicalities with Ov become easier if we take v = t so that
t̃ = t. However, we can not always do this: we can only take v = t if f(0, X) is
separable and has degree n (and it may be impossible to transfer to such a situation
via Fq-linear transformations).

4.2. Bounds. An important ingredient of our algorithm is a bound for the coeffi-
cients of Φ(g), where g is a factor of f .

Lemma 4.1. Let Bi := min
(

degt(f), ñ− i− 1
)

where ñ is the total degree of f
as a bivariate polynomial. Let g ∈ Fq[t][X] be a polynomial which divides f . Then

Φ(g) =
n−1∑
i=0

ai(t)Xi ∈ Fq[t][X] with degt(ai) ≤ Bi.

FACTORING POLYNOMIALS OVER GLOBAL FIELDS 7

Proof. From Φ(g) = fg′/g we get degt(Φ(g)) + degt(g) = degt(g′) + degt(f). Since
degt(g′) ≤ degt(g) we get deg ai ≤ degt(f). The second bound is proven in the
same way. �

Example 4.2. Let Fq = F41, f = X10 + t2X8 + tX5 + 1. We obtain B0 = · · · =
B7 = 2, B8 = 1, B9 = 0.

With a little effort we can get a better bound. Denote by N(f) ⊂ R2 the Newton
polygon of f , which is defined as the convex hull of all points (i, j) for which the
coefficient of tjXi in f is non-zero.

Lemma 4.3. Let Bi := sup {j ∈ N : (i+ 1, j) ∈ N(f)} and suppose g ∈ Fq[t][X] is
a polynomial which divides f . Then

Φ(g) =
n−1∑
i=0

ai(t)Xi ∈ Fq[t][X] with deg(ai) ≤ Bi.

Proof. If S1, S2 ⊂ R2 then define S1 + S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2}. It is well
known that N(gh) = N(g) + N(h) for all g, h ∈ Fq[t,X]. It is also clear that
N(g′) ⊂ N(g) + {(−1, 0)}. Then

N(f/g · g′) = N(f/g) +N(g′) ⊂ N(f/g) +N(g) + {(−1, 0)} = N(f) + {(−1, 0)} .
If (i, j) ∈ N(Φ(g)) ⊂ N(f) + {(−1, 0)}, then (i+ 1, j) ∈ N(f). �

4.3. The main idea. We use the notation from §3.3. We start with L = (Z/pZ)r

containing W . Our goal is to compute a subspace L′ ⊆ L which still contains W .
This procedure is repeated until we reach L′ = W , which can be checked using
Lemmata 3.3 and 3.4, given a basis of L′.

We now explain how to produce L′. Choose a precision ` and let g ∈ Gv. If
the t-degree of one of the coefficients of Φ(g) mod v` exceeds the degree bound Bi,
then g is not a K-factor of f . We use this to replace the Zassenhaus combinatorial
search by linear algebra. More precisely, let mi = Bi + 1 and σ = degt(v`). Write

Φ(fj) mod v` =
n−1∑
i=0

ai,jX
i (1 ≤ j ≤ r)

so the ai,j are in Fq[t] and have degree < σ. Define

φmi(c0t
0 + · · ·+ cσ−1t

σ−1) := (cmi , . . . , cσ−1)tr

and

(1) Ai := (φmi(ai,1) · · ·φmi(ai,r))
which is a (σ −mi)× r matrix with entries in Fq, satisfying Aie = 0 for all e ∈W .
Now let L′ be the intersection of the kernels of A1, . . . , An−1 (viewed as Fp-linear
maps from L to Fσ−miq). Then L′ contains W . Note that L and W are subspaces
of F r

p and Ai is defined over Fq.
Let B be a degree bound for the resultant R in §3.1.3. Looking at the Sylvester

matrix, Lemma 4.1 gives B = min
(
(2n− 1) degt(f), ñ(ñ− 1)

)
, where ñ is the total

degree of f as bivariate polynomial. As in §3.1.3, one finds that L′ must be W
when degt(v`) > B. This proves

Theorem 4.4. Let B be as above. If degt(v`) > B and L′ is the intersection of
the kernels of Ai, i = 0, . . . , n− 1 then L′ = W .

8 KARIM BELABAS, MARK VAN HOEIJ, JÜRGEN KLÜNERS, AND ALLAN STEEL

This leads to an algorithm that factors a separable polynomial f ∈ Fq[t,X] in
deterministic polynomial time, on input f , v and a (squarefree) modular factoriza-
tion of f modulo v. Such a modular factorization can be obtained from f only in
probabilistic polynomial time, where the non-deterministic step lies in finding the
roots of a degree n polynomial over the prime field Fp. In particular, if p = nO(1)

is small, a suitable v and the associated modular factorization can be obtained
from f in deterministic polynomial time. We do not give a detailed running-time
analysis of this algorithm, which the interested reader can find in [BLSSW04] (but
see Corollary 4.12).

Now in that paper [BLSSW04], the authors followed our f times g′/g approach
(presented in a previous version of the present paper) and, as a corollary of our
quadratic bound ñ(ñ− 1), they obtained a linear bound when p > ñ(ñ− 1) is large
enough. A striking consequence is

Theorem 4.5 (Bostan, Lecerf, Salvy, Schost, Wiebelt). If p > ñ(ñ − 1), then
one can factor a polynomial f ∈ Fq[t][X] of total degree ñ in O(ñω+1) operations
in Fq, given an oracle for univariate factorization in Fq[t]. Allowing Las Vegas
probabilistic algorithms, this drops down to O(ñω) expected operations.

If f is monic and if we use the bound Bi ≤ ñ− i− 1 from Lemma 4.1, then our
present approach and the power sums in [Hoe02] are equivalent (see [BLSSW04]).
However, if we use the sharper bound in Lemma 4.3, or if f is not monic, then the
two approaches are no longer equivalent. In this case the f times g′/g approach is
at least as good but can be better as the following examples show.

Example 4.6. We continue with Example 4.2 and take v = t. If we use the power
sums approach, or equivalently, if we use the bound Bi ≤ ñ− i−1 from Lemma 4.1
then we need at least ` = 6 to prove that f is irreducible. However, the Newton
polygon bounds are B0 = · · · = B3 = 0, B4 = · · · = B6 = 1, B7 = 2, B8 = 1,
B9 = 0 in this example. Taking ` = 2 we already get some relations, and ` = 3 now
suffices to prove irreducibility.

Our new approach has the additional advantage that a reduction to the monic
case, which may increase the size of f , is not needed.

Example 4.7. If Fq = F13, f = (t10 − 1)X10 + tX2 + 1 and v = t, our algorithm
would factor f mod t, Hensel lift to ` = 4 and then stop because at this point
dim(L′) becomes 1, which implies that f is irreducible.

Experimentally, this last example is typical: for irreducible f , one often reaches
dim(L′) = 1 for a small value of `. Among polynomials of given degree, we expect
to prove irreducibility faster than we would find non-trivial factors.

4.4. Algorithms. A practical implementation should not use the precision bound
degt(v`) > B because the equations defined by the matrices Ai, 0 ≤ i < n could
already be sufficient for smaller values of `. Since we have to use quadratic Hensel
lifting anyway, we generate the new equations after each Hensel lifting step, and
produce a new lattice L′ containing W . Then we check with Lemma 3.4 whether
L′ = W . If not we repeat this procedure. We now write formally such an algorithm.
In order to simplify the presentation we will assume that we can choose v = t (see
§4.1 if this is not possible).

Denote L′ ⊆ Frq as the solution set of the equations defined by the matrices Ai.
In the following algorithm the matrix N ∈ Fr×dq describes a basis of L′. Note that

FACTORING POLYNOMIALS OVER GLOBAL FIELDS 9

the algorithm works more efficiently if instead of L′ we work with Frp
⋂
L′. see

section 4.5 for details how to do this.

Algorithm 4.8. (Bivariate Factorization, with simplifying assumptions)
Input: f ∈ Fq[t][X], such that the leading coefficient lc(f) does not vanish at

t = 0, and f(0, x) ∈ Fq[X] is squarefree.

Output: Factorization f = lc(f)g1 · · · gs ∈ Fq(t)[X].

Step 1: Compute f ≡ lc(f)f1 · · · fr mod t in Fq[X].

Step 2: Compute bounds Bi using Lemma 4.3.

Step 3: Set `← 1 and N ← Idr ∈ Fr×rq (identity matrix).

Step 4: While not finished do
(1) Set `← 2`.
(2) Compute f ≡ lc(f)f1 · · · fr mod t` using Hensel lifting.

(3) Compute Φ(fj) mod t` =
n−1∑
i=0

ai,j(t)Xi (1 ≤ j ≤ r).

(4) For i ∈
{
ĩ ∈ {0, . . . n− 1} : `/2 ≥ Bĩ + 1

}
do

(a) Write (for fixed i) ai,j =
`−1∑
k=0

ck,jt
k (1 ≤ j ≤ r).

(b) Set k0 ← min {Bi + 1, `/2}.

(c) Set Ci ←

 ck0,1 · · · ck0,r
...

. . .
...

c`−1,1 · · · c`−1,r

 ∈ F(`−k0)×r
q .

(d) Compute Ñ ∈ Fd×d̃q of largest rank such that (CiN)Ñ = 0.
(e) N ← NÑ ∈ Fr×dq , where d is the dimension of the current

lattice L′ corresponding to N .
(5) If d = 1 then f is irreducible and return f .
(6) Check using Lemma 3.4 if the lattice L′ corresponding to N equals

W . If so, return the factors gi.

The assumption that f is squarefree is reasonable since squarefree factorization in
Fq[t,X] is not expensive. But the assumption that t = 0 is a good evaluation point
cannot be ignored. This assumption might not hold for any evaluation point in Fq,
in which case we need to use a prime ideal v of degree > 1. To handle this case,
we implement the isomorphism between Fq[t]/(v`) and Fq(α)[t̃]/(t̃`) mentioned in
§4.1, using linear algebra to determine the inverse isomorphism.

It might happen that the check in Step 4 (6) fails even if L′ = W because ` is
too small to compute the factors. In this case, additional Hensel lifting is necessary,
but all subsequent matrices CiN are equal to 0.

4.5. Practical improvements. In the case when q is not a prime number but a
prime power the following improvement helps in practical examples and improves
the complexity when n > p (see Theorem 4.11).

For q = pw write Fq = Fpγ1 + · · ·+ Fpγw and define

ψ : Fq → Fw
p ,

w∑
l=1

clγl 7→ (c1, . . . , cw)tr.

10 KARIM BELABAS, MARK VAN HOEIJ, JÜRGEN KLÜNERS, AND ALLAN STEEL

Let Ai be as in equation (1). Then we define Ãi as follows: replace every entry c

of Ai by ψ(c). Since ψ(c) is a column vector with w entries, Ãi is a w(σ −mi)× r
matrix with entries in Fp and we still have Ãie = 0 for all e ∈ W . Now let L′ be
the intersection of the kernels of Ã0, . . . , Ãn−1. Then L′ contains W . It is obvious
that this intersection is contained in the intersection obtained when we compute
the kernels of the Ai. The following example shows that it can be strictly smaller.

Example 4.9. Take a positive integer a, a prime number p, and let n := pa + 1.
Take Fq as the splitting field of Xn − 1 over Fp, set f := Xn + tn − 1 and v := t.
We remark that f is irreducible. In this example, the intersection of the kernels of
the Ai, which is what we would calculate without the trick, equals W ⊗ Fq if and
only if ` > n(n− 1). With the trick we obtain W if and only if ` > n.

Remark 4.10. In the algorithm we assumed for simplicity that we can choose
v = t. Even if this is possible it can be a good idea to choose v of higher degree.
If one chooses a prime ideal v of higher degree than necessary, then a smaller `
will suffice to reach the same degt(v`). Using the isomorphism between Ov and
Fq(α)[[t̃]] and fast Fq(α) arithmetic, this can save time in Hensel lifting when poly-
nomial multiplication of degree-kd polynomials over Fp (in the classical range)
is slower than multiplication of degree-k polynomials over Fpd (because the Zech
logarithm representation for small extension fields is very efficient). For small p
and reducible f this often reduces the running time in our implementation in the
Magma [BCP97] system. The advantage disappears for very high degrees where
one switches to asymptotically fast polynomial arithmetic and a drawback is that
factoring f becomes more costly.

4.6. Improving the bounds. In this section we improve the quadratic bound B
in Theorem 4.4 for the case of small characteristic p and provide examples where
the improved bound is sharp, nicely supplementing the result of [BLSSW04]. The
idea is that we can make sure that σ > n/p in §3.1.3. For simplicity of notation we
assume that ñ = n and f is monic.

Theorem 4.11. Let f ∈ Fq[t][X] be a monic polynomial of total degree n and
q = pr. Using Algorithm 4.8, we get L′ = W when ` > min(q, n)(n− 1). When we
use the improvement described in §4.5 this bound is improved to ` > min(p, n)(n−1).

Proof. We imitate the proof of §3.1.3. Assume for a moment that f is irreducible
and there exists an element in g ∈ G′ \ G. As in the proof of Lemma 3.2 we get
the corresponding exponent vector (e1, . . . , er), where ei ∈ {0, . . . , p− 1}. Choose
a value a ∈ {0, . . . , p− 1} such that

σa :=
∑

{i : ei=a}

deg(fi)

becomes maximal. Then replace g by g/fa and define σ := σa ≥ n/p. Therefore,
vσ` divides the resultant. Altogether we want σ` > n(n − 1). Therefore it suffices
to choose ` > p(n− 1).

If f is not irreducible we have to check the second condition of Lemma 3.2 that
ḡj - Φ̄(g) for 1 ≤ j ≤ s, where gj are the true factors of f . Suppose there are gj with
this bad property after changing the element as in the first part of the proof. Then
this means that we (theoretically) can replace f by f̃ := f/gj . Furthermore we can
replace the corresponding lattices G and G′ accordingly. If we repeat this we arrive

FACTORING POLYNOMIALS OVER GLOBAL FIELDS 11

at a situation where we do not have the problem with the second condition. Now
we can proceed as in the first part of the proof, where we replace f by f̃ . We obtain
the condition σ ≥ deg(f̃)/p, but now it suffices to choose σ` > deg(f̃)(deg(f̃ − 1)).
Altogether we obtain

` > p(deg(f̃)− 1)
and the result follows since deg(f) ≥ deg(f̃). �

Corollary 4.12. Let f be separable in Fq[t][X] and let p be the characteristic of Fq.
For simplicity, assume that f has total degree n and that Rest(f ′, f)(0) 6= 0. Dis-
regarding the time needed for one univariate factorization in Fq[X] in degree n, the
irreducible factors of f can be computed in deterministic time Õ(qmin(n, p)nω+1).
One may omit the min(n, p) factor if p > n(n− 1) or p = O(1).

Proof. Apply [BLSSW04, Proposition 1] with accuracy σ = min(n, p)(n − 1) for
p ≤ n(n−1). That proposition counts basic operations in Fq, each of which is done
in time Õ(q). The result for large p is the main result of [BLSSW04]. �

The condition on the resultant of f and f ′ is not restrictive: if q is sufficiently
large then a linear transformation achieves Rest(f ′, f)(0) 6= 0. A constant field ex-
tension of degree O(log n) makes q sufficiently large, and this logarithmic increase
in complexity disappears in the Õ estimates. However, in practice it is both ineffi-
cient and unnecessary to make a field extension; instead we can choose some v of
degree O(log n), see the remark right after Algorithm 4.8.

Quite surprisingly, the following example shows that our accuracy bound is sharp:
for small and large p a linear accuracy is sufficient, but if n ≤ p ≤ n(n − 1), a
quadratic accuracy n(n− 1) may be needed:

Example 4.13. Let h(X) := Xp −X + tp−1 which is irreducible since one of the
slopes of the Newton polygon is (p − 1)/p, whose denominator equals the degree.
Let us define f(X) := h(X + t) = Xp −X + tp − t+ tp−1. The latter polynomial f
has the property that Lemma 4.3 does not provide better bounds than Lemma 4.1.
Taking v = t we find that f̄ factors into n linear factors. If we choose ` = n+ 1 we
arrive at a lattice L′ generated by (1, . . . , 1) and (1, 2, . . . , p−1, 0). This last vector
disappears exactly when ` > min {n, p} (n− 1).

The proof of the following result is in the same spirit as Theorem 4.11 and related
to Proposition 4 in [BLSSW04]:

Theorem 4.14. Let f ∈ Fq[t][X] be a polynomial. Compute L′ using precision
` > 2(n− 1). Then all 0− 1 vectors e in L′ belong to W .

Proof. Assume e ∈ L′ \W is a 0 − 1 vector. By subtracting the 0 − 1 vectors of
true factors gj we can make sure that∑

{i : ei=0}

deg(fi) ≥ n/2.

In the case that the second condition of Lemma 3.2 is not true for gj we replace
f by f̃ := f/gj as in the proof of Theorem 4.11. Altogether we obtain the desired
bound. �

This shows that there is no wrong 0−1 vector in our lattice L′, provided ` > 2n.
Unfortunately it may be the case that there are other vectors not belonging to W .

12 KARIM BELABAS, MARK VAN HOEIJ, JÜRGEN KLÜNERS, AND ALLAN STEEL

In fact, the same example 4.13 exhibits “wrong” elements in the lattice L′ which
are not 0 − 1 vectors. Of course, in this bad example it would be a big practical
improvement to stop at ` = n + 1 and perform an “exponential” search for 0 − 1
vectors. This is much cheaper than the additional Hensel lifting needed to reach
the theoretical bound.

5. The case K = Q

5.1. Setup. For f ∈ C[X] with leading coefficient lc(f), let

M(f) := |lc(f)|
∏
|α|>1

|α|mα

be the Mahler measure of f , where the product is taken over all roots α ∈ C of f
with absolute value > 1, and mα is the multiplicity of the root α.

Lemma 5.1. If f, g ∈ C[X], where g is a non-constant divisor of f , then

Φ(g) =
n−1∑
i=0

aiX
i ∈ C[X].

Further:
(1) M(Φ(g)) ≤ nM(f),
(2) |ai| ≤ Bi :=

(
n−1
i

)
nM(f) for all i < n.

Proof. It is clear that Φ(g) ∈ C[X], with degree n−1. The Mahler measure of Φ(g)
is bounded by deg(g)M(f) ≤ nM(f) since M(A′) ≤ deg(A)M(A) (see [Mah61]),
and M(AB) = M(A)M(B) for any A,B ∈ C[X] [MPS99, p. 79], proving (1). The
upper bound (2) now follows by [MPS99, Lemma 2.1.9]. �

We now restrict to the case K = Q; for the additional details needed in the
number field case, see [Bel03]. Then O = Z and v is a prime number. We use
||.||2 for the L2 norm on Zn and on Z[X]<n, which denotes the set of polynomials
in Z[X] of degree < n. We assume f ∈ Z[X] is separable. By equation (3.9) in
[LLL82] there exists a small prime v = O(n log n+n log ||f ||2) such that f remains
separable mod v.

Corollary 5.2. With f ∈ Z[X] and g any factor of f in Q[X], we have Φ(g) ∈
Z[X]<n and

||Φ(g)||2 ≤ B(f) := 2n−1n||f ||2.

Proof. That Φ(g) is in Z[X] was proved in Section 3.1.1. Lemmata 2.1.8 and 2.1.9
in [MPS99] prove that

||Φ(g)||2 ≤ 2n−1M(Φ(g)) ≤ n2n−1M(f) ≤ n2n−1||f ||2,
using Lemma 5.1 (1), then Landau’s inequality (see e.g. [MPS99, Corollary 2.1.5]).

�

Fix some integer ` ≥ 1. Recall that “x mod v`” denotes the canonical minimal
lift to Z of x ∈ Zv, extended to Zv[X] coefficientwise. Let the ai,j ∈ Z be the
coefficients of Φ(fj) mod v`, so that

Φ(fj) mod v` =
n−1∑
i=0

ai,jx
i (1 ≤ j ≤ r).

FACTORING POLYNOMIALS OVER GLOBAL FIELDS 13

Then let the all-coefficients lattice L be the column space of the following matrix:

A :=
(

Idr 0
A v`Idn

)
, where A :=

 a0,1 · · · a0,r

...
. . .

...
an−1,1 · · · an−1,r

 .

Note that L depends on `.

Corollary 5.3. Each K-factor gj =
∏
f
wj,k
k , associated to wj = (wj,k) ∈ {0, 1}r,

corresponds to a vector

w̃j = A

(
wj
∗

)
=
(

wj
Φ(gj)

)
∈ L.

Then
||w̃j ||2 ≤

√
||wj ||22 +B2 ≤ B′ :=

√
r +B2,

where B = B(f) is as in Corollary 5.2.

5.2. A truncated all-coefficient lattice. Before we state the algorithm we in-
troduce an improvement which corresponds to [Hoe02, Definition 2]. As in the
bivariate case it would be nice to ignore the lower digits in the p-adic expansion
of the coefficients. For i < n, let `i be the smallest value such that v`i > 2Bi,
where Bi is the bound from Lemma 5.1. Then we define the following rounding
procedure:

āi,j := ai,j mod v`i ∈
]
−v

`i

2
,
v`i

2

]
and Ψ`

`i(ai,j) := (ai,j − āi,j)/v`i .

In other words, Ψ`
`i

(ai,j) is the quotient of the Euclidean division of ai,j by v`i with
centered remainders. Note that Ψ`

`i
(ai,j) = 0 if ` ≤ `i. Applying the truncation

operators Ψ`
`i

to the lines of A, we consider instead of A the truncated matrix

(2) Ã :=

Idr 0

Ψ`
`0

(a0,1) · · · Ψ`
`0

(a0,r) v`−`0 0
...

. . .
...

. . .
Ψ`
`n−1

(an−1,1) · · · Ψ`
`n−1

(an−1,r) 0 v`−`n−1

.

The columns of Ã generate another all-coefficients lattice which we still denote L,
since from now on we shall only work with this truncated version. Again, a K–
factor gj corresponds to a vector in L whose entries comes from wj and Φ(gj), the
second component being truncated. Unfortunately the rounding operator Ψ`

`i
is

not linear; i.e., in general

Ψ`
`i(ai,j1) + Ψ`

`i(ai,j2) 6= Ψ`
`i(ai,j1 + ai,j2).

This phenomenon does not occur in the bivariate case, thus allowing us to use linear
system of equations to solve our problem. Fortunately the rounding error is small,
bounded by r/2 as in [Hoe02, Lemma 2.6]:

Lemma 5.4. If a1, . . . , as are integers and a = a1 + · · ·+ as, then

Ψ`
k(a) = ε+

s∑
i=1

Ψ`
k(ai), where ε ∈ Z, |ε| ≤ s

2
.

14 KARIM BELABAS, MARK VAN HOEIJ, JÜRGEN KLÜNERS, AND ALLAN STEEL

Each vector associated to a rational factor in Im Ã is the sum of at most r input
vectors, hence has L2-norm less than B′ :=

√
r + n(r/2)2 by the lemma. We obtain

the following algorithm.

Algorithm 5.5. (Rational factorization)

Input: f ∈ Z[X], v a prime. Assume f is primitive (content 1), squarefree
modulo v, and that the leading coefficient lc(f) of f is not divisible
by v.

Output: Factorization f = lc(f)g1 · · · gs ∈ Q[X].

Step 1: Compute f ≡ lc(f)f̄1 · · · f̄r mod v.

Step 2: Compute minimal `0, . . . , `n−1 such that v`i > 2Bi, where Bi is given
by Lemma 5.1.

Step 3: Let ` := max {`0, . . . , `n−1}+ 1 and B′ :=
√
r + n(r/2)2.

Step 4: Compute f ≡ lc(f)f1 · · · fr mod v` (Hensel lift).

Step 5: Compute Φ(fj) mod v` =
n−1∑
i=0

ai,jx
i (1 ≤ j ≤ r).

Step 6: Compute a reduced basis b1, . . . , bm of the lattice L = Im Ã defined by
the columns of (2).

Step 7: Set t← min
{
i : ||b∗j ||2 > B′, for all j > i

}
.

Step 8: Let L′ be the projection of Zb1 + . . .+ Zbt on its first r coordinates.

Step 9: Try to construct a canonical 0 − 1 basis of L′ and check using Lemma
3.4 if L′ = W .

Step 10: If that is successful, then reconstruct the factors g1, . . . , gt from W (s=t
here). Otherwise replace ` by 2` and go to Step 4.

Since the final result is checked to be correct, we only need to prove that this
algorithm eventually terminates. In order to get good (polynomial) running times
we must prove that the corresponding ` is not too big.

Before we do this, we must explain what a reduced basis is in Step 6. Let
us recall the main property of LLL–reduced bases, where we choose the Lovász
constant 1/4 < γ < 1, see [LLL82, Proposition 1.6 & following remark]:

Proposition 5.6. Let b1, . . . , bm be a LLL-reduced basis of a lattice L with cor-
responding Gram–Schmidt basis b∗1, . . . , b

∗
m, normalized by 〈bi, b∗i 〉 = 1. Then the

following inequalities hold:

||bj ||2 ≤
(

4
4γ − 1

)(i−1)/2

||b∗i ||2, for 1 ≤ j ≤ i ≤ m.

Any basis satisfying analogous bounds can be used in our algorithm, for instance
Schönhage’s semi-reduced bases ([Sch84, §2]), which satisfy the weaker bound
||bj ||2 ≤ 2m−1+i/2||b∗i ||2. To cater for all sensible basis reduction algorithms, we
assume henceforth that, whatever reduction algorithm is chosen, a reduced basis

FACTORING POLYNOMIALS OVER GLOBAL FIELDS 15

(b1, . . . , bm) satisfies

(3) ||bj ||2 ≤ Cm||b∗i ||2, for 1 ≤ j ≤ i ≤ m,

for some constant C. Using LLL-reduction with γ sufficiently close to 1, we may
choose any C >

√
4/3.

The following lemma justifies Step 7: all short vectors are in the span of the first
t basis vectors. This cutting is independent of the reduction property.

Lemma 5.7. Let B′ ∈ R>0 and L be a lattice with basis b1, . . . , bm and correspond-
ing orthogonal Gram–Schmidt basis b∗1, . . . , b

∗
m, normalized by 〈bi, b∗i 〉 = 1. Define

t := min
{
i : ||b∗j ||2 > B′, for all j > i

}
. Then all vectors b with ||b||2 ≤ B′ are

contained in Zb1 + . . .+ Zbt.

Proof. We imitate the proof of (1.11) in [LLL82]. Let

b =
m∑
i=1

ribi =
m∑
i=1

r′ib
∗
i with ri ∈ Z, r′i ∈ R for all 1 ≤ i ≤ m.

Let j be the largest index with rj 6= 0. Our normalization
〈
bj , b

∗
j

〉
= 1 implies that

rj = r′j and therefore

||b||2 ≥
∣∣r′j∣∣ · ||b∗j ||2 ≥ ||b∗j ||2,

since rj is a non-zero integer. The result follows. �

Theorem 5.8. Let f ∈ Z[X] of degree n and v as in Algorithm 5.5. Then the
algorithm terminates when

(4) v` > cn · (2C)n
2
||f ||2n−1

2 (log ||f ||2)n,

where c is a constant which can be explicitly computed.

Proof. We use the notation of Section 3. For e = (e1, . . . , er+n)tr ∈ L, let POL(e) :=
Φ(fe11 · · · ferr) ∈ Φ(Gv); this polynomial only depends on the first r coordinates of e.
Lemma 5.7 shows that every w ∈ L with ||w||2 ≤ B′ is in Zb1+· · ·+Zbt, in particular
the w̃j , hence L′ contains W in Step 8. Assume W (L′, then POL(bu) 6∈ Φ(G) for
some 1 ≤ u ≤ t. On the other hand, (3) implies that ||bu||2 ≤ CnB′.

Using Lemma 3.2 as in §3.1.3, there exists a vector g ∈ L′ such that fi | POL(g)
for some 1 ≤ i ≤ r, and v` | Res(f,H) 6= 0, where H := POL(g) mod v`. From the
proof of Lemma 3.2, this vector g may be obtained in the following way:

• first adding a subset of {w̃1, . . . , w̃s} to bu, yielding a vector b such that

||b||2 ≤ (Cn + s)B′,

• then by adding to b a vector of the form ew̃i for some integer e with |e| ≤
||b||∞ ≤ ||b||2. This gives a new vector b̃ = b+ ew̃i with

||b̃||2 ≤ ||b||2(1 +B′) ≤ (Cn + s)B′(1 +B′),

using ||w̃i||2 ≤ B′ and the preceding bound.
• g is the projection of b̃ to L′.

We now need an upper bound for ||H||2. Let ˜̀ := max {`0, . . . , `n−1}, satisfying

v
˜̀≤ v · 2n−1n||f ||2

16 KARIM BELABAS, MARK VAN HOEIJ, JÜRGEN KLÜNERS, AND ALLAN STEEL

by Corollary 5.2. If H(X) =
∑
i<n hiX

i ∈ Z[X], the projection of b̃ on its n

last coordinates is
(

Ψ`
`0

(h0), . . . ,Ψ`
`n−1

(hn−1)
)

, up to truncation errors, which we
bound using Lemma 5.4. Using v = O(n log n+ n log ||f ||2), we obtain

||H||2 ≤ v
˜̀(||b̃||2 +ns/2) ≤ v ˜̀((Cn+s)B′(B′+1)+ns/2

)
≤ c · (2C)n||f ||2 log ||f ||2,

where the constant c can be explicitly computed, using s ≤ n, B′ = O(n3/2). From
the preceding discussion and Hadamard’s bound on determinants,

v` ≤ |Res(f,H)| ≤ ||f ||n−1
2 ||H||n2 ≤ cn(2C)n

2
||f ||2n−1

2 (log ||f ||2)n,

and we obtain a contradiction with (4). �

Let h := log ||f ||2. From this theorem, we obtain ` log v = O(n(n + h)). Since
Hensel lifting and LLL-reduction are polynomial time algorithms, we see that W
can be computed in polynomial time.

Corollary 5.9. Let h := log ||f ||2. Algorithm 5.5 factors f using O(n9 +n7h2) bit
operations, assuming classical (quadratic) arithmetic throughout. The time becomes
Õ(n8 + n6h2) if fast arithmetic is used.

Proof. The running time is dominated by the basis reduction: see e.g. [GvzG00,
§14 and §15] to estimate the factorization over Z/vZ and Hensel lifting respectively.
(Since v = Õ(nh) is small, we can factor over Z/vZ using a deterministic algorithm.)
The naive bound uses Nguyen and Stehlé’s L2 algorithm [NS05]. From an input
basis (b1, . . . , bn), where the bi belong to Zn and satisfy log ||bi||2 = O(logB), the
algorithm produces an LLL-reduced basis in O(n5 logB(n+ logB)) bit operations.
The bound using fast arithmetic follows from Schönhage’s algorithm [Sch84, Theo-
rem 2.1] which produces a semi-reduced basis in time Õ(n4 log2B). In both cases,
we can take logB = O(log v`) = O(n(n + h)). Note that, switching to fast mul-
tiplication, the complexity becomes slightly worse in the h term (by logarithmic
factors). �

Although there is no practical reason for doing so, since power sums do not offer
advantages over coefficients of Φ, one could now use the relation between power
sums and Φ to show the algorithm in [Hoe02] is polynomial time, provided that
one uses what we call the all-traces version of the algorithm. This version uses all
of the traces numbered 1, . . . , n− 1 at the same time, so the basis reduction takes
place in Zr+n−1.

5.3. Bit accuracy of the modular computations. Our estimate for the ac-
curacy to which modular factors are approximated is ` log v = O(n(n + h)). It
is the same as in the proof of [LLL82, Proposition 3.4]. The best complexity so
far for our problem of factoring univariate polynomials over Q was obtained by
Schönhage [Sch84], namely Õ(n6 + n4h2) bit operations. Schönhage uses complex
diophantine approximation, together with his landmark divide and conquer proce-
dure to approximate the complex roots of f within guaranteed time and relative
error bounds, and a kind of lattice semi-reduction which turns out to be weaker
but asymptotically faster than LLL. Interestingly, he uses complex floating point
computation instead of p-adics, but still to the same accuracy of O(n(n+ h)) bits,
see [Sch84, Lemma 6.2]. Note that both Corollary 5.2 and the bounds needed for
Zassenhaus reconstruction, e.g. Landau-Mignotte bound, are O(n + h). So, there

FACTORING POLYNOMIALS OVER GLOBAL FIELDS 17

is an annoying extra factor n in the accuracy estimates, coming from a resultant
upper bound in all three cases.

Building on Schönhage’s root-finding approach, Miller [Mil92] recast the factor-
ization problem as a search for primitive idempotents in the algebra A = Q[X]/(f),
found as integer combinations of complex floating point approximations of the La-
grange idempotents in A⊗C, which are easy to refine from an initial rough approx-
imation. Using an integer relation-finding algorithm instead of more general basis
reductions, he works in linear precision O(n log2 n+ h). This would be essentially
optimal (of the order of Laudau-Mignotte bound), and would constitute a break-
through analogous to the linear lifting bound of [BLSSW04]. Unfortunately, apart
from a number of harmless typos1, there is a subtle gap in Miller’s proof, which
we do not know how to fix. The crucial relation-finding algorithm from [HJLS89]
uses an unorthodox floating point model: computations in R are done to infinite
accuracy in unit time. We know the height of the final relations, but this does not
imply that we can truncate all real numbers to that many significant digits and
obtain the same results, with respect to correctness or running times. In fact even
termination may be a problem as reported in [NS05] for the closely related LLL
basis reduction algorithm. An apparently difficult perturbation result is needed
at this point. It looks plausible that a rigorous result will require increasing the
accuracy, presumably losing that factor n saved over all other known polynomial
time algorithms for this problem.

This means that in all three proven algorithms (ours, [LLL82] and [Sch84]),
the matrix input to the basis reduction algorithm has the same bit-size. In our
case, a single lattice basis reduction finds all factors at once, compared to O(log n)
basis reductions per rational factor in [LLL82] and [Sch84]. Thus we do improve
on [LLL82] but still lose a factor n2 over [Sch84] because Schönhage’s semi-reduction
of a Z-basis b1, . . . , bn actually takes times Õ(n2 log2 B̃) where B̃ is a bound such
that

||bi||2 ≤ B̃, and Gram(b1, . . . , bi) ≤ B̃ (i ≤ n).

Due to this bound on the Gramians, we are not able to do better than the trivial
bound

log B̃ � n logB � n2(n+ h).

Schönhage treats a one or two-dimensional knapsack, where the much better bound

log B̃ � logB � n(n+ h)

is available [Sch84, Lemma 6.1]; we, on the other hand, handle simultaneously n
coefficients.

In conclusion, the proven complexity of our basic algorithm is the best one so
far in the h (height) aspect, though only by logarithmic factors if fast arithmetic
is used. But it is worse in the n (degree) aspect, which is due to two factors: the
accuracy O(n(n+h)) is too large, and we treat too many coefficients simultaneously.

The reason our algorithm is still very much of interest is that a practical imple-
mentation will start with O(n+h) bits of accuracy and solve many one-dimensional

1Conflicting forms of the main complexity result are given. Only sketches of proof are pro-

vided, but we believe the author’s claim is that his algorithm factors the polynomial f using

O(n3(n log2 n+h)) operations performed on integers of O(n log2 n+h) bits. Which indeed would
make it a factor n faster than Schönhage’s.

18 KARIM BELABAS, MARK VAN HOEIJ, JÜRGEN KLÜNERS, AND ALLAN STEEL

knapsacks (“one coefficient at a time”), with increasing accuracy. As new coeffi-
cients are taken into account, rational factors are found and others are proven
irreducible. As long as modular factors are left over, the accuracy is increased
and Theorem 5.8 guarantees termination (all factors found and proven irreducible)
when O(n(n+ h)) precision is reached and all coefficients have been incorporated.
We discuss this idea further in the next section, although we do not give a sharp
complexity result which would capture that practical algorithm’s true efficiency.

5.4. One coefficient at a time. From a practical point of view, the all-traces
and all-coefficients versions are slow and thus not interesting. The main question
is whether practical versions of the algorithm can be proven to run in polynomial
time. Using one trace at a time works very well in practice (see [Bel03]). We will
show that the “one coefficient at a time” version factors in Q[X] in polynomial time.
The same must then also be true for one trace at a time, confirming a conjecture
in [Bel03, Remark 2.5].

Let Bi be the bound for |ai| given in Lemma 5.1. For 0 ≤ i < n and g ∈ Kv(X)∗

write T ′i (g) ∈ Z the coefficient of Xi in Φ(g) mod v`. Let Ti(g) := T ′i (g)/Bi ∈
Q. Note that Ti depends on `, which is a fixed integer ≥ 1 that may be chosen
arbitrarily. Lemma 5.1 says that if g is a K-factor of f , then |Ti(g)| ≤ 1.

Proposition 5.10. Let C be the basis reduction constant, as in (3). One can
compute a sequence of lattices Ln−1, Ln−2, . . . , L0 with the following properties:

(1) Zr = Ln−1 ⊇ Ln−2 · · · ⊇ L0 ⊇W
(2) Li = Zbi,1 + · · ·+ Zbi,ri for some integer ri and some vectors bi,j ∈ Zr with

the following properties:
(a) ||bi,j ||2 ≤ (r + 2)Cr.
(b) If bi,j = (e1, . . . , er)tr then Ti(fe11 · · · ferr) ≤ (r + 2)Cr

Proof. If i = n − 1 we may take bi,1, . . . , bi,ri as the standard basis of Zr. If
i < n − 1 then we may assume that Li+1 = Zbi+1,1 + · · · + Zbi+1,ri+1 has been
computed and define b′j as follows: First write bi+1,j = (e1, . . . , er)tr, then compute
a := e1Ti(f1) + · · · + erTi(fr) and set b′j := (e1, . . . , er, a)tr ∈ Zr × Q. Now let
L′ := Zb′1 + · · · + Zb′ri+1

+ ZP where P = (0, . . . , 0, v`/Bi)tr. Let b1, b2, . . . be an
LLL-reduced basis of L′, let b∗1, b

∗
2, . . . the associated orthogonalized basis, and let

ri be the smallest index such that ||b∗j ||2 > r + 2 for all j > ri. Now define bi,j as
the projection of bj on the first r entries and let Li := Zbi,1 + · · ·+ Zbi,ri .

Consider the vector wj corresponding to the K-factor gj and let w′j be the
corresponding vector in L′. The first r entries of w′j are in {0, 1}, and the last
entry equals Ti(gj) ∈ Q which has absolute value ≤ 1 by Lemma 5.1. Hence,
||w′j ||2 ≤

√
r + 1 < r + 2. Then it follows from Lemma 5.7 that wj ∈ Li and hence

W ⊆ Li. By (3), we have ||bj ||2 ≤ (r + 2)Cr when j ≤ ri which implies (2a),
resp. (2b), since projecting on the first r entries, resp. last entry, does not make a
vector longer.

The lattice L′ to be reduced was in Zr × Q. Lattice reduction in Zr+1 is more
efficient, so we round each of the numbers Ti(f1), . . . , Ti(fr), v`/Bi to the nearest
integer. Then we obtain a lattice L′ ⊆ Zr+1 but now we have introduced rounding
errors. Consider again the vectors wj ∈ W and w′j ∈ L′. If wj has σ entries equal
to 1, then the last entry of w′j is the sum of σ elements of {Ti(f1), . . . , Ti(fr)} plus
an integer in the interval (−σ/2, σ/2) times v`/Bi. We introduced an error ≤ 0.5 in

FACTORING POLYNOMIALS OVER GLOBAL FIELDS 19

each of the numbers Ti(f1), . . . , Ti(fr), v`/Bi. Then the total rounding error in the
last entry of w′j is less than 0.5(σ+σ/2) which is less than r, so this entry will have
absolute value < r + 1. Then ||w′j ||2 <

√
σ + (r + 1)2 < r + 2. The proposition is

stated with r+2 instead of
√
r + 1 so that the bounds can still be used for practical

implementations that round Ti(f1), . . . , Ti(fr), v`/Bi to Z. �

Lemma 5.11. With the notation of Proposition 5.10, the following holds for every
n− 1 ≥ i ≥ i′ ≥ 0. If e = (e1, . . . , er)tr is an element of

{
bi′,1, . . . , bi′,ri′

}
then

Ti(fe11 · · · ferr) ≤ CO(r2).

Proof. The entries of the bi,j and e are bounded by (r + 2)Cr = CO(r). Since
e ∈ Li′ ⊆ Li we can write e =

∑ri
j=1 cjbi,j for some cj ∈ Z that can be found by

solving linear equations. With Cramer’s rule one finds |cj | ≤ CO(r2). Multiplying
this by ri and by the bound in Proposition 5.10 part (2b) leads to the bound
CO(r2). �

Theorem 5.12. L0 = W for some ` polynomially bounded in terms of n and
log ||f ||2.

Proof. If L0 6= W then let e be one of the vectors b0,j from Proposition 5.10 that
is not in W . Write e = (e1, . . . , er)tr and g = fe11 · · · ferr . Write Φ(g) =

∑
ciX

i.
Then the corresponding vector in the all-coefficients lattice (see Theorem 5.8) is
ẽ := (e1, . . . , er, c0, . . . , cn−1)tr where c0, . . . , cn−1 are bounded in absolute value by
CO(r2) by Lemma 5.11. Applying the process in the proof of Lemma 3.2 we obtain
a new vector e′ whose length differs at most by (s + max {e1, . . . , er})B′ from e.
The last n entries of this vector are the coefficients of a polynomial H ∈ Z[X]<n
and we have v` | Res(f,H) 6= 0 in the same way as in Theorem 5.8. This implies
that log v` is polynomially bounded. �

We propose to implement the “one coefficient at a time” approach in the following
way: start with a value for ` that is at most as large as what one would use in the
Zassenhaus approach. Then, compute Ln−1, Ln−2, . . . until we find W . If we reach
L0 and we still have not found W then we must increase `. The computation of
each Li should be done using the incremental strategy of [Bel03, §2.4], reducing one
large-determinant LLL-reduction to a sequence of smaller LLL-reductions that at
the end produce the same result. Then one has a polynomial time algorithm that
runs very well in practice, with running times that should be the same as those
reported in [Bel03] for Q[X].

This incremental strategy is very efficient because after each LLL-reduction one
can check if vectors can be removed. This way, there are no long vectors in the
input of the next LLL-reduction. In fact, one can keep the bit-length of these
vectors below a bound that depends solely on r. This means that the cost of each
individual call to the LLL-reduction algorithm can be bounded by a polynomial
that depends only on r and is independent of both n and ||f ||2, which explains why
the algorithm performs so well in practice.

Ideally, the practical performance of the incremental strategy would lead to a
theoretical complexity that is better than that of Algorithm 5.5. Unfortunately,
Lemma 5.11 leads to a pessimistic theoretical bound for the number of calls to the
LLL-reduction algorithm. Thus, at the moment the proofs of Theorem 5.12 and
Lemma 5.11 do not lead to a good complexity result for the incremental strategy.

20 KARIM BELABAS, MARK VAN HOEIJ, JÜRGEN KLÜNERS, AND ALLAN STEEL

In fact, working out the details leads to a bound that is worse than the bound
for Algorithm 5.5, despite the fact that the incremental strategy is much faster.
The second author and his graduate student are currently working to find a better
complexity result that accurately reflects the actual performance of the incremental
strategy.

References

[Bel03] K. Belabas A relative van Hoeij algorithm over number fields, Journal of Symbolic

Computation, 37 (2004), pp. 641–668.

[BCP97] W. Bosma, J. Cannon, C. Playoust. The Magma Algebra System I: The User Language.
Journal of Symbolic Computation, 24 (3) (1997), p. 235–265.

[BLSSW04] A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt. Complexity issues in

bivariate polynomial factorization, Proceedings of ISSAC, (2004).

[GvzG00] J. von zur Gathen and J. Gerhard, Modern computer algebra, Cambridge University
Press, New York, 1999.

[HJLS89] J. H̊astad, B. Just, J. C. Lagarias, and C.-P. Schnorr, Polynomial time algorithms for

finding integer relations among real numbers, SIAM J. Comput., 18 (1989), pp. 859–
881.

[Hoe02] M. van Hoeij, Factoring polynomials and the knapsack problem, J. Number Theory, 95

(2002), pp. 167–189.
[Len82] A. K. Lenstra, Lattices and factorization of polynomials over algebraic number fields,

Springer Lecture Notes in Computer Science 144 (1982), pp. 32–39.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational
coefficients, Math. Ann. 261 (1982), no. 4, pp. 515–534.

[MPS99] M. Mignotte, L. Pasteur, and D. Stefanescu, Polynomials: An Algorithmic Approach,
Springer, (1999).

[Mah61] K. Mahler, On the zeros of the derivative of a polynomial, Proc. Roy. Soc. Ser. A, 264
(1961), pp. 145–154.

[Mil92] V. Miller, Factoring Polynomials via Relation-Finding, ISTCS ’92, Springer Lecture

Notes in Computer Science 601 (1992), pp. 115–121.

[NS05] P. Nguyen and D. Stehlé, Floating point LLL revisited, Eurocrypt’05, Springer Lecture
Notes in Computer Science 3494 (2005), p. 215–233.

[PZ89] M. E. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Cambridge Uni-

versity Press, (1989).
[PO06] M. E. Pohst, Factoring polynomials over global fields. I, Journal of Symbolic Compu-

tation, 39 (2005), p. 617–630.
[PM06] M. E. Pohst and J. Méndez Omaña, Factoring polynomials over global fields. II, Journal

of Symbolic Computation, 40 (2005), p. 1325–1339.

[SSH93] T. Sasaki, T. Saito and T. Hilano, A unified method for multivariate polynomial fac-
torization, Japan J. Industrial and Applied Math 10, 1 (1993), pp. 21–39.

[Sch84] A. Schönhage, Factorization of univariate integer polynomials by Diophantine approx-

imation and an improved basis reduction algorithm, in Automata, languages and pro-
gramming (Antwerp, 1984), Springer Lecture Notes in Computer Science 172 (1984),

pp. 436–447.

[Zas69] H. Zassenhaus, On Hensel factorization I, Journal of Number Theory (1969), pp. 291–
311.

FACTORING POLYNOMIALS OVER GLOBAL FIELDS 21

Université Bordeaux 1, 351 cours de la Libération, F-33405 Talence, France.
E-mail address: Karim.Belabas@math.u-bordeaux.fr

Florida State University, 211 Love building, Tallahassee, Florida 32306-3027, USA
E-mail address: hoeij@zeno.math.fsu.edu

Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Ger-

many.
E-mail address: klueners@math.uni-duesseldorf.de

School of Mathematics and Statistics F07, University of Sydney NSW 2006, Aus-
tralia

E-mail address: allan@maths.usyd.edu.au

