
ALGORITHMS FOR FUNCTION FIELDSJ�URGEN KL�UNERSAbstrat. Let K=Q(t) be a �nite extension. We desribe algorithms foromputing sub�elds and automorphisms of K=Q(t). As an appliation we givean algorithm for �nding deompositions of rational funtions in Q(�). We alsopresent an algorithm whih deides if an extension L=Q(t) is a sub�eld ofK. Inase [K : Q(t)℄ = [L : Q(t)℄ we obtain a Q(t)-isomorphism test. Furthermore,we desribe an algorithm whih omputes sub�elds of the normal losure ofK=Q(t). 1. IntrodutionLet K=Q(t) be a �nite extension of funtion �elds. In this paper we developalgorithms for deiding if K=Q(t) is a normal or even an abelian extension. Inthis ase we give a method for omputing all automorphisms of K=Q(t). Anotherproblem we onsider is the determination of all intermediate �elds of K=Q(t). Hereit is not neessary to assume that K=Q(t) is a normal extension.As an appliation we show how to obtain deompositions of rational funtionsusing the fat that rational funtions orrespond to rational funtion �elds. Fur-thermore we give an expliit desription of the main algorithm in [KM00℄ in thefuntion �eld ase. This yields a method for omputing sub�elds of the splitting�eld of a �nite extension of Q(t).All algorithms presented in this paper are based on the following idea: Letf 2 Z[t℄[x℄ be the minimal polynomial of a primitive element of K=Q(t). Then byHilbert's irreduibility theorem there are in�nitely many speializations t0 2 Z suhthat �f(x) := f(t0; x) 2 Z[x℄ is irreduible as well. After �nding suh a t0, we solvethe orresponding problem in the residue lass �eld and then use lifting proeduresto get the solution of our initial problem. In ontrast to the ase of global �elds wehave the advantage that in the generi ase the Galois group of the residue lass�eld is the same as the Galois group of the given �eld.In this paper we assume that the orresponding problems an be solved in thenumber �eld ase. Algorithms for the omputation of sub�elds of algebrai num-ber �elds are desribed in [KP97, Kl�u98℄. In [AK99, Kl�u97℄ algorithms for theomputation of automorphisms of algebrai number �elds are explained.All algorithms are implemented in the omputer algebra system KANT [DFK+97℄.We give several examples to demonstrate the eÆieny of the algorithms.2. NotationsIn this paper we onsider �nite extensions of Q(t). We assume that these exten-sions are given by a primitive element � with minimal polynomial f of degree n.By applying suitable transformations we an assume that f is a moni polynomialin Z[t℄[x℄. The stem �eld Q(t)(�) of f is denoted by K and the splitting �eld of f is1



2 J�URGEN KL�UNERSdenoted by N . The zeros of f in N are denoted by � = �1; �2; : : : ; �n. Throughout,G = Gal(f) is the Galois group of f ating on the roots �1; : : : ; �n.In our algorithmi approah we need to onsider residue lass �elds. Thereforelet t0 2 Z be hosen in suh a way that �f(x) := f(t0; x) 2 Z[x℄ is irreduible. Wedenote by �� the orresponding strutures in the residue lass �eld, i.e., �K denotesa stem �eld of �f , �N the splitting �eld of �f . �G is the Galois group of �f ating onthe roots �� = ��1; ��2; : : : ; ��n.3. Newton lifting and reonstrutionLet R be a ommutative ring with 1 and a an ideal of R. Furthermore let g 2 R[x℄be a polynomial and �0 2 R suh that g(�0) � 0 mod a and g0(�0) is invertiblemodulo a. Then for every k 2 N we an ompute �k suh that �k � �0 mod a andg(�k) � 0 mod a2k using the extended Newton lifting whih avoids divisions. Herewe only give the algorithm. Details an be found in [vzGG99, Algorithm 9.22℄.Let !0 be the inverse of g0(�0) modulo a. Then we an use the following doubleiteration for i = 0; : : : ; k � 1:�i+1 � �i � !ig(�i) mod a2i+1(1) !i+1 � !i[2� !ig0(�i+1)℄ mod a2i+1 :(2)Let f; �;K; and n be de�ned as in Setion 2. In the following we look at thespeial situation that R is the equation order Q[t℄[�℄ := Q[t℄+Q [t℄�+ � � �+Q[t℄�n�1and a := (t� t0) � R is the prinipal ideal generated by t� t0 2 Z[t℄.Lemma 1. (Newton lifting)Let g 2 Z[t℄[x℄ be a polynomial, t0 2 Z, and �0 2 Q[t℄[�℄ suh that g(�0) �0 mod (t � t0) and a = (t � t0) - dis(f) dis(g). Then for every k 2 N we anompute an element �k 2 Q[t℄[�℄ with g(�k) � 0 mod a2k and �k � �0 mod a.Proof. From (t � t0) - dis(f) dis(g) we get that g0(�0) is invertible in R=a. Itsinverse !0 an be omputed using the extended Eulidean algorithm. The elements�k are now obtained using the above double iteration. �In our algorithm we want to ompute an element of the form� = n�1Xi=0 bi�i (bi 2 Q(t));where we make the additional assumption that all denominators of the bi divide agiven polynomial d 2 Q[t℄. Now let M := t � t0 2 Z[t℄ be a polynomial whih isprime to d. For a; b;  2 Q[t℄ with gd(M; b) = 1 we say that ab �  mod (Mk) ifand only if a � b modMk. We further say thatn�1Xi=0 bi�i � n�1Xi=0 i�i mod ak if and only if bi � i mod (Mk) (0 � i � n� 1):In our appliations we are able to ompute  = Pn�1i=0 i�i with � �  mod ak.Knowing that all denominators of the bi divide d the reonstrution of � from an be done oeÆientwise using the following lemma.



ALGORITHMS FOR FUNCTION FIELDS 3Lemma 2. (Pad�e approximation)Let ;M = (t� t0)k 2 Q[t℄ and k1; k2 2 N with k1+k2 < k. If there exist a; b 2 Q[t℄with deg(a) � k1 and deg(b) � k2 suh that ab �  mod (M) then a; b an beomputed eÆiently based on an extended gd-algorithm. Furthermore ab is uniquein this ase.The proof an be found in [vzGG99, Setion 5.9℄. If we want to use the abovelemma, it is important to have estimates for the degrees of a and b in order tohoose the needed preision k.We denote by j � j1 the negated degree valuation on Q(t), i.e. jab j1 = deg(a) �deg(b). Let N=Q(t) be a �nite extension. We know that there exists a valuationof N extending j � j1. We denote this valuation by j � j1, too. Let f 2 Q[t℄[x℄ bean irreduible polynomial. It is well known how to ompute the valuations of thezeros of f in a splitting �eld N of f .Theorem 1. Let f = xn+ a1xn�1+ � � �+ an 2 Q(t)[x℄ be a moni polynomial anddenote by �1; : : : ; �n the zeros in a splitting �eld. Then we an reursively de�ne1 � k1 < k2 < : : : < ks = n suh that the following holds:(i) Let k1 2 f1; : : : ; ng be the largest number suh thatjak1 j1k1 = max1�i�n jaij1i :Then v1 := jak1 j1k1 is the maximal negated degree valuation of a zero of f andthere are exatly k1 zeros with this valuation.(ii) Supposing ki < n we de�ne ki+1 2 fki + 1; : : : ; ng to be the largest numbersuh thatjaki+1 j1 �Pi�=1 k�v�ki+1 � ki = maxki<j�n jaj j1 �Pi�=1 k�v�j � ki :Then vi+1 := jaki+1 j1�Pi�=1 k�v�ki+1�ki is the maximal negated degree valuation ofki+1 � ki zeros of f .Proof. W.l.o.g. we an assume that j�1j1 � : : : � j�nj1. The oeÆients of f arethe elementary symmetri funtions in �1; : : : ; �n. Sine j � j1 is non-arhimedeanit follows that jaij1 � ij�1j1 for 1 � i � k1. Furthermore we have that jaij1 <ij�1j1 for i > k1. Sine there is no anellation we get that jak1 j1 = k1j�1j1whih proves (i). The seond part an be proved in an analogous way. �Using the preeding theorem the valuations of the zeros of a polynomial f 2Q(t)[x℄ an easily be omputed.Lemma 3. Let K = Q(t)(�) be an extension of degree n of Q(t) and � 2 K.Furthermore let f 2 Q[t℄[x℄ be the minimal polynomial of � and denote by vj :=max(0; j�j j1), where w.l.o.g. �1; : : : ; �n are ordered in a way suh that v1 � : : : �vn. Denote by w the maximal valuation of a zero of the minimal polynomial of �over Q(t). Then � = 1d n�1Xi=0 b̂i�i; with b̂i; d 2 Q[t℄;jb̂ij1 � jdj1 � 12 j dis(f)j1 + n�1Xj=1(n� j)vj + w:



4 J�URGEN KL�UNERSProof. Clearly � = 1dPn�1i=0 b̂i�i for some b̂i; d 2 Q[t℄. Denote by �1; : : : ; �n theonjugates of �. Then the onjugates of � are given by�j = 1d n�1Xi=0 b̂i�ij (1 � j � n):This de�nes a linear system of equations:1d 0B�1 �1 � � � �n�11... ... ...1 �n � � � �n�1n 1CA0B� b̂0...b̂n�11CA = 0B��1...�n1CA :Denote by A the above Vandermonde matrix, by A0; : : : ; An�1 the olumns of A,and de�ne B := (�1; : : : ; �n)tr. Using Cramer's rule, we obtain:bi = d det(A0; : : : ; Ai�1; B;Ai+1; : : : ; An�1)det(A) :We want to estimate det(A0; : : : ; Ai�1; B;Ai+1; : : : ; An�1) using the fat that thedeterminant is the sum of produts of n fators, where we have exatly one fatorin eah row and in eah olumn. The worst ase is when we plae B in the �rstolumn. Using det(A)2 = dis(f) and that j � j1 is non-arhimedean we get:jb̂ij1 � jdj1 � 12 j dis(f)j1 + n�1Xj=1(n� j)vj + w for 0 � i � n� 1: �This estimate an be sharpened when f has zeros �i with negative valuation.Now we are able to give the following algorithm.Algorithm 1. (Root Finding)Input: Minimal polynomial f 2 Z[t℄[x℄ of a primitive element � of an exten-sion K=Q(t), a polynomial g 2 Z[t℄[x℄, t0 2 Z suh that f(t0; x) andg(t0; x) are irreduible, and �� with g( ��) � 0 mod (t� t0).Output: � =Pn�1i=0 bi�i (bi 2 Q(t)) with g(�) = 0 and � � �� mod (t � t0), orindiation that suh a � does not exist.Step 1: Compute the valuations v1 � : : : � vn of the zeros of f using Theorem1 (n = [K : Q(t)℄) and set vi := max(vi; 0).Step 2: Compute the maximal valuation w of the zeros of g using Theorem 1.Step 3: Compute the disriminant of f and its fatorization dis(f) = rQi=1 deiiin Q[t℄. Set d := rQi=1 db ei2 i .Step 4: Compute ~k := jdj1� 12 j dis(f)j1+Pn�1j=1 (n�j)vj+w:We get jb̂ij1 �~k using Lemma 3.Step 5: Set k := ~k + jdj1 + 1.



ALGORITHMS FOR FUNCTION FIELDS 5Step 6: Using Newton lifting (Lemma 1) ompute ~bi 2 Q[t℄ suh thatg(n�1Xi=0 ~bi�i) � 0 mod (t� t0)k:Step 6: Using Lemma 2 retrieve the rational oeÆients bi � ~bi mod (t� t0)k.Step 7: If � := n�1Pi=0 bi�i is a zero of g return �, otherwise return that � =2 K.The polynomial d omputed in Step 3 is a multiple of all denominators of thebi's. In ase a smaller polynomial with this property is known, this an be used toimprove the algorithm. We remark that Step 3 an be improved by using squarefreefatorization. The orretness of this algorithm follows from the onsiderations inthis setion. 4. AutomorphismsWe use the notations of Setion 2 and assume that K=Q(t) is a normal extensionof degree n. Our aim is to ompute the automorphism group of K=Q(t). Anautomorphism � of K=Q(t) is uniquely determined by its image� := �(�) = n�1Xi=0 bi�i with bi 2 Q(t):One we know this image it is easy to apply � to an element  = n�1Pi=0 i�i with i 2Q(t), sine �() = n�1Xi=0 i�(�)i:In ase we want to apply � more than one, it is desirable to store the normal formof �(�); �(�)2 ; : : : ; �(�)n�1 in order to save omputing time.Later in this setion we desribe how to ompute one single automorphism. Ifwe want to get the whole automorphism group A we have to ompute generators ofA. Afterwards we an apply Dimino's algorithm [But91, pages 14-23℄ to omputeall elements of A.By Hilbert's irreduibility theorem there exists t0 2 Z suh that �f(x) := f(t0; x) 2Q[x℄ is irreduible. Then Gal(f) = Gal( �f). Denote as before by � the orrespondingstrutures in the residue lass �eld of the prime ideal (t� t0). We obtain�(�) = � = n�1Xi=0 bi�i � ��(��) = n�1Xi=0 �bi��i mod (t� t0):Therefore, if we are able to ompute an automorphism in a residue lass �eld we anapply the Newton lifting and reonstrution tehniques of Setion 3 to determinethe orresponding automorphism of K=Q(t). [AK99℄ desribe how to omputeautomorphisms of an abelian number �eld. The author extended this algorithm tothe non abelian ase [Kl�u97℄.Now we are able to give the algorithm for omputing automorphisms of �niteextensions of Q(t).



6 J�URGEN KL�UNERSAlgorithm 2. (Computation of Automorphisms)Input: Minimal polynomial f 2 Z[t℄[x℄ of a primitive element � of a normalextension K=Q(t), t0 2 Z suh that f(t0; x) is irreduible, and anautomorphism �� of the orresponding residue lass �eld extension.Output: An automorphism � of K=Q(t) suh that �(�) � ��(��) mod (t� t0).Step 1: Call Algorithm 1 with f; f; t0; and �� = ��(��) and store the result in �.Step 2: Return the orresponding automorphism � with �(�) = �.The orretness of this algorithm follows from the onsiderations in this setion.We remark that the above algorithm an also be used to hek if the extensionK=Q(t) is normal. In the negative ase n�1Pi=0 bi�i fails to be a zero of f .5. Embedding of SubfieldsThe situation is very similar to the one in the preeding setion. LetK = Q(t)(�)be a �nite extension of degree n of Q(t). Furthermore we have a �eld L = Q(t)(�)of degree m over Q(t). We denote by f and g the minimal polynomials of � and �,respetively. W.l.o.g. we assume that f; g 2 Z[t℄[x℄. We want to deide if L=Q(t)is a sub�eld of K=Q(t). In the latter ase we want to determine the embedding ofL in K whih an be done by expressing � in terms of �:� = n�1Xi=0 bi�i:Note that in the ase [K : Q(t)℄ = [L : Q(t)℄ this gives an Q(t)-isomorphism test.Let t0 2 Z suh that �f(x) := f(t0; x) 2 Q[x℄ and �g(x) := g(t0; x) 2 Q[x℄ areirreduible. Denote by � the orresponding strutures in the residue lass �eld ofthe prime ideal (t� t0). If L is a sub�eld of K it follows that �L is a sub�eld of �K.We assume now that �L is a sub�eld of �K and that we are able to determine theembedding �� = n�1Xi=0 �bi ��i:If L is a sub�eld of K we know that there exist bi 2 Q(t) with� = n�1Xi=0 bi�i � �� mod (t� t0):Again, we an apply the Newton lifting and reonstrution tehniques of Setion 3to ompute the embedding. There are algorithms to solve the sub�eld problem inthe number �eld ase. One possibility is to use fatorization of polynomials overnumber �elds to deide the problem. Another possibility is desribed in [Poh87℄.In our ontext we get this information as a part of the sub�eld algorithm desribedin Setion 7.Now we state the algorithm.



ALGORITHMS FOR FUNCTION FIELDS 7Algorithm 3. (Sub�eld Test)Input: Minimal polynomial f 2 Z[t℄[x℄ of a primitive element � of an exten-sion K=Q(t), minimal polynomial g 2 Z[t℄[x℄ of a primitive element �of an extension L=Q(t).Output: Embedding � = n�1Pi=0 bi�i, or indiation that L is not a sub�eld of K.Step 1: Find t0 2 Z suh that f(t0; x) and g(t0; x) are irreduible.Step 2: Test, if �L is a sub�eld of �K. If this is the ase, ompute the embeddingof ��. Otherwise return that L is not a sub�eld of K.Step 3: Call Algorithm 1 with f; g; t0; and ��.Step 4: In ase the omputation of � was suessful return the orrespondingembedding. Otherwise return that L is not a sub�eld of K.The orretness of this algorithm follows from the onsiderations in this setion.6. Zeros of Polynomials in Z[t℄[x℄We use the notations of Setion 2. In this setion we develop a method toompute approximations to the zeros of f . It is well known that all zeros of f anbe expressed as power series in �N [[t℄℄. In our appliations it is suÆient to knowthese series modulo tl for a suitable l 2 N. We have the problem that omputationsin the splitting �eld �N of �f are not very onvenient. In our appliations we embed�N into some unrami�ed p-adi extension. Let p be the prime ideal of the valuationring of this p-adi �eld. We approximate p-adi numbers by trunated series modulopk. The neessary p-adi arithmeti is desribed in [Kl�u98℄.Using Newton lifting we an express � as a power series:(3) � = ��+ 1Xi=1 aidi ti; where ai 2 Z[��℄; di 2 N:Note that even if Z[��℄ is the maximal order of �K the denominators di are notneessarily equal to 1. In the p-adi approah it is important to �nd a prime pwhih does not divide any denominator di as the following lemma shows.Lemma 4. Let p be a prime whih divides di for some i 2 N in the above powerseries. Then p divides dis( �f).Proof. De�ne a0 := ��, d0 := 1, and i := iPj=0 ajdj tj . Using linear Newton lifting we�nd thati+1 � i � f(i)f 0(0) mod ti+2 whih implies ai+1di+1 = i+1 � iti+1 � �f(i)tif 0(0) mod t:We see that all di must divide f 0(0). Denote by N the norm funtion of the number�eld �K. Using f 0(0) � �f 0(��) mod t and the fat that dis( �f) = �N( �f 0(��)) we getthat all primes dividing �f 0(��) also divide dis( �f). �From equation (3) we know that one root � of f an be expressed as a powerseries in �K[[t℄℄. We use the double iteration desribed in Setion 3 to �nd an



8 J�URGEN KL�UNERSapproximation modulo tl for some l 2 N. Now we desribe how to get all zeros off in a suitable ompletion. We start to express the zeros as power series in C [[t℄℄.The following lemma is an immediate onsequene of the above onsiderations.Lemma 5. Let �̂1; : : : ; �̂n 2 C be the zeros of �f . For 1 � i � n de�ne �i :�K[[t℄℄ ! C [[t℄℄; �� 7! �̂i; t 7! t. Furthermore let � be de�ned as in equation (3).Then ��i := �i(�) (1 � i � n) are the zeros of f in C [[t℄℄.Using omplex approximations it is very diÆult to get proven results. Thereforewe only use omplex approximations to get bounds for the oeÆients aidi . We needto �nd a representation for elements in the splitting �eld �N . As suggested in [Kl�u98℄we want to use p-adi approximations in unrami�ed p-adi extensions. Let p be aprime not dividing dis( �f). From Lemma 4 we know that p does not divide anydenominator di of a oeÆient of � in equation (3). Now let p be a prime ideal ofO �N lying above p. Therefore �f splits into linear fators over �Np. Denote the zerosof �f in �Np by ��1; : : : ; ��n. For 1 � i � n de�ne i : �K[[t℄℄! �Np[[t℄℄; �� 7! ��i; t 7! t and �i :=  i(�):Then it is immediate that �1; : : : ; �n are the roots of f in �Np[[t℄℄ and we get thefollowing lemma.Lemma 6. For k; l 2 N and for 1 � i � n let�i = 1Xj=0 ai;jtj 2 �Np[[t℄℄ and ~�i = l�1Xj=0(ai;j mod pk)tj 2 �Np[t℄:Then ~�1; : : : ; ~�n are the zeros of f modulo (tl; pk) in �Np[t℄, i.e. f(~�i) � 0 mod(tl; pk).Using the above lemma approximations to the zeros of f an easily be omputed:(i) Compute p-adi approximations modulo pk of the zeros of �f .(ii) Using Newton lifting ompute � 2 �K[[t℄℄ modulo tl.(iii) Using  i and Lemma 6 to ompute approximations modulo (tl; pk) of thezeros of f .The approximations to the zeros of f are used in the sub�eld algorithm. In thenext setion we give an algorithm to ompute suÆiently large k and l.7. SubfieldsThe algorithm for omputing sub�elds is more ompliated than the ones pre-sented in the preeding setions. Similar to the other algorithms we want to usethe fat that we are able to ompute sub�elds in the residue lass �eld whih is anumber �eld. But from this omputation we do not have enough information to liftthe sub�elds. Therefore we have to reall some properties of sub�elds. For moredetails see [KP97, Kl�u98℄.Let G be a transitive permutation group ating on 
 := f�1; : : : ; �ng. Reallthat � � 
 is alled a blok of size j�j, if �� \ � 2 f;;�g for all � 2 G. Theorbit of a blok � under G is alled a blok system. The full set and all sets ofsize 1 are bloks, the so alled trivial bloks. Suppose that �1; : : : ; �n are the rootsof an irreduible polynomial f 2 Z[t℄[x℄ and G is the Galois group of f . Then thesub�elds of a stem �eld of f are in bijetion with the groups G�1 � H � G, whereG�1 denotes the point stabilizer of �1. Therefore the following theorem establishesa bijetion between sub�elds and blok systems.



ALGORITHMS FOR FUNCTION FIELDS 9Theorem 2. The orrespondene � 7! G� := f� 2 G j �� = �g is a bijetionbetween the set of bloks of size d whih ontain � and the set of subgroups of G ofindex m = n=d ontaining the subgroup G� of �.Proof. The proof of the theorem an be found in [Wie64, Theorem 2.3℄. �We use the notations of Setion 2. We want to determine the intermediate �eldsQ(t) < L < K using the orrespondene to blok systems. The following diagramillustrates our situation:Q(t)(�1 ; : : : ; �n)
Q(t)(�1 ) G�1

fidg
f�1gdQ(t)(�) H H�1 = f�i1 ; : : : ; �idg = �1m = ndQ(t) G f�1; : : : ; �ngSuppose we are able to determine a blok system onsisting of bloks �1; : : : ;�mof size d. Then we an de�ne(4) g(t; x) := mYi=1(x� Y�2�i(�+ a)) 2 Z[t℄[x℄ (a 2 Z):It is an immediate onsequene of the de�nition of a blok system that g hasoeÆients in Z[t℄. Instead of just taking produts it is possible to onsider anarbitrary symmetri funtion of the zeros in a blok. The produt has the advantagethat we an prove that at most n hoies of a lead to a polynomial g whih hasmultiple zeros, e.g. [Kl�u98, Lemma 4.5℄. If the polynomial has no multiple zeros,it is irreduible and therefore we have found a minimal polynomial of a primitiveelement of the orresponding sub�eld L. Let t0 2 Z be hosen suh that �f(x) :=f(t0; x) 2 Z[x℄ is irreduible. We assume w.l.o.g. that t0 = 0. We denote by �G theGalois group of �f and by ��1; : : : ; ��n the zeros of �f . Using the sub�eld algorithmfor number �elds we are able to ompute a blok system ��1; : : : ; ��m. We knowthat the zeros of f an be expressed as power series in �N [[t℄℄, where �N denotes thesplitting �eld of �f . We obtain�i = ��i + 1Xj=1 ai;jtj ; where ai;j 2 �N:



10 J�URGEN KL�UNERSIf we are able to ompute the power series (see Setion 6), we an establish theorrespondene between the �i and the ��i. For the omputation of the zeros wehave to �nd integers k and l suh that it is suÆient to ompute the zeros modulo(tl; pk). In a �rst step we give an estimate for l. As in Setion 3 we denote by j�j1 thenegated degree valuation on Q(t). For a polynomial f(t; x) = nPi=0 fi(t)xi 2 Q(t)[x℄we denote by jf j1 := max0�i�n(jfij1) the valuation of a polynomial.Theorem 3. Let g be de�ned as in equation (4). Then jgj1 � jf j1.Proof. Assume that a = 0 in equation (4). Thenjgj1 = j mYi=1(x� Y�2�i �)j1 = mXi=1 max(0; X�2�i j�j1) � mXi=1 X�2�imax(0; j�j1)= nXi=1 max(0; j�ij1) = j nYi=1(x� �i)j1 = jf j1:In ase a 6= 0 we get that j�i+aj1 = max(j�ij1; 0). Therefore the same argumentshows the assertion for arbitrary a. �Theorem 3 shows that we are allowed to do all omputations modulo tl, wherel = jf j1+1. The next step is to derive a bound for the real size of the oeÆients.Let f(t; x) = nXi=0 fi(t)xi 2 Z[t℄[x℄, where fi = riXj=0 fi;jtj 2 Z[t℄:We denote by jjfijj1 := max1�j�ri(jfi;j j) the maximum norm of fi and by jjf jj1 :=max0�i�n(jjfijj1) the maximum norm of f . We are interested in omputing a boundfor jjgjj1.Theorem 4. Let f 2 Z[t℄[x℄ be a moni irreduible polynomial and denote by�i = 1Xj=0 ai;jtj 2 C [[t℄℄ (1 � i � n)the zeros of f . Let g be de�ned as in equation (4) where a = 0 and set l := jjf jj1+1.For 0 � j � l � 1 de�ne j := max1�i�n(djai;j je; 1). De�neh(t) := 0 + 1t+ � � �+ l�1tl�1 2 Z[t℄ and H(t; x) := (x+ h(t) nm )m mod tl:Then we have jjgjj1 � jjH jj1.Proof. From Theorem 3 we know jgj1 � jf j1 = l � 1. Sine jai;j j � j for0 � j � l � 1, it is immediate that jjgjj1 � jjH jj1. �Bounds for the i an easily be omputed using equation (3) and a bound for amaximal root of �f . Experiene shows that l�1 tends to be larger than 0.We are now able to give the whole algorithm for omputing sub�elds.



ALGORITHMS FOR FUNCTION FIELDS 11Algorithm 4. (Computation of sub�elds)Input: Minimal polynomial f 2 Z[t℄[x℄ of a primitive element � of an exten-sion K=Q(t).Output: All sub�elds Q(t) < L < K of K desribed by a pair (g; �), whereg 2 Z[t℄[x℄ is the minimal polynomial of � = n�1Pi=0 bi�i.Step 1: Compute t0 2 Z suh that f(t0; x) is irreduible. By applying a lineartransformation to f we assume that t0 = 0.Step 2: Compute all sub�elds Q < �L < �K of �K and the orresponding bloksystems ��1; : : : ; ��m. Eah �L is desribed by a pair (�g; ��), where �g 2Z[x℄ is the minimal polynomial of �� = n�1Pi=0 �bi��i.Step 3: If there are no suh �L return the empty list.Step 4: For eah �L do(i) Choose a prime p suh that p - dis( �f) dis(�g).(ii) Compute l := jf j1 + 1 and a bound M suh that jjgjj1 � Musing Theorem 4.(iii) Compute the smallest k 2 N suh that pk � 2M .(iv) Compute ~�1; : : : ; ~�n modulo (tl; pk) using Lemma 6.(v) Identify the ~�i with the ��i to ompute the orresponding bloksystem ~�1; : : : ; ~�m onsisting of the zeros ~�i.(vi) Use equation (4) to ompute g 2 Z[t℄[x℄ modulo (tl; pkZ) takingthe symmetri residue system modulo pk.(vii) Call Algorithm 3 with f; g to test if L is a sub�eld of K. If thisis the ase return g and the omputed embedding �.Proof. The orretness of the algorithm follows from the above onsiderations. InTheorem 3 we have proven that jgj1 < l. Therefore we an perform all omputa-tions modulo tl. In Theorem 4 we have shown that jjgjj1 �M . Sine pk � 2M , wean take the symmetri residue system to retrieve the true oeÆients of g 2 Z[t℄[x℄from the omputed approximations. If L is a sub�eld of K, �L is a sub�eld of �K.The onverse is not neessarily true. Therefore in Step 4 (vi) we have omputed gmodulo (tl; pk) sine pk \Z= pkZ. In Step 4 (vii) we test if L is indeed a sub�eldof K. �We have given a simpli�ed version of the sub�eld algorithm. One improvementould be to try several t0 2 Z whih lead to irreduible polynomials �f . Afterwardswe an take the t0 whih orresponds to the �eld �K with minimal number ofsub�elds to avoid unneessary allings of Algorithm 3.In pratie it is important to store the zeros ~�i omputed in Step 4 (iv). To usethe stored results it is important to hoose the same prime p for all sub�elds �L.For large examples it is a good idea to hoose the prime p in suh a way that theorresponding p-adi extension �Np has small degree. In the ase that the sub�eldalgorithm over Q has hosen a di�erent prime the blok systems in Step 2 an beomputed using the following lemma.



12 J�URGEN KL�UNERSLemma 7. Let �L = Q( �� ) be a sub�eld of �K = Q(��) with orresponding minimalpolynomials �g and �f . Let �� = n�1Pi=0 �bi ��i and de�ne �h(x) := n�1Pi=0 �bixi 2 Q[x℄. Denoteby ��1; : : : ; ��n; ��1; : : : ; ��m the zeros of �f and �g in a suitable losure, respetively.De�ne ��i := f��j j �h(��j) = ��ig:Then ��1; : : : ; ��m form a blok system of Gal( �f) ating on the roots ��1; : : : ; ��norresponding to the sub�eld �L.Proof. Let � 2 Gal( �f) with �( ��i) = ��k. Then� 2 ��i , �h(�) = ��i , �(�h(�)) = �h(�(�)) = ��k , �(�) 2 ��k:Consequently, ��1; : : : ; ��m is a blok system. Assuming ��1 2 ��1, we �nd thatthe subgroups �xing ��1 and ��1 oinide. Therefore the blok system ��1; : : : ; ��morresponds to �L. �8. Rational DeompositionsLet t = a(�)b(�) 2 Q(�) with a; b 2 Q[�℄ moni and gd(a; b) = 1 be a rationalfuntion. Reall that the degree of a rational funtion a(�)b(�) is de�ned to be themaximum of the degrees of a(�) and b(�). It is an interesting question to determineif there exist rational funtions u; v 2 Q(�) with 1 < deg(u); deg(v) < deg(t) suhthat t = u Æ v. It is an immediate onsequene of a theorem of L�uroth (see e.g.[Ja80℄) that suh a deomposition orresponds to a proper sub�eld Q(t) < L <Q(�). Therefore it is natural to apply the sub�eld algorithm of the last setion toompute suh deompositions.De�ne f(t; x) := a(x) � tb(x) 2 Q[t℄[x℄. Sine a and b have no ommon divisor,f has to be irreduible. Furthermore f is the minimal polynomial of � over Q(t).By applying suitable transformations we assume that f is a moni polynomial inZ[t℄[x℄. Now assume that we have omputed a sub�eld Q(t) < L < Q(t; �) = Q(�)using Algorithm 4. The algorithm returns a polynomial g 2 Z[t℄[x℄ whih is aminimal polynomial of � = n�1Pi=0 bi(t)�i, where � is a zero of f . Sine we know thatjf j1 = 1, Theorem 3 implies that jgj1 = 1 as well. We remark that from L�uroth'stheorem it is lear that suh a polynomial g exists, but it is not a priori lear thata general sub�eld algorithm will produe suh a g. Sine jgj1 = 1 we an writeg(t; x) = (x)� td(x) with ; d 2 Z[x℄. Then for a root � of g we have t = (�)d(�) andQ(�) is a sub�eld of Q(�) ontaining Q(t). It remains to express � as a rationalfuntion in �. We have � = n�1Pi=0 bi(t)�i. Replaing t by a(�)b(�) we an express � as arational funtion in �, say � = �(�)�(�) with �; � 2 Q[�℄ and gd(�; �) = 1.Altogether this shows a(�)b(�) = (�)d(�) Æ �(�)�(�) .The algorithm for rational funtion �elds an be improved ompared to thegeneral sub�eld algorithm. Experiments on a omputer show that the embeddingpart, i.e. the omputation of � is the most time onsuming part. This step anbe improved as follows. At some point of the omputations we know the rationalfuntions t = a(�)b(�) and t = (�)d(�) and would like to know the rational funtion � =



ALGORITHMS FOR FUNCTION FIELDS 13�(�)�(�) . Sine a(�)b(�) = (�)d(�) we onsider the polynomial a(�)d(�) � b(�)(�) 2 Q[�; �℄.If Q(�) is a sub�eld of Q(�) this polynomial has a linear fator �(�)� � �(�),where deg(�(�)�(�) ) = [Q(�) : Q(�)℄. Therefore we have to �nd linear fators in � ofa(�)d(�) � b(�)(�) 2 Q[�; �℄, whih an be done using well known methods.Note that there are speialized algorithms for the rational funtion �eld ase,e.g. [AGR95℄. Experiments show that the perfomane of the algorithms dependson the examples (see Setion 10).9. The omputation of subfields of a splitting fieldIn [KM00, Setion 3.3℄ we explained how to ompute a sub�eld L of a �eld ex-tension of the rationals whih was given by a minimal polynomial f 2 Z[x℄ of aprimitive element. In the same paper we also explained how to ompute a polyno-mial RG;H;F [x1; : : : ; xn℄[x℄, where G is the Galois group of f , H is the stabilizer of asub�eld of the splitting �eld, and n is the degree of f . F is a so-alled H-invariantG-relative polynomial [KM00, De�nition 3.1℄. Let �1; : : : ; �n be the roots of f .Then it is shown that RG;H;F (�1; : : : ; �n) 2 Z[x℄ is the harateristi polynomialof an element of L over Q. If this polynomial is not squarefree, i.e. the element isnot primitive, a suitable transformation on the �i yields a primitive element. Bakto our funtion �eld setting we aim at omputing RG;H;F (�1; : : : ; �n) 2 Z[t℄[x℄ us-ing approximations to the �i as before. We have explained in Setion 6 how torepresent the roots �i of a polynomial f 2 Z[t℄[x℄. The remaining problem is todetermine suÆiently large k; l (see Lemma 6). We have to use Theorem 1 to getthe (degree-)valuations of the roots of f . Unfortunately we are not in the niesituation of Theorem 3. After determining the degree bound we have to ompute abound for the p-adi approximations. Let us explain this proedure by an example.Let f(t; x) := x7 � 3x6 � x5 + 3x4 + (�t + 1)x3 + (t + 1)x2 � 5x + 4 be thepolynomial with Galois group G = PSL2(7) given in [MM99, p. 405℄. We want toompute one of the (isomorphi) degree 8 sub�elds of the splitting �eld of f . Firstwe ompute the following F (x1; : : : ; x7) := x1x2x7 + x1x3x6 + x1x4x5 + x2x3x4 +x2x5x6+x3x5x7+x4x6x7: Denote by H a subgroup of index 8 in G and let R be afull system of representatives of (left) osets of G=H . Furthermore we assume thatG ats in the same way on the xi as G ats on the roots of f . Then we getRG;H;F = Y�2R(x � F �):The next step is to ompute the neessary bounds. Using Theorem 1 we �nd thedegree valuations of the roots of f : [ 14 ; 14 ; 14 ; 14 ; 0;� 12 ;� 12 ℄. Unfortunately, we haveno hane to determine whih root has whih valuation. Sine eah summand ofF has valuation less than or equal to 34 (after substituting the �i's), we see thatthe oeÆients of RG;H;F have valuations whih are less than or equal to 8 34 = 6.Now we ompute the zeros of f as power series in C [[t℄℄ (ompare Theorem 4). Itis suÆient to ompute these series modulo t7. The polynomial h(t) in Theorem 4an still be omputed as before. Sine F onsists of seven monomials of degree 3we de�ne ~H(t; x) := (x + 7h(t)3)8 mod t7. The largest oeÆient of H gives us abound for the real norm. In our example we get the bound 1491576722650942160and ompute everything modulo 4112. The �nal result is the following (irreduible)polynomial:



14 J�URGEN KL�UNERSx8 � 18x7 + (14t+ 237)x6 + (�4t2 � 168t� 1563)x5 + (�2t3 + 125t2 + 2008t+9773)x4 + (�10t3 � 966t2 � 9231t� 32724)x3 + (6t4 + 383t3 + 7002t2 + 48745t+124283)x2+(4t5�38t4�1757t3�18994t2�90189t�179511)x+ t6+24t5+754t4+8030t3 + 60349t2 + 226389t+ 576706.The whole omputation takes about three seonds (f. next setion).10. ExamplesIn this setion we give the running times of some examples to demonstrate the ef-�ieny of our algorithms. All omputations were done on a 500MHz Intel PentiumIII proessor running under SuSE Linux 6.1.We start with an example of degree 12. Let K = Q(t)(�) be de�ned by thefollowing minimal polynomial of �:f(t; x) = x12�36x11+450x10�2484x9+3807x8+25272x7+(27t2+299484)x6+227448x5 + 308367x4 � 1810836x3 + 2952450x2 � 2125764x+ 531441:This �eld has two proper sub�elds desribed by the following (g; �). The om-putations are done in 2.4 seonds.(i) g(t; x) = x3 + 96x2 � 3840x� 27t2 � 409600,� = �452+ 936�� 690�2+160�3+ ( 1243 t2 + 33556243 )�4 + ( 8729 t2 + 91544729 )�5 +29327 �6 + 284243�7 � 686729�8 + 3882187�9 � 956561�10 + 819683�11:(ii) g(t; x) = x6 � 24x5 + 96x4 + 1024x3 � 9984x2 + 30720x+ 27t2 + 409600,� = �26+49�� 923 �2+ 479 �3+ 10427 �4+( 12187 t2+ 110922187 )�5+ 104243�6+ 47729�7�922187�8 + 506561�9 � 46561�10 + 159049�11:Now let f(t; x) := a(x) � tb(x) be a polynomial of degree 36, where a(x)b(x) is thefollowing rational funtion:a(x)b(x) := (x3 + 4)3(x3 + 6x2 + 4)3(x6 � 6x5 + 36x4 + 8x3 � 24x2 + 16)3(x � 2)6x6(x + 1)3(x2 � x+ 1)3(x2 + 2x+ 4)6 :We use the methods of Setion 8 to ompute the rational deompositions or-responding to the sub�elds. There are 10 nontrivial ones and the omputing timewas 186 seonds. In order to save spae we only give one deomposition:a(x)b(x) = �(x3 � 12x2 + 24x� 16)3(x3 + 24x� 16)3(x � 4)6(x� 1)3x6 Æ �x(x� 2)x+ 1 :We have not used the improvements whih are possible in the rational funtion�eld ase as desribed in Setion 8. Using these improvements all deompositionsan be omputed within 60 seonds. The speialized pakage FRAC [AGR95℄ needs20 minutes for the omputation of all rational deompositions.Let a(x)b(x) be the rational funtion of degree 60 shown below. We only give one ofits deompositions (whih was not known before) to save spae:a(x)b(x) := (x4 + 228x3 + 494x2 � 228x+ 1)3x(x2 � 11x� 1)5 Æ x4 � 2x3 + 4x2 � 3x+ 1�x(x4 + 3x3 + 4x2 + 2x+ 1)We need 31 minutes to ompute the three non trivial rational deompositions.Without using the improvements of Setion 8, the omputation would take about85 minutes. Here the pakage FRAC needs 114 seonds to ompute all rationaldeompositions.
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