MINIMAL DISCRIMINANTS FOR FIELDS WITH SMALL
FROBENIUS GROUPS AS GALOIS GROUPS

CLAUS FIEKER AND JURGEN KLUNERS

ABSTRACT. We apply class field theory to the computation of the minimal
discriminants for certain solvable groups. In particular we apply our techniques
to small Frobenius groups and all imprimitive degree 8 groups such that the
corresponding fields have only a degree 2 and no degree 4 subfield.

1. INTRODUCTION

There is a long tradition in number theory to compile tables of number fields match-
ing certain criteria. Commonly one computes tables of fields of a given degree or a
specific Galois group that are complete with respect to some bound on the discrim-
inant. So far, most of the tables were build with the help of geometric methods
based on a theorem of Hunter [6, Thm 9.3.1] which states the existence of primitive
elements that are not too large in comparison to the discriminant.

Recently the advent of constructive methods in class field theory [6, 9] made it
feasible to build large tables with the help of class field theory rather than using
the geometric methods. Of course, this applies mainly to the construction of fields
with solvable Galois group. For example, in [5] class field theory is used to compute
the minimal discriminants for all octic fields containing a quartic subfield.

In this paper we illustrate the use of class field theory to construct tables of fields
where the Galois group is a small solvable group or a Frobenius group. In particular
we prove the minimal discriminants for octic fields having only a degree 2 subfield
and no degree 4 one. This is done by an analysis of the relative Galois group over
the degree 2 field. Since the only possibilities here are 24 and &4 we are in the
situation of solvable groups.

As a further application we construct the minimal fields with Galois group isomor-
phic to C, x Cp for p € {7,11,13} and all 1 <! | (p — 1) and two primitive solvable
groups in degree 8.

2. NOTATIONS

Let K/k be a finite field extension. By dg/, we denote the relative discriminant of
the ring of integers Z of K as an ideal of k. In addition, di always denotes the
absolute discriminant (so dg /g = dxZ). We say that K/k has Galois group G, or
short that K is a G-field, if the normal closure N of K/k has Galois group G over
k. Ng/i denotes the norm function extended to ideals. Since the fractional ideals
of the ring of integers of any number field form a group that is freely generated by
the prime ideals, we write ¢/a or a'/” to denote the unique ideal b such that b” = a
if such an ideal exists.

Part of this article was written during a visit by the second author to the Computational
Algebra Group at the University of Sydney in September, 2001.
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3. DISCRIMINANT RELATIONS

Let N/k be a normal extension of number fields with Galois group G. We denote
by k C K; C N intermediate fields of N/k which are fixed under H; < G. The aim
of this section is to determine relations between the discriminants of these fields.
Using the notation of [19, VI.3] we denote by sq,m, the permutation character
associated to the permutation representation of G acting on G/H;. The following
theorem is an immediate consequence of Proposition 6 and Corollary 1 in [19, VL.3].

Theorem 1. For a; € Z let

r
Z aiSG/Hi =0.
i=1

Then we get

r
H d%i/k =1
i=1

We remark that relations between the permutation characters give relations between
the corresponding Dedekind zeta-functions [2, 14].

4. FROBENIUS GROUPS

In this section we show that the so-called Frobenius groups have non-trivial relations
as in Theorem 1. We denote by E the trivial group of size 1.

Definition 2. Let G = F x H be a finite group with HNHY = E for allg € G\ H
and |F|,|H| # 1. Then G is called a Frobenius group with (Frobenius) kernel F'
and complement H. The permutation representation where G acts on G/H is called
natural permutation representation.

Example 3. The dihedral groups D,, of size 2n with n odd, &3, and 24 are Frobe-
nius groups.

Theorem 4. Let G be a Frobenius group with kernel F' and complement H. Let
N/k be a normal field extension with Gal(N/k) = G. We denote by K = Fix(H)
the fized field of H and with M = Fix(F) the fized field of F. Then

dic/i = dyryNmyk (dN/M)l/lHl )

N

K = Fix(H)

M = Fix(F)

k
Proof. We have the following relation of permutation characters, e.g. [10, p. 323]:
|H|sq/a +sq/e = |H|sq/a + saq/r-
The discriminant relation now follows using Theorem 1 and the fact that dy/;, =

d‘z\lil/k Noat/k(dnynr)- 0
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Let us describe how this theorem can be used to construct all extension fields K of
k such that Ny q(dk/x) < B for some bound B, assuming that we are able to do
the same for H-extensions of k and F-extensions of arbitrary number fields. For
this application it is not necessary for G to be a Frobenius group. We only need
to have a discriminant relation between the fields in the diagram. To make the
method effective, F' has to be Abelian.

Algorithm 5.

(1) Compute all fields M [k with Galois group H such that Nk/Q(dﬁ\/I/k) <B.
(2) For all these M do
(3) Compute all extensions N/M with Galois group F such that
(a) Nk/Q(d?\/[/kNM/k(dN/M)l/lHl) < B,
(b) Gal(N/k) =G.
(4) end for M
In this approach we assume that we are able to construct fields M with Galois
group H (which is smaller than G). In our applications the group F' is an abelian
group. Therefore we can apply class field theory in step 3 of this algorithm (see
Sections 5 and 6).
In the following we derive some relations for Frobenius groups using Theorem 4.
We use the notation nTm for the m-th transitive group of degree n in the ordering
of [7]. This is the group we get by typing TransitiveGroup(n,m); in Gap [18] or
Magma [4].
Corollary 6. Let G be one of the following Frobenius groups and N/k be a normal
field extension with Galois group G. Using the notation of Theorem J we get the
following relations:

(1) G=Ay=VyxC3: dyp = dM/kNM/k(dN/M)1/3'
(2) ForpePandl1 #1|(p—1)let G := CpyxCy: dgp = dNT/kNM/k(dN/M)l/l.
(3) G =8125=C3 x Cr: dicjp = dpgyeNaasu(dnyar) 7

5. Crass FIELDS

In order to construct our fields we will make use of class field theory. We have
to construct Cy, C3 and Vj-extensions of number fields with restrictions on the
absolute Galois group, the ramified primes and the absolute discriminant of the
resulting field.

We recall some of the necessary notations from class field theory. For a complete
account of the theoretical side see e.g. [15], for the practical side [6, 9]. We will
restrict ourselves to the ideal theoretic approach to class field theory which is better
suited for practical computations than the idele-theoretic one.

For the remainder of this section we fix a base field M with its ring of integers Z ;.
Let m := (mg, my) be a module, i.e. my an integral ideal of Zy; and m, a set of
real places of M. An (fractional) ideal a of Z s is said to be coprime to m iff it is
coprime to my. For an algebraic number o € M we define « =1 mod *masa =1
mod mp and v(a) > 0 for all v € my,. We say that m divides some other module n
iff mo|ng and my, C neo.

The ray class group Cly, is the factor group I™ of ideals coprime to m by the
subgroup P, of principal ideals generated by elements v =1 mod *m. For m|n we
have a canonical epimorphism from Cl, onto Cl,.

Let P < U < I™ be arbitrary. The smallest module n such that I™/U — I"/UP,
is injective is called the conductor fy of U. P, < U' < I™ is equivalent to U iff
the preimages of Cly, — I"/U" and Cly, — I™/U coincide. In this case we write
U' ~ U. The main results from class field theory we need are
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Theorem 7. (1) For any U there is exactly one abelian extension N/M such
that Gal(N/M) = I™ /U where the isomorphism is given by the Artin-map:
aU — (a, N/M) € Gal(N/M) which maps prime ideals to their Frobenius
automorphism.

(2) For any abelian extension N/M there is exactly one class of factor groups
I™/U such that Gal(N/M) = I™/U.
(3) For any automorphism o of M we have

(ca, N/M) =0 *(a, N/M)o

(4) Let | be the conductor of I™/U and N/M the corresponding abelian exten-
sion. Then the ramified primes of N/M are exactly the divisors of f.
Suppose now M /k normal with Gal(M/k) = H = (o1, ...,0.).
In order for N/k to be normal it is necessary and sufficient that o;(U) ~ U for
1 <4 < r, which in particular implies o;(fu) = fu. If o;(m) = m then this
simplifies to o;(U) = U. In this situation the Galois group of N/k is an extension
of Gal(N/M) by Gal(M/k):

0 — Gal(N/M) =2 I™/U — Gal(N/k) - Gal(M/k) — 0

This extension is central iff aU = o;(a)U for all classes aU of I™ /U and all1 < i < r.
If, in addition, H is cyclic, N/k is abelian.

6. p-EXTENSIONS

By the results of the last section, the computation of p-extensions of M that are nor-
mal (central, abelian) over k is reduced to the problem of finding suitable quotients
of ray class groups.
To check 0;(U) ~ U we will assume that o;(m) = m holds. In what follows my is
always generated by some ideal of k so this condition will always be fulfilled. m,
will either be empty or contain all real places. Since we are free to choose U within
its equivalence class, these choices are no restriction.
We want to compute a p-extension N of M such that

(1) Gal(N/M) = F = C}, for some prime p and some integer s,

(2) N/k is normal (possibly additional restrictions)

(3) and some conditions on the discriminant of N/M are met.

The last properties just imposes some conditions on the module m that we will
ignore in this section. However these conditions will be important in the algorithms.
Assume m is given and we want to compute Py, < U < I™ such that I™/U =2 F
and N/k normal holds. Since p is the exponent of F', we obtain (I™)? < U < I™.
By our choice of m, Cly[p] := I™/(I™)P is an F,[H]-module, and U corresponds
to an F,[H] submodule. The problem is now reduced to a purely module theoretic
one and can be solved using the tools of module theory [11, 16].

In the special case of H = (o) however, the situation is much easier, here the
problem reduces to finding o-invariant subspaces of the [F,-vectorspace Cly[p].
Here we obtain the following:

Corollary 8. (1) U ezists iff there is a o-invariant subspace of dimension s.
(2) For s =1, N/k is abelian iff U is an eigenspace to the eigenvalue 1.
An algorithmic solution for the special case s = 1 if we want all subgroups U giving
central extensions is contained in
Algorithm 9. (1) Set F := Cly[p]/(Id —0) Cly[p].
(2) Using [3] or [6, Thm 4.1.18] find all subgroups U of indezx p.
In order to find non-central extensions we use (Ald —o) for all 1 # X € F) instead
of (Id —o) in step 1.
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(Note that this procedure can also be applied to the problem of finding central
extensions of cyclic fields of prime-power order.)

Now we want to give some necessary conditions for the module m. We can restrict
ourselves to modules m which are conductors. We know that exactly the prime
ideals dividing mg are ramified in the corresponding abelian extension. Furthermore
a prime ideal p is wildly ramified if and only if p? | mg. Therefore we get that all
prime ideals but the ones dividing the degree have exponent 0 or 1. In the following
lemma we give an estimate for the exponent of wildly ramified primes.

Lemma 10. Let N/M be a cyclic extension of prime degree p and p be a prime
ideal of Zy, containing p which is ramified in N/M. Denote by e the ramification
index (over M) of an ideal B lying over p. Let m be the conductor of this extension.
Then we get that

e—1+evy(e)
p—1

where v, denotes the ordinary p valuation of an ideal.

?

vp(mp) <

Proof. The lemma follows immediately by applying Remark 1 in [19, page 58]. O

7. AUTOMORPHISMS

Having constructed suitable subgroups U, we can use the techniques described
in [9] to compute defining equations for N/M. For our applications the explicit
knowledge of the automorphism group of N/k is necessary, so we will explain how
we can easily compute it, too.

During the class field computation for p-extensions, we construct the following
system of fields:

N = k(G) (/)

M(¢p)

M

k

In order to extend o, a generator of Gal(A/k), to N, we first extend it to M ((p).
This is straightforward, since M ((,) is the compositum of M /k and k((,)/k and
for both fields we explicitly know all automorphisms.

Next, we extend o to N'. Since N' is a Kummer-extension, the extension of o must
have the form

oY/ o/

where ged(r, p) = 1. From the action of o on Cly[p] (7.3) we obtain linear equations
for r. Having computed r we get uo as any solution of u = o(p)p™".

Finally, to restrict o to N, we have several possibilities, none of which seems to
be superior over the others, starting point for all of them is the knowledge of the
primitive element of N/M as an element v' of N'.

We applied linear algebra: solving the linear system 3°7_0 A\;7'* = o'(y') we obtain
the coefficients of o(y) with respect to the M-basis 1, v, v, ..., 7* "L of N.
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8. TRANSITIVE GROUPS OF DEGREE 8

We want to apply our methods to compute minima for some groups occuring in
degree 8. There are 50 transitive groups of degree 8, seven of which are primitive.
Consequently, we have 43 imprimitive groups of degree 8. All but seven of them
have a block of size 2 (which corresponds to a subfield of degree 4). The minimal
fields corresponding to these groups are determined in [5]. We compute the fields
with minimal discriminants for all imprimitive groups which do not have a block of
size 2. This means that the corresponding field extensions have a subfield of degree
2 and the relative Galois group is primitive on four points. Thus two cases arise.
In the first case, the relative Galois group is 24 and we get the following absolute
Galois groups:

(1) 8T33
(2) 8T34
(3) 8T42 = A1 2.

In the second case, the relative Galois group is &4, and the corresponding absolute
groups are:

(1) 8T41
(2) 8T45
(3) 8T46
(4) 8T47 = 6412

We remark that there are three further groups where the corresponding fields of
degree 8 have a subfield of degree 2 such that the field of degree 8 is primitive over
this subfield. In these cases there is a subfield of degree 4 and the field can be
obtained as a quadratic extension. These groups are 8T13 = 24 x Cs, 8T14, and
8T24 = &4 x C3. As mentioned above the minima for these groups are computed in
[5]. As a byproduct of our computations we have been able to verify their results.
Furthermore, our methods could be used to compute minima for some of the prim-
itive groups as well. The group 8T25 = C3 x C7 is a Frobenius group and the
discriminant relation is given in Corollary 6. A similar relation exists for the group
8T36 = 023 A (07 A Cg)

Now we want to describe how we proved the minima for above mentioned groups in
degree 8. We noted above that all of them correspond to fields having a quadratic
subfield k. We will demonstrate how, given a quadratic field, one can compute
all of the degree 8 fields as extensions of k of (relative) degree 4 with a bound
on the absolute discriminant. Since listing quadratic fields is equivalent to listing
the corresponding discriminants which is essentially the same as listing square free
integers, the necessary fields can be obtained easily.

Afterwards we have to describe a method to find 24 or &4 extensions of a given
quadratic field. 24 is a Frobenius group and we can apply the methods described
before. Since G, is not a Frobenius group, we need a different approach. Let k be
some number field and N/k be a normal extension with Galois group &4. There
are three subfields ¥ C K,L,M C N such that [K : k] = 4, [L : k] = 6 and
[M : k] = 3, where L is the fixed field under a subgroup Cy x Cy of &4 which is not
normal (see field diagram in Section 10). All of them are unique up to conjugation.
The corresponding permutation representation of &4 acting on the cosets of this
Cs x Cy is isomorphic to 6T7. Taking the right conjugate we can assume that
M C L holds. Using Theorem 1 we get Nk/Q(dK/k) = NK/Q(dM/kNM/k(dL/M))
Therefore we first have to produce &3-extensions M/k of degree 3. Since M/k is
not normal we first apply the methods described in Section 6 to produce a normal
Gs-extension of k of degree 6. Afterwards we can get M as a subfield of this
extension. Now we have to produce relative quadratic extensions L of M with the
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right Galois group. Unfortunately the discriminant ideals does not carry enough
information. Let wi,...,w, be a basis of a field extensions L = M(a). Then
d(wi,...,wp) := det(o;(w;))?, where o; are the M-linear embeddings of L into
C (cmp. [6, p. T78]). It is well known that the discriminants of (the minimal
polynomial of) a and d(w1,...,w,) only differ by a square.

Lemma 11. Let L/M/k be extensions of number fields, where L = M () is of de-
green and M = k() is of degree m. Then {a!37 |0 <i < m,0<j <n} is a basis
of Lk and d(1,cr, .../~ 3771 =d(1,8,..., 8" ) "Ny (d(1, o, ... ,a™ 1)),

Proof. The first part of the lemma is trivial, it remains to prove the statement
involving the discriminants.

Denote the conjugates (over k) of 3 by f1,..., 3, and the conjugates of a by «; ;
(1<i<n,1<j<m), where o; ; are lying above ;.

We have d(1,a,...,a' 1 3171) = (det C)?, where C is a blockmatrix of the form

Ay A, 1 1
C = BlAl . BnAn , where A,' _ Q1 . Qjm
BrlA; ... prlA, @t et

Let B the corresponding matrix to d(1,3,...,3" ). From the blockmatrix struc-
ture we get that det(C)? = (det(A;)---det(4,)det(B)™)? =
Na/e(d(1L, a, . ... ,amT)d(L, B, ..., )™, O

The following Lemma can be found in [1, Lemmata 4,5] for the case k = Q.
Lemma 12. Let L/M/k such that [L : M] = 2, [M : k] = 3 and suppose L =
M(Va).
(1) Let Gal(M/k) = &3. Then L/k has Galois group 6T7 if and only if
Nk (@) is a square.
(2) Let Gal(M/k) = Cs. Then L/k has Galois group 614 = A4(6) if and only
if Nnyk(@) is a square.

Proof. Let 1, 3, 3? be a basis of M/k. The group 6T7 is a subgroup of 2l and
therefore d(1,,...,a(?) is a square. Using Lemma 11 we get d(1,q,...,af%) =
d(1, 8, %)’ Nk (d(1,/a)). Tt follows Nasyx(d(1, /@) = 4Np(a) is a square.
On the other hand if Ny /. (a) is a square we get that d(1,a,. .., af3?) is a square
and therefore Gal(L/k) < g N C2 ! &3 using [13]. The group 6T7 is the only
transitive subgroup which has all these properties. The proof for the A4 case is
analogous. O

We remark that N/ () is a square implies that N/, (dr/ar) is a square.

9. Ay

In order to construct tables of 2d4-extensions K of quadratic fields subject to
|dk /0| < B, we will work with the following field diagram:

From dg g = dyN(dg/,) we immediately get |dy| < VB and N(dk) < B/d}.
Furthermore, from Corollary 6 we conclude N(d/y,) < N(dg/) < B/dj;. Since
Gal(M/k) = Cs, this implies N (far/x) < +/B/dj, = VB/d; (because dpy i = 3 1,)-
In the last step we need to compute Vy-extensions N of M such that N/k is normal,
but N;/k is not normal for 1 <i < 3.

In our actual computations, we started by computing a table of all Cs-extensions
M of quadratic fields with absolute discriminant |dys ol < Bas using:
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N

Algorithm 13. Computation of Cs-extensions M of real quadratic fields of absolute
discriminant |dar/g|l < By .
(].) dk =5
(2) while dy < /B do
(3) let k be the quadratic field of discriminant d,
(4) let b= 2, if 8 is unramified in k, and b = 4 otherwise (Lemma 10).
(5) compute a list | of ideals a C Zy, such that a apart from the 3 part is square
free, the exponents of the 3 parts are bounded by b, and N (a) < \/Ba/d3.
(6) for each a inl do
(7) if the conductor of Cly is different from a, try newt a.
(8) for all P, <U < I* with [I*: U] =3 do
(9) check if fu equals a. If not, try next U.
(10) compute M as the class field corresponding to U.
(11) end do U
(12) end do a
(13) find the next quadratic discriminant.
(14) end do

(and a corresponding algorithm for imaginary quadratic base fields).

A total of 7121 Cj-extensions of imaginary quadratic fields with By; = 10'° and
10601 extensions of real quadratic fields with By; = 10'? have been computed.

In the next stage, we compute Vj-extensions of those sextic fields:

Algorithm 14. Computation of Vy-extensions.

(1) For each M in the list computed before do
(2) Compute k as a subfield of M
(3) Compute a non trivial automorphism o of M [k
(4) Let b = 2e + 1, where e denotes the mazimal ramification indez of a
prime ideal in Zy; lying over 2.
(5) Compute a list | of ideals a C Zpy that are square free (apart from the
2 part, which is bounded by b) and invariant under o. For each a do:
(6) Let V be the Fy[o] module 1°/(1%)%.Compute all irreducible 2-dimen-
stonal quotients U of V
(7) if fu = a, compute N as the corresponding class field.
(8) extend o to N (this still has order 3)
(9) compute K as the field fized by o
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(10) end do U
(11) end do

A total of 60 fields with group 8T33, 36 fields with 8T34 and 1437 field with 8T42
have been computed. Therefore we proved:

Theorem 15. The minimal discriminants for imprimitive degree 8 fields with rel-
ative Galois group A4 are as given in Table 2.

10. &4

The computation of G4-extensions follows the following diagram of fields. In our
situation k is a quadratic extension of Q.

r

As one can see, the first step is the compilation of tables of &3 extensions of
quadratic fields. This task is addressed here: To compute the relative &3-extensions
we use the dotted part of the diagram. We decided to use a two pass approach: we
first computed imprimitive quartic fields k;/Q and, in a second pass, extend these
fields by Cs-extensions and get the Ss subfield using Galois theory.

The task of compiling tables of quartic fields was further split up by Galois groups
and signatures.

Gal(K/Q) Gal(k:/Q) ry €

8T41 Vi {0,4,8}
8T45 Vi {0,4,8}
8T46 Cy {0,4,8}
8T47 D, {0,2,4,6,8}

We have used different bounds for the discriminant for each group and signature.
The tables of Dy and Cy-extensions were computed using class field theory, for the
V,-extensions a more direct approach was used.
Algorithm 16. Computation of Dy-extensions of Q up to discriminant |dg,| <
By, .

(].) dk =5

(2) while dy, < ¥/ By, do
(3) Let k be the quadratic field of discriminant dy,, Gal(k/Q) = (o).
(4) Let b= 2e+ 1, where e denotes the ramification indez of a prime ideal in

Zy, lying over 2.
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(5) compute a list | of ideals a C Zj, such that a apart from the 2 part is square
free, the exponents of the 2 parts are bounded by b, and N (a) < Bkl/di.
(6) for each a inl do
(7) if the finite part of the conductor of Clyoo, 00, is different from a, try
next a.
(8) for all Py < U < I* with [I[*: U] =2 do
(9) check if the finite part of fu equals a. If not, try next U.
(10) if o(U) = U, try next U.
(11) compute ki as class field corresponding to U.
(12) end do U
(13) end do a
(14) find the next quadratic discriminant.
(15) end do

In order to compute Cy-extensions of Q stronger criteria were used. First of all
a Ch-extension embeds into a Cy-extension if and only if it is totally real and all
odd ramified primes are congruent 1 mod 4. It is necessary that all primes which
are ramified in £ must ramify in k. This reduces the number of ideals in the list
[ dramatically. Furthermore, we only enumerate subgroups U invariant under the
action of o.

The Vj-extensions were obtained directly as the product of two quadratics.

We computed 582 totally complex Cy fields of discriminant < 108, 13360 totally
real fields of discriminant < 5-10'°, 13076 complex V; fields (< 108), 32262 totally
real V, fields (< 4 -10'°), and 426788 D, fields of all signatures.

To finally get the G3-extensions of k, a similar procedure was used. A total of
64432 G3-extension was obtained.

The last step is to compute the &4-extensions. Suppose that we have computed a
list of &3-extensions of k up to a suitable bound (the field M in the diagram). We
want to compute relative quadratic extensions as explained in Section 8.

Algorithm 17. Computation of &y4-extensions of a quadratic field k up to dis-
criminant |di| < B.

(1) Compute all S3-extensions Mk such that |dyrdy| < B.
(2) For all M do

(3) Compute b according to Lemma 10.

(4) Compute a list | of ideals a C Z s of absolute norm smaller or equal to
dMBdk that are square free (apart from the 2 part, which is bounded by
exponent b) such that the norm is a square (see Lemma 12).

(5) for each a do

(6) Compute all quotients U of size 2 such that fir = a.
(7) For all of these U compute the class field L = M (y/«).
(8) For all of these L with Ny () is a square in k use Algorithm 3.5 in
[12] to compute the field K.
(9) end do a
(10) end do M

Using the above algorithm we proved:

Theorem 18. The minimal discriminants for imprimitive degree 8 fields with rel-
ative Galois group &4 are as given in Table 3.

11. MINIMAL DISCRIMINANTS FOR SOME FROBENIUS GROUPS

In Corollary 6 we gave discriminant relations for the Frobenius groups G := C}, xCj,
where p is prime and 1 # 1 | (p — 1). The construction of fields with these Galois
groups over a given number field k is as follows. First construct a cyclic extension
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M /k with Galois group C; = (o). Now we have to find cyclic extensions N/M with
Galois group C), such that Gal(N/k) = C}, x C;. Using Corollary 8 we have to find
o-invariant subspaces of dimension 1 which are not an eigenspace to the eigenvalue
1 (to avoid the direct product Cp, x C;). We computed the minimal discriminants
for these groups for p = 7,11, 13. Since all non trivial elements in Frobenius groups
in its natural permutation representation on p points have at most one fix point,
the corresponding fields are totally real or have exactly one real embedding. Using
similar algorithms as in Sections 9 and 10 we proved:

Theorem 19. The minimal discriminants for fields of prime degree 7 < p < 13
with Galois group Cp, x C; are as given in Table 1.

In Corollary 6 we noted a relation for the Frobenius group 8T25 = C3 x C7. To
produce such extensions we have to find extensions M /k with Galois group C7 =
(o). Afterwards we have to find extensions N/M such that Gal(N/M) = C3 and
Gal(N/k) = C3 x Cr. Using Corollary 8 we have to find all irreducible o-invariant
eigenspaces of dimension 3. Analogously we proved:

Theorem 20. The minimal discriminants for fields of degree 8 with Galois group
C3 x C7 are as given in Table 4.

As noted above we can find a similar discriminant relation for the group 8T36=C3 x
(C7 x C3). This is a primitive group which is no Frobenius group. In order to
construct fields with group 8T36 we proceed as follows: Let N/k be a normal
extension with Galois group 8T36. Denote by K, M, and L subfields of degree
8,7, and 14, respectively. We suppose that M C L. Using Theorem 1 we get
Nk/0o(dx/k) = Ni/o(dar/kNumy/k(dryar)). Therefore we have to find degree 7 exten-
sions M such that the Galois group of the splitting field is isomorphic to C7 x Cj.
We have described in Section 11 how to construct such fields. For each of theses
M’s we have to compute quadratic extensions L/M such that the splitting field of
L/k has Galois group 8T36. Similar to the G4-case we can prove that the norm
of the finite part of the conductor of L/M must be a square. The Galois group
of L/k is 14T11 which is a subgroup of 2,4 and therefore dy /;, is a square. From
dp/x = d%w/kNM/k(dL/M) we get the desired result. For the coprime 2-part we can

do better by looking at the possible conjugacy classes of that group. Denote by §
the part of f which is prime to 2. Then NM/k(f) has to be a fourth power. Using
these restrictions we produce all quadratic fields (up to the given bound) and check
if we get the desired Galois group. After the computation of L/k we can compute
K /k using the algorithms described in [12]. We remark that the norm of the 2-part

is not necessarily a fourth power. We proved:

Theorem 21. The minimal discriminants for fields of degree 8 with Galois group
C3 x (C7 x C3) are as given in Table 4.

12. TABLES

The following tables contain the minimal discriminants of fields with prescribed
Galois groups and ry real zeros. The notation “Hilbert class field or ray class field
of a polynomial” means that our field is contained in the corresponding class field
of the field generated by a zero of that polynomial. In these cases we have proved
the minimum, but were not able to compute a generating polynomial.
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Table 1: Minimal discriminants of Frobenius groups C}, x C}

group

1

07 ><102

7

192 100 033=577°
27 — 228 — 725 +102* + 132° — 102 — 2z + 1

1

-357 911=-T13
27 =225 + 225 + 2% — 322+ —1

07 ><103

1 817 487 424=26731
z7 — 8x® — 2z* + 162° + 622 — 62 — 2

07 ><106

12 431 698 517=7*173°
7 —x% — 122° + 92* + 372% — 2622 — 21z + 5

-38 014 691=—11°13*
7 — 328 +92° — 132 + 172° — 1022 + 4z + 1

Ci1 »x Oy

11

3 670 285 774 226 257=1297°
2t — 5210 — 429 4 5428 — 5327
—12725 + 208z° + 69z* — 2222°% + 2922 + 56x — 5

-129 891 985 607=—167°
a2 — 104529 — 428 + 1027 — 625 +112° — T2 +92° — 42?2 + 22+ 1

011 A 05

11

1771 197 285 652 216 321=1918
Hilbert class field of z°® + z* — 7623 — 35922 — 437x — 155

Ci1 x Cho

11

3 483 293 138 903 825 541=3°7°31°%
Hilbert class field of z'° — 729 — 2928 + 27227 — 78
—1948z° + 1274x* + 424323 — 139322 — 2035z + 625

-34 522 712 143 931=—1113
= 1129 + 5527 4+ 1125 — 14325 — 662 + 1652° + 12122 + 11

013 A 02

13

282 638 808 125 771 304 198 601=8101°
B — 22 — 50z — 6210 + 85722 + 94328 — 504527 — 931946
+3890x° + 13442z + 183513 — 275942 + 304w + 4

48 551 226 272 641=191°
213 — 6212 + 102! — 16210 4 2227 — 1928
+1127 — 52% — 25 + 52t — 423 + 22 — 1

Ci3 x C3

13

353 629 668 200 918 277 880 881=3121316
3 — 39z + 468z — 1989z — 5076
+2886x° + 1443z* — 6242 — 23422 + 3

Ci3 x Cy

13

4 832 905 768 528 976 580 078 125=51163°
Hilbert class field of z* + 323 — 145622 — 4368z + 416141

51 185 893 014 090 757=13"
'3 + 13210 — 262® + 1327 + 5225 — 392* + 2622 + 13z + 2

Ci3 x Cg

13

157 840 477 768 256 032 709 001=3'27%61°
Ray class field of (3) of
25 + 32° — 562 — 1312® + 63722 + 164z — 1079

38 376 770 428 210 201=13%19°
Hilbert class field of 26 — 2% 4+ 62* + 23 + 8522 — 118z + 415

Ciz x Ch2

13

145 952 577 189 773 202 214 912=2'27°1313

Ray class field of (26) of
1% — g — 25210 + 252% + 23528 — 23527 — 101325
+10132° + 1899z* — 18992% — 101322 + 1013z — 181

33 171 021 564 453 125=5198
Hilbert class field of #12 + 2z!! 4+ 9210 4 2929 4+ 1052° — 16327
+22825 — 2542° + 4692* — 1042° + 2322 — 5z + 1
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Table 2: Minimal discriminants of imprimitive degree 8 extensions with relative

Galois group 2l4

group | r1
N 94 540 875 625=5712512
8 — 227 — 1420 + 322° + 442 — 1212° — 1922 + 1262 — 36
8T33 | 4 2 522 550 625=5%7%417
28 4+ 327 — 225 — 132° 4 22* + 3423 + 42% — 30z + 5
0 1 262 025 625=5%7%292
z® + 227 + 42° + 122* — 22° — 142® + 5z + 11
3 3 747 708 810 000=2*3%5%2392
a8 — 227 — 2925 4 342° 4 2232* — 6223 — 15122 — 462 — 4
20 880 250 000=2%5°17%
8T34) 4 28+ 27 — 620 —132° —62% — 2% — 1422 — Tz + 1
0 1614 110 976=283%312
8 — 227 — 220 + 8a® + 142 — 402° + 4022 — 202 + 4
3 22 982 560 000=2%5%379>
8 — 227 — 1820 — 22° + 632 + 442° — 2222 — 42 + 1
8T42 | 4 618 765 625=5%199>
a8 — 327 — 528 4+ 172° + 92* — 272% — 1022 + 132 + 1
0 12 075 625=5%1392
a8+ 4x® + 2 + 42—+ 1
Table 3: Minimal discriminants of imprimitive degree 8 extensions with relative
Galois group &4
8 47 461 236 736=21623237>
a8 — 2425 + 4445 + 202* — 6403 — 422 + 242 + 4
ST41 | 4 258 405 625:546432
28 — 427 + 220 + 182° — 1924 — 102° + 2122 — 9z + 1
0 24 255 625=5%197>
a8 + 327 + 425 4+ 42 + 62* + 627 + 42 + 20+ 1
3 43 816 955 625=325%27912
28 + 27 — 1125 — 82° + 402 + 172° — 5422 — 62 + 19
118 810 000=2%5%109>
8T45 | 4 ¥ — 327 — 325 +172° — 122* — 923 + 1322 — 62 + 1
0 55 115 776=216292
2 =228 f ot 4422+ 40+ 1
8 210 791 778 125=5°43%1912
28 + 27 — 3125 — 202° + 1302* — 102® — 17022 + 1252 — 25
402 753 125=5"359>
8T46 | 4 2 — 2" + 2% —42* + 52 + 622 — 22— 1
0 275 653 125=355°112
a8 + 227 + 728 4+ 112° + 192* + 2023 + 2022 + 102 + 5
N 661 518 125=5%43912411"
2+ 27 — 928 — 132° + 112* + 172° — 42?2 — 4 + 1
6 —74 906 875=—5%119851"
a8 — 325 + 325 + 32 — T2 — 222 + 3w+ 1
16 643 125=5%31'859!
8T4T | 4 2 —a" =228 + 225 — P+ 1
9 —5 756 875=—5%611151!
28 — 220 +32° =322+ 222 +2 -1
0 1 342 413=3*16573"
2B + 327 + 628 + 7a® + Tat + 627 + 422 + 20+ 1
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Table 4: Minimal discriminants of some primitive groups of degree 8

group | r1

eTos— | & 9 745 585 291 264—21729°
- 8 — 227 —202% + 102° + 1022 + 262° — 11222 — 50z + 7
594 823 321=29°

3
C3xC7 ) 0 28 —dr” + 825 — 625 + 224 +62° — 322+ 2+ 3
eT36— | s 6 423 507 767 296—=212199%
- 2% — 402% — 1625 + 2722* + 14423 — 32022 — 40z + 44
1 817 487 424=2°73%

3

G % (CrxGs) | 0 28 + 327 + 202* + 182° — 1822 — 8z + 14

All of the above computations were done using Kash 2.2 ([8, 17]). For a large part of
the tables (all of the degree 4 and 6 fields) we used a network of 30 IBM-PPC run-
ning under AIX. The final step was done on some PC running under Linux. We used
a total of about 2 weeks on the network plus 1 more week on the PC. The fields can
be obtained from ftp://ftp.math.tu-berlin.de/pub/algebra/Kant/tables.
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