
The van Hoeij Algorithm for Factoring
Polynomials

Jürgen Klüners

Abstract In this survey we report about a new algorithm for factoring poly-
nomials due to Mark van Hoeij. The main idea is that the combinatorial
problem which occurs in the Zassenhaus algorithm is reduced to a very spe-
cial knapsack problem. In case of rational polynomials this knapsack problem
can be very efficiently solved by the LLL algorithm. This gives a polynomial
time algorithm which also works very well in practice.

1 Introduction

Let f ∈ Z[x] be a polynomial of degree n with integral coefficients. One of
the classical questions in computer algebra is the question how to factorize f
in an efficient way. About 40 years ago Hans Zassenhaus [Zas69] developed
an algorithm which was implemented in almost all computer algebra systems
until 2002. This algorithm worked very well for many examples, but his worst
case complexity was exponential. In the famous LLL–paper [LLL82] it was
proved that it is possible to factor polynomials in polynomial time in the
degree and the (logarithmic) size of the coefficients. Despite of the fact that
the new lattice reduction algorithm was very good in theory and in practice,
the new polynomial factorization was not used in implementations. For most
practical examples the Zassenhaus algorithm was more efficient than the new
algorithm based on LLL.

In 2002 Mark van Hoeij [Hoe02] developed a new algorithm, which for
practical examples was much more efficient than the Zassenhaus algorithm.
This new algorithm is also based on the LLL reduction, but it uses a differ-
ent type of lattices compared to the ones in the original LLL paper [LLL82].

Jürgen Klüners
Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany, e-mail:

klueners@math.uni-paderborn.de

1

2 Jürgen Klüners

Unfortunately, Mark van Hoeij gave no running time estimates in his original
paper. He was only able to show that his algorithm terminates, but he gave
very impressive practical examples of factorizations which have not been pos-
sible to compute before. Together with Karim Belabas, Mark van Hoeij, and
Allan Steel [BHKS08] the author of this survey simplified the presentation of
this algorithm and introduced a variant for factoring bivariate polynomials
over finite fields. Furthermore we have been able to show that the new fac-
toring algorithm runs in polynomial time. The worst case estimate is better
than the one given in the original LLL paper. Let us remark that we believe
that this estimate is still pessimistic.

In this survey we will study the cases f ∈ Z[x] and f ∈ Fp[t][x] in parallel,
where Fp denotes the finite field with p elements. We study the second case
because the presentation is easier. In the bivariate case it is not necessary
to use LLL reduction. The corresponding step can be solved by computing
kernels of systems of linear equations.

2 The Zassenhaus Algorithm

Before we are able to explain the van Hoeij algorithm, we need to under-
stand the Zassenhaus algorithm. We can assume that our given polynomial
is squarefree. Note that multiple factors of f divide the greatest common
divisor of f and the derivative f ′ which can be computed efficiently using the
Euclidean algorithm. We remark that we have to be careful in characteristic
p since the derivative of f may be 0, e.g. f(x) = xp − t. In this case all
monomials are p-th powers and we can take the p-th root or we switch the
role of t and x.

Let f ∈ Z[x] be a squarefree and monic polynomial, i.e. a polynomial with
integer coefficients and leading coefficient one. In the Zassenhaus algorithm
we choose a prime number p such that f modulo p has no multiple factors.
It is possible to choose every prime which does not divide the discriminant
of f . We denote by f̄ ∈ Fp[x] the polynomial which can be derived out of f
by reducing each coefficient modulo p. Using well known algorithms, e.g. see
[GG99, chapter 14], we can compute the following factorization:

f̄(x) = f̄1(x) · · · f̄r(x) ∈ Fp[x].

Using the so-called Hensel lifting (by solving linear systems of equations) we
can efficiently compute for all k ∈ N a factorization of the following form:
(e.g. see [GG99, Chapter 15])

f(x) ≡ f̃1(x) · · · f̃r(x) mod pk,

where (using a suitable embedding) f̃i ≡ f̄i mod p. Let us explain the Zassen-
haus algorithm using the example f(x) = x4 − 11. Using p = 13 we get that

The van Hoeij Algorithm for Factoring Polynomials 3

f̄ ∈ F13[x] is irreducible. Certainly, this implies that f ∈ Z[x] is irreducible.
When we choose (a little bit unlucky) p = 5, then we only get linear factors
modulo p, which will be lifted using Hensel lifting:

f(x) ≡ (x+ 41)(x− 38)(x+ 38)(x− 41) mod 125.

In order to proceed we need a bound for the size of the coefficients of a factor
of f . The following theorem can be found in [GG99, p.155ff].

Theorem 1 (Landau-Mignotte). Let g be a factor of a monic polynomial
f ∈ Z[x] with

f(x) =
n∑

i=0

aix
i and g(x) =

m∑
i=0

bix
i.

Then: |bi| ≤
(
m
i

)
||f ||2, where ||f ||2 :=

√∑n
i=0 a

2
i denotes the 2–norm.

In our example this means that all coefficients of a factor g of f must be less or
equal than 33 in absolute value. Therefore we see that f has no linear factor,
because modulo 125 all linear factors contain a coefficient in the symmetric
residue system {−62, . . . , 62} which is bigger than 33 in absolute value. In
the next step we try if the product of two modulo 125 factors corresponds to
a true factor of f in Z[x]. We get:

(x+ 41)(x− 38) ≡ x2 + 3x− 58 mod125,
(x+ 41)(x+ 38) ≡ x2 − 46x+ 58 mod125,
(x+ 41)(x− 41) ≡ x2 − 56 mod125.

All these quadratic polynomials contain a coefficient which is bigger than 33
in absolute value. This means that the ”modular factor” (x+41) is no divisor
of a linear or quadratic factor g ∈ Z[x] of f . This implies that the polynomial
f ∈ Z[x] is irreducible. In case that our given polynomial is reducible we
find modular factors of f such that all coefficients in the symmetric residue
system are smaller than the Landau-Mignotte bound. Now we can use trial
division in Z[x] to check if we have found a factor or not. Since trial divisions
are expensive it is a good idea in actual implementations to choose pk much
bigger than twice the Landau-Mignotte in order to increase the probability
that wrong candidates will be found without a trial division.

The choice of p = 5 in the above example was very artificial. We remark
that it is easy to construct irreducible polynomials such that for all primes p
we have many modular factors. For an example we can take a polynomial f
of degree n = 2` such that the Galois group is isomorphic to the elementary
abelian group (Z/2Z)n. In this case f is irreducible, but for every prime p
we have at least 2`−1 = n/2 modular factors.

If we analyze the Zassenhaus algorithm, we figure out that most parts of
the algorithm are very efficient. Since we are able to choose a small prime
p it is not difficult to factor f̄ ∈ Fp[x]. The Hensel lifting can be solved

4 Jürgen Klüners

using using linear systems of equations and the Landau-Mignotte bound is
sufficiently small. The drawback of the algorithm is the number of tests which
have to be performed when the number r of modular factors is big. In this
case we have to perform more or less 2r tests.

3 The Knapsack Lattice

This is the place where the new van Hoeij algorithm starts. It reduces the
combinatorial problem to a so-called knapsack problem. The resulting knap-
sack problem can be efficiently solved using lattices and the LLL algorithm.
We remark that we use different type of lattices compared to the original
LLL paper.

We fix the following notation:

f = g1 · · · gs ∈ Z[x] and f = f̃1 · · · f̃r ∈ Zp[x].

The factorization over the p-adic numbers Zp can only be determined modulo
pk. For the understanding of the following it is possible to interpret the p-adic
numbers as modulo pk approximations. We write:

gv :=
r∏

i=1

fvi
i for v = (v1, . . . , vr) ∈ {0, 1}r

and get a new
Problem: For which v ∈ {0, 1}r do we have: gv ∈ Z[x]?
In order to linearize our problem, we consider (more or less) the logarithmic
derivative, where Qp(x) := {a(x)

b(x) | a, b ∈ Qp[x]}:

Φ : Qp(x)∗/Q∗p → Qp(x), g 7→ fg′

g
.

It is immediately clear that Φ is additive, i.e. Φ(gv1) + Φ(gv2) = Φ(gv1+v2).
Furthermore we have for v ∈ Zr that Φ(gv) is a polynomial and therefore an
element of Zp[x].

The next step is to translate everything into a lattice problem. Let us define
vectors w1, . . . , ws ∈ {0, 1}r such that for the true factors g1, . . . , gs ∈ Z[x]
we have

gi =
∏

1≤j≤r

f̃
wij

j .

These vectors generate a lattice (the knapsack lattice) W = 〈w1, . . . , ws〉 ⊆
Zr. The lattice Zr is generated by the standard basis vectors, which corre-
spond to the local factors f̃i. An important fact for the new method is the
property that v ∈ Zr is an element of W if and only if Φ(gv) ∈ Z[x] (even in
the case that v has negative coefficients). We remark that it is easy to con-

The van Hoeij Algorithm for Factoring Polynomials 5

struct the canonical basis vectors w1, . . . , ws of W if we know some generating
system of W . As soon as we know the wi and pk is at least twice larger than
the Landau-Mignotte bound we are able to reconstruct the corresponding
factors gi like in the Zassenhaus algorithm.

The idea of the algorithm is as follows. We start with the lattice L = Zr

and know that W ⊆ L. Then we construct a sublattice L′ ⊂ L still containing
W . The hope is that after finitely many steps we reach L′ = W .

At this place we change to the situation f ∈ Fp[t][x], because the following
part of the algorithm is easier here. The Landau-Mignotte bound simplifies
to

g | f ∈ Fp[t][x]⇒ degt(g) ≤ degt(f),

where degt(f) is the t–degree of the polynomial f . In order to simplify the
situation we assume that f̄(x) := f(0, x) ∈ Fp[x] is squarefree. This is a real
restriction because it might be the case that f(a, x) has multiple factors for
all a ∈ Fp. For the solution of this problem we refer the reader to [BHKS08].
Using Hensel lifting we get from the factorization f̄ = f̄1 · · · f̄r ∈ Fp[x] a
factorization f(t, x) = f̃1 · · · f̃r in the power series ring Fp[[t]][x]. In practice
we can approximate the power series in t modulo tk. Now we define the
function Φ in the following way:

Φ : Fp[[t]](x)∗/Fp[[t]](xp)∗ → Fp[[t]](x), g 7→ fg′

g
.

The lattices L and W are defined analogously as in the situation for Z[x].
Assume that we have an element v ∈ L \W . Then we have:

Pol(v) := Φ(gv)(x) =
r∑

i=1

viΦ(fi) =

n−1∑
i=0

bix
i ∈ Fp[[t]][x] \ Fp[t][x].

Additionally, we have for gv ∈ Fp[t][x] the estimate degt(bi) ≤ degt(f). Now
we choose a k > degt(f) and we compute for v ∈ L the corresponding
polynomial

gv ≡
n−1∑
i=0

bi(t)xi mod tk.

Here modulo tk means that all bi(t) are reduced modulo tk, i.e. degt(bi) < k.
In case that one of the polynomials bi has a t-degree which is bigger than
degt(f) we know that the corresponding v is not an element of W . In the
following we avoid the combinatorial approach.

Denote by e1, . . . , er ∈ Fr
p the standard basis of Fr

p and identify the ele-
ments of Fp with {0, . . . , p− 1} ⊆ Z. We define m := degt(f) and

6 Jürgen Klüners

Ai :=

bi,m,1 · · · bi,m,r

bi,m+1,1 · · · bi,m+1,r

...
. . .

...
bi,k−1,1 · · · bi,k−1,r

 ∈ F(k−m)×r
p ,

where the bi,j,` are given by

Pol(e`) ≡
n−1∑
i=0

k−1∑
j=0

bi,j,`t
jxi mod tk (1 ≤ ` ≤ r).

All v ∈ W have the property that Aiv
tr = 0. Using iterative kernel compu-

tation we are able to determine lattices L′ ⊇ W which (hopefully) become
smaller.

4 The Polynomial Complexity Bound

In a slightly improved version of this algorithm we show in [BHKS08] that
we finally get L′ = W :

Theorem 2. Let f ∈ Fp[t][x] be a polynomial of x-degree n and assume
k > (2n− 1) degt(f). Then W is the kernel of A1, . . . , An−1.

In the following we give a sketch of the proof of this theorem. Let v ∈ L \W
be chosen such that gv is not a p-th power. Then it is possible to change v
using w1, . . . , ws such that the following holds:

1. fi | Pol(v) for some 1 ≤ i ≤ r.
2. gj - Pol(v) for all 1 ≤ j ≤ s.

Take this new v and define H := Pol(v) mod tk interpreted as a polynomial
in Fp[t][x]. Using well known properties of the resultant we immediately get:

Res(f,Pol(v)) = 0 and Res(f,H) 6= 0.

This implies that tk | Res(f,H). Choosing k large enough this is a contradic-
tion to the definition of the resultant via the Sylvester matrix.

Let us come back to our original problem over Z. We cannot apply the same
algorithm because we have overflows when we add, e.g. (3+1·51)+(3+1·51) =
(1+3 ·51) 6= 1+2 ·51 in Z5. Fortunately, we can show that the errors coming
from overflows are small. Instead of solving linear systems of equations we
define a suitable lattice and look for vectors of small length in that lattice.
Since finding shortest vectors in lattices is an NP-complete problem, it is
important to choose the lattices in a very clever way. For those lattices we
apply LLL reduction and can guarantee that the first basis vectors of the LLL

The van Hoeij Algorithm for Factoring Polynomials 7

reduced basis will be sufficient to derive a basis of W . We use the analogous
definitions as in the bivariate case and get:

Pol(e`) ≡
n−1∑
i=0

bi,`x
i mod pk (1 ≤ ` ≤ r).

Now we define a lattice Λ which is defined by the columns of the following
matrix:

A :=
(
Ir 0
Ã pkIn

)
with Ã :=

 b0,1 · · · b0,r

...
. . .

...
bn−1,1 · · · bn−1,r

 .

If we project a vector from Λ to the first r rows, we get a vector in L. Assuming
that we choose the precision pk large enough, we are able to prove that all
vectors in Λ such that the last n entries are smaller than the Landau-Mignotte
bound correspond to a vector in W . We compute a LLL reduced basis of the
above lattice and are able to prove that the first s vectors correspond to a
basis of W . It is easy to give an upper bound B for the norm for the vectors
in Λ which correspond to w1, . . . , ws. For the LLL approach and practical
implementations the following lemma is very useful, since it allows to have
some progress, i.e. a new lattice W ⊆ L′ ⊆ L, if the precision pk was not
large enough to derive L′ = W .

Lemma 1. Let Λ be a lattice with basis b1, . . . , bm and Gram–Schmidt–basis
b∗1, . . . , b

∗
m. Define t := min{i | ∀i < j ≤ m : ||b∗j ||2 > B}. Then all vectors b

such that ||b||2 ≤ B are contained in Zb1 + . . .+ Zbt.

We remark that this lemma is already contained in the original LLL paper
[LLL82]. Analogous to the bivariate case we need an estimate for the precision
which guarantees that the algorithm terminates, i.e. that finally we have
L′ = W . If we use this precision, our algorithm terminates in one (LLL
reduction) step and we get the polynomial running time. We remark that in
practice we do not need this (explicit) estimate, because we start with some
precision and increase it until the algorithm terminates.

Theorem 3. Let f ∈ Z[X] of degree n. Then the above described algorithm
terminates if

pk > cn · 4n2
||f ||2n−1

2 (1)

holds, where c is an explicit computable constant.

If we determine the running time for this algorithm, we get the same
running time as the one in the original LLL paper.

8 Jürgen Klüners

5 The Original LLL Factoring Method

In order to understand the difference between those two algorithms we need
to understand the original LLL factoring method, at least roughly. As before,
let f ∈ Z[x] of degree n be the monic polynomial we would like to factor and
assume that we have chosen a prime p such that f mod p has no multiple
factors. As before using Hensel lifting we get the factorization of the form:

f(x) ≡ f̃1(x) · · · f̃r(x) mod pk.

The idea of the original LLL factorization algorithm is to compute an
irreducible factor g ∈ Z[x] such that f1 | g ∈ Zp[x]. In order to compute such
a g they write down a tricky lattice which allows to check if there exists such
a g of degree m < n. After a LLL reduction of this lattice the first basis
vector corresponds to such a g if it exists. If no such g exists we have to use
the theoretical lifting bound (similar to the one we have given in the van
Hoeij algorithm) in order to get a proof that such a g does not exist. This is
the practical drawback of the original algorithm. In case that our polynomial
is reducible we might be lucky to find g using a small precision. In case that
f is irreducible we have to use the full theoretical precision in order to get a
proof that no non-trivial factor exists. We remark that after some recursive
application of this algorithm (we find at most one factor at each LLL-step) we
run into this situation. By taking irreducible polynomials, which have many
modular factors, we get examples which really need the worst case running
time we computed before.

Usually, in the van Hoeij algorithm such a polynomial will be detected
using a very low precision. What we say here is just heuristics and practical
experience. We expect that the worst case running time we have given before
is just a very bad upper estimate and will never be attained. We remark that
we cannot prove such a statement.

One important fact for practical implementations of the van Hoeij algo-
rithm is the fact that it is possible to make partial progress. If we choose a
precision which was too small to derive the full factorization, it is very often
the case that we are able to compute a smaller lattice L’ which means that
this ”try” was not worthless. If in the original LLL factorization algorithm
we use a too small precision and do not succeed, we have nothing.

There is another advantage of the new van Hoeij algorithm compared to
the original one. In the original algorithm we try to compute a factor directly.
This means if the coefficients of the given polynomial are big we need to
compute a factor which has big coefficients as well. Therefore we want to
find a short(est) vector in a lattice which is already huge. In the knapsack
approach of van Hoeij we are looking to find a zero-one combination. The
shortest vector we are looking for is really very short (only zeroes and ones
and some small errors coming from overflows). In some sense those lattices
are independent on the size of the coefficients of the given polynomial.

The van Hoeij Algorithm for Factoring Polynomials 9

In the meantime the van Hoeij algorithm is implemented in all big com-
puter algebra systems. As already remarked it is possible to factor polyno-
mials in a few minutes for which it was impossible to factor those in month
before.

References

[BHKS08] K. Belabas, M. van Hoeij, J. Kl”uners and A. Steel, Factoring polynomials over

global fields, to appear in Journal de Theorie des Nombres de Bordeaux.
[GG99] J. von zur Gathen and J. Gerhard, Modern Computer Algebra. Cambridge

University Press, 1999.

[Hoe02] M. van Hoeij, Factoring polynomials and the knapsack problem, J. Number The-
ory, 95 (2002), 167–189.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovász, Factoring polynomials with

rational coefficients, Math. Ann., 261 (1982), no. 4, 515–534.
[Zas69] H. Zassenhaus, On Hensel factorization I, Journal of Number Theory, 1 (1969),

291–311.

