
MINIMAL DISCRIMINANTS FOR FIELDS WITH SMALLFROBENIUS GROUPS AS GALOIS GROUPSCLAUS FIEKER AND J�URGEN KL�UNERSAbstra
t. We apply 
lass �eld theory to the 
omputation of the minimaldis
riminants for 
ertain solvable groups. In parti
ular we apply our te
hniquesto small Frobenius groups and all imprimitive degree 8 groups su
h that the
orresponding �elds have only a degree 2 and no degree 4 sub�eld.
1. Introdu
tionThere is a long tradition in number theory to 
ompile tables of number �elds mat
h-ing 
ertain 
riteria. Commonly one 
omputes tables of �elds of a given degree or aspe
i�
 Galois group that are 
omplete with respe
t to some bound on the dis
rim-inant. So far, most of the tables were build with the help of geometri
 methodsbased on a theorem of Hunter [6, Thm 9.3.1℄ whi
h states the existen
e of primitiveelements that are not too large in 
omparison to the dis
riminant.Re
ently the advent of 
onstru
tive methods in 
lass �eld theory [6, 9℄ made itfeasible to build large tables with the help of 
lass �eld theory rather than usingthe geometri
 methods. Of 
ourse, this applies mainly to the 
onstru
tion of �eldswith solvable Galois group. For example, in [5℄ 
lass �eld theory is used to 
omputethe minimal dis
riminants for all o
ti
 �elds 
ontaining a quarti
 sub�eld.In this paper we illustrate the use of 
lass �eld theory to 
onstru
t tables of �eldswhere the Galois group is a small solvable group or a Frobenius group. In parti
ularwe prove the minimal dis
riminants for o
ti
 �elds having only a degree 2 sub�eldand no degree 4 one. This is done by an analysis of the relative Galois group overthe degree 2 �eld. Sin
e the only possibilities here are A4 and S4 we are in thesituation of solvable groups.As a further appli
ation we 
onstru
t the minimal �elds with Galois group isomor-phi
 to Cp oCl for p 2 f7; 11; 13g and all 1 < l j (p� 1) and two primitive solvablegroups in degree 8. 2. NotationsLet K=k be a �nite �eld extension. By dK=k we denote the relative dis
riminant ofthe ring of integers ZK of K as an ideal of k. In addition, dK always denotes theabsolute dis
riminant (so dK=Q = dKZ). We say that K=k has Galois group G, orshort that K is a G-�eld, if the normal 
losure N of K=k has Galois group G overk. NK=k denotes the norm fun
tion extended to ideals. Sin
e the fra
tional idealsof the ring of integers of any number �eld form a group that is freely generated bythe prime ideals, we write rpa or a1=r to denote the unique ideal b su
h that br = aif su
h an ideal exists.Part of this arti
le was written during a visit by the se
ond author to the ComputationalAlgebra Group at the University of Sydney in September, 2001.1



2 CLAUS FIEKER AND J�URGEN KL�UNERS3. Dis
riminant RelationsLet N=k be a normal extension of number �elds with Galois group G. We denoteby k � Ki � N intermediate �elds of N=k whi
h are �xed under Hi � G. The aimof this se
tion is to determine relations between the dis
riminants of these �elds.Using the notation of [19, VI.3℄ we denote by sG=Hi the permutation 
hara
terasso
iated to the permutation representation of G a
ting on G=Hi. The followingtheorem is an immediate 
onsequen
e of Proposition 6 and Corollary 1 in [19, VI.3℄.Theorem 1. For ai 2 Z let rXi=1 aisG=Hi = 0:Then we get rYi=1 daiKi=k = 1:We remark that relations between the permutation 
hara
ters give relations betweenthe 
orresponding Dedekind zeta-fun
tions [2, 14℄.4. Frobenius groupsIn this se
tion we show that the so-
alled Frobenius groups have non-trivial relationsas in Theorem 1. We denote by E the trivial group of size 1.De�nition 2. Let G = F oH be a �nite group with H \Hg = E for all g 2 G nHand jF j; jH j 6= 1. Then G is 
alled a Frobenius group with (Frobenius) kernel Fand 
omplement H. The permutation representation where G a
ts on G=H is 
allednatural permutation representation.Example 3. The dihedral groups Dn of size 2n with n odd, S3, and A4 are Frobe-nius groups.Theorem 4. Let G be a Frobenius group with kernel F and 
omplement H. LetN=k be a normal �eld extension with Gal(N=k) �= G. We denote by K = Fix(H)the �xed �eld of H and with M = Fix(F ) the �xed �eld of F . ThendK=k = dsM=kNM=k(dN=M )1=jHj;where s = jF j�1jHj . N
k

K = Fix(H) M = Fix(F )
Proof. We have the following relation of permutation 
hara
ters, e.g. [10, p. 323℄:jH jsG=G + sG=E = jH jsG=H + sG=F :The dis
riminant relation now follows using Theorem 1 and the fa
t that dN=k =djF jM=kNM=k(dN=M ). �



MINIMAL DISCRIMINANTS 3Let us des
ribe how this theorem 
an be used to 
onstru
t all extension �elds K ofk su
h that Nk=Q(dK=k) � B for some bound B, assuming that we are able to dothe same for H-extensions of k and F -extensions of arbitrary number �elds. Forthis appli
ation it is not ne
essary for G to be a Frobenius group. We only needto have a dis
riminant relation between the �elds in the diagram. To make themethod e�e
tive, F has to be Abelian.Algorithm 5.(1) Compute all �elds M=k with Galois group H su
h that Nk=Q(dsM=k) � B.(2) For all these M do(3) Compute all extensions N=M with Galois group F su
h that(a) Nk=Q(dsM=kNM=k(dN=M )1=jHj) � B,(b) Gal(N=k) = G.(4) end for MIn this approa
h we assume that we are able to 
onstru
t �elds M with Galoisgroup H (whi
h is smaller than G). In our appli
ations the group F is an abeliangroup. Therefore we 
an apply 
lass �eld theory in step 3 of this algorithm (seeSe
tions 5 and 6).In the following we derive some relations for Frobenius groups using Theorem 4.We use the notation nTm for the m-th transitive group of degree n in the orderingof [7℄. This is the group we get by typing TransitiveGroup(n,m); in Gap [18℄ orMagma [4℄.Corollary 6. Let G be one of the following Frobenius groups and N=k be a normal�eld extension with Galois group G. Using the notation of Theorem 4 we get thefollowing relations:(1) G = A4 = V4 o C3: dK=k = dM=kNM=k(dN=M )1=3:(2) For p 2 P and 1 6= l j (p�1) let G := CpoCl: dK=k = d p�1lM=kNM=k(dN=M )1=l.(3) G = 8T25 = C32 o C7: dK=k = dM=kNM=k(dN=M )1=7.5. Class FieldsIn order to 
onstru
t our �elds we will make use of 
lass �eld theory. We haveto 
onstru
t C2, C3 and V4-extensions of number �elds with restri
tions on theabsolute Galois group, the rami�ed primes and the absolute dis
riminant of theresulting �eld.We re
all some of the ne
essary notations from 
lass �eld theory. For a 
ompletea

ount of the theoreti
al side see e.g. [15℄, for the pra
ti
al side [6, 9℄. We willrestri
t ourselves to the ideal theoreti
 approa
h to 
lass �eld theory whi
h is bettersuited for pra
ti
al 
omputations than the id�ele-theoreti
 one.For the remainder of this se
tion we �x a base �eld M with its ring of integers ZM.Let m := (m0;m1) be a module, i.e. m0 an integral ideal of ZM and m1 a set ofreal pla
es of M . An (fra
tional) ideal a of ZM is said to be 
oprime to m i� it is
oprime to m0. For an algebrai
 number � 2M we de�ne � � 1 mod �m as � � 1mod m0 and v(�) > 0 for all v 2 m1. We say that m divides some other module ni� m0jn0 and m1 � n1.The ray 
lass group Clm is the fa
tor group Im of ideals 
oprime to m by thesubgroup Pm of prin
ipal ideals generated by elements 
 � 1 mod �m. For mjn wehave a 
anoni
al epimorphism from Cln onto Clm.Let Pm � U � Im be arbitrary. The smallest module n su
h that Im=U ! In=UPnis inje
tive is 
alled the 
ondu
tor fU of U . Pn � U 0 � In is equivalent to U i�the preimages of Clmn ! In=U 0 and Clmn ! Im=U 
oin
ide. In this 
ase we writeU 0 � U . The main results from 
lass �eld theory we need are



4 CLAUS FIEKER AND J�URGEN KL�UNERSTheorem 7. (1) For any U there is exa
tly one abelian extension N=M su
hthat Gal(N=M) �= Im=U where the isomorphism is given by the Artin-map:aU 7! (a; N=M) 2 Gal(N=M) whi
h maps prime ideals to their Frobeniusautomorphism.(2) For any abelian extension N=M there is exa
tly one 
lass of fa
tor groupsIm=U su
h that Gal(N=M) �= Im=U .(3) For any automorphism � of M we have(�a; N=M) = ��1(a; N=M)�(4) Let f be the 
ondu
tor of Im=U and N=M the 
orresponding abelian exten-sion. Then the rami�ed primes of N=M are exa
tly the divisors of f.Suppose now M=k normal with Gal(M=k) = H = h�1; : : : ; �ri.In order for N=k to be normal it is ne
essary and suÆ
ient that �i(U) � U for1 � i � r, whi
h in parti
ular implies �i(fU ) = fU . If �i(m) = m then thissimpli�es to �i(U) = U . In this situation the Galois group of N=k is an extensionof Gal(N=M) by Gal(M=k):0! Gal(N=M) �= Im=U ! Gal(N=k)! Gal(M=k)! 0This extension is 
entral i� aU = �i(a)U for all 
lasses aU of Im=U and all 1 � i � r.If, in addition, H is 
y
li
, N=k is abelian.6. p-extensionsBy the results of the last se
tion, the 
omputation of p-extensions ofM that are nor-mal (
entral, abelian) over k is redu
ed to the problem of �nding suitable quotientsof ray 
lass groups.To 
he
k �i(U) � U we will assume that �i(m) = m holds. In what follows m0 isalways generated by some ideal of k so this 
ondition will always be ful�lled. m1will either be empty or 
ontain all real pla
es. Sin
e we are free to 
hoose U withinits equivalen
e 
lass, these 
hoi
es are no restri
tion.We want to 
ompute a p-extension N of M su
h that(1) Gal(N=M) �= F = Csp for some prime p and some integer s,(2) N=k is normal (possibly additional restri
tions)(3) and some 
onditions on the dis
riminant of N=M are met.The last properties just imposes some 
onditions on the module m that we willignore in this se
tion. However these 
onditions will be important in the algorithms.Assume m is given and we want to 
ompute Pm � U � Im su
h that Im=U �= Fand N=k normal holds. Sin
e p is the exponent of F , we obtain (Im)p � U � Im.By our 
hoi
e of m, Clm[p℄ := Im=(Im)p is an Fp [H ℄-module, and U 
orrespondsto an Fp [H ℄ submodule. The problem is now redu
ed to a purely module theoreti
one and 
an be solved using the tools of module theory [11, 16℄.In the spe
ial 
ase of H = h�i however, the situation is mu
h easier, here theproblem redu
es to �nding �-invariant subspa
es of the Fp -ve
torspa
e Clm[p℄.Here we obtain the following:Corollary 8. (1) U exists i� there is a �-invariant subspa
e of dimension s.(2) For s = 1, N=k is abelian i� U is an eigenspa
e to the eigenvalue 1.An algorithmi
 solution for the spe
ial 
ase s = 1 if we want all subgroups U giving
entral extensions is 
ontained inAlgorithm 9. (1) Set ~F := Clm[p℄=(Id��) Clm[p℄.(2) Using [3℄ or [6, Thm 4.1.18℄ �nd all subgroups U of index p.In order to �nd non-
entral extensions we use (� Id��) for all 1 6= � 2 F�p insteadof (Id��) in step 1.



MINIMAL DISCRIMINANTS 5(Note that this pro
edure 
an also be applied to the problem of �nding 
entralextensions of 
y
li
 �elds of prime-power order.)Now we want to give some ne
essary 
onditions for the module m. We 
an restri
tourselves to modules m whi
h are 
ondu
tors. We know that exa
tly the primeideals dividing m0 are rami�ed in the 
orresponding abelian extension. Furthermorea prime ideal p is wildly rami�ed if and only if p2 j m0. Therefore we get that allprime ideals but the ones dividing the degree have exponent 0 or 1. In the followinglemma we give an estimate for the exponent of wildly rami�ed primes.Lemma 10. Let N=M be a 
y
li
 extension of prime degree p and p be a primeideal of Zk 
ontaining p whi
h is rami�ed in N=M . Denote by e the rami�
ationindex (over M) of an ideal P lying over p. Let m be the 
ondu
tor of this extension.Then we get that vp(m0) � e� 1 + evp(e)p� 1 ;where vp denotes the ordinary p valuation of an ideal.Proof. The lemma follows immediately by applying Remark 1 in [19, page 58℄. �7. AutomorphismsHaving 
onstru
ted suitable subgroups U , we 
an use the te
hniques des
ribedin [9℄ to 
ompute de�ning equations for N=M . For our appli
ations the expli
itknowledge of the automorphism group of N=k is ne
essary, so we will explain howwe 
an easily 
ompute it, too.During the 
lass �eld 
omputation for p-extensions, we 
onstru
t the followingsystem of �elds: N M M(�p)
N 0 = k(�p)( pp�)
kIn order to extend �, a generator of Gal(M=k), to N , we �rst extend it to M(�p).This is straightforward, sin
e M(�p) is the 
ompositum of M=k and k(�p)=k andfor both �elds we expli
itly know all automorphisms.Next, we extend � to N 0. Sin
e N 0 is a Kummer-extension, the extension of � musthave the form � : pp� 7! �0 pp�rwhere g
d(r; p) = 1. From the a
tion of � on Clm[p℄ (7.3) we obtain linear equationsfor r. Having 
omputed r we get �0 as any solution of �p0 = �(�)��r.Finally, to restri
t � to N , we have several possibilities, none of whi
h seems tobe superior over the others, starting point for all of them is the knowledge of theprimitive element of N=M as an element 
0 of N 0.We applied linear algebra: solving the linear system Pp�1i=0 �i
0i = �(
0) we obtainthe 
oeÆ
ients of �(
) with respe
t to the M -basis 1, 
, 
2, . . . , 
p�1 of N .



6 CLAUS FIEKER AND J�URGEN KL�UNERS8. Transitive groups of degree 8We want to apply our methods to 
ompute minima for some groups o

uring indegree 8. There are 50 transitive groups of degree 8, seven of whi
h are primitive.Consequently, we have 43 imprimitive groups of degree 8. All but seven of themhave a blo
k of size 2 (whi
h 
orresponds to a sub�eld of degree 4). The minimal�elds 
orresponding to these groups are determined in [5℄. We 
ompute the �eldswith minimal dis
riminants for all imprimitive groups whi
h do not have a blo
k ofsize 2. This means that the 
orresponding �eld extensions have a sub�eld of degree2 and the relative Galois group is primitive on four points. Thus two 
ases arise.In the �rst 
ase, the relative Galois group is A4 and we get the following absoluteGalois groups:(1) 8T33(2) 8T34(3) 8T42 = A4 o 2.In the se
ond 
ase, the relative Galois group is S4, and the 
orresponding absolutegroups are:(1) 8T41(2) 8T45(3) 8T46(4) 8T47 = S4 o 2.We remark that there are three further groups where the 
orresponding �elds ofdegree 8 have a sub�eld of degree 2 su
h that the �eld of degree 8 is primitive overthis sub�eld. In these 
ases there is a sub�eld of degree 4 and the �eld 
an beobtained as a quadrati
 extension. These groups are 8T13 = A4 � C2, 8T14, and8T24 = S4�C2. As mentioned above the minima for these groups are 
omputed in[5℄. As a byprodu
t of our 
omputations we have been able to verify their results.Furthermore, our methods 
ould be used to 
ompute minima for some of the prim-itive groups as well. The group 8T25 = C32 o C7 is a Frobenius group and thedis
riminant relation is given in Corollary 6. A similar relation exists for the group8T36 = C32 o (C7 o C3).Now we want to des
ribe how we proved the minima for above mentioned groups indegree 8. We noted above that all of them 
orrespond to �elds having a quadrati
sub�eld k. We will demonstrate how, given a quadrati
 �eld, one 
an 
omputeall of the degree 8 �elds as extensions of k of (relative) degree 4 with a boundon the absolute dis
riminant. Sin
e listing quadrati
 �elds is equivalent to listingthe 
orresponding dis
riminants whi
h is essentially the same as listing square freeintegers, the ne
essary �elds 
an be obtained easily.Afterwards we have to des
ribe a method to �nd A4 or S4 extensions of a givenquadrati
 �eld. A4 is a Frobenius group and we 
an apply the methods des
ribedbefore. Sin
e S4 is not a Frobenius group, we need a di�erent approa
h. Let k besome number �eld and N=k be a normal extension with Galois group S4. Thereare three sub�elds k � K;L;M � N su
h that [K : k℄ = 4, [L : k℄ = 6 and[M : k℄ = 3, where L is the �xed �eld under a subgroup C2�C2 of S4 whi
h is notnormal (see �eld diagram in Se
tion 10). All of them are unique up to 
onjugation.The 
orresponding permutation representation of S4 a
ting on the 
osets of thisC2 � C2 is isomorphi
 to 6T7. Taking the right 
onjugate we 
an assume thatM � L holds. Using Theorem 1 we get Nk=Q(dK=k) = NK=Q(dM=kNM=k(dL=M )).Therefore we �rst have to produ
e S3-extensions M=k of degree 3. Sin
e M=k isnot normal we �rst apply the methods des
ribed in Se
tion 6 to produ
e a normalS3-extension of k of degree 6. Afterwards we 
an get M as a sub�eld of thisextension. Now we have to produ
e relative quadrati
 extensions L of M with the



MINIMAL DISCRIMINANTS 7right Galois group. Unfortunately the dis
riminant ideals does not 
arry enoughinformation. Let !1; : : : ; !n be a basis of a �eld extensions L = M(�). Thend(!1; : : : ; !n) := det(�i(!j))2, where �i are the M -linear embeddings of L intoC (
mp. [6, p. 78℄). It is well known that the dis
riminants of (the minimalpolynomial of) � and d(!1; : : : ; !n) only di�er by a square.Lemma 11. Let L=M=k be extensions of number �elds, where L =M(�) is of de-gree n and M = k(�) is of degree m. Then f�i�j j 0 � i < m; 0 � j < ng is a basisof L=k and d(1; �; : : : ; �i�1�j�1) = d(1; �; : : : ; �n�1)mNM=k(d(1; �; : : : ; �m�1)).Proof. The �rst part of the lemma is trivial, it remains to prove the statementinvolving the dis
riminants.Denote the 
onjugates (over k) of � by �1; : : : ; �n and the 
onjugates of � by �i;j(1 � i � n, 1 � j � m), where �i;j are lying above �i.We have d(1; �; : : : ; �i�1�j�1) = (detC)2, where C is a blo
kmatrix of the formC = 0BB� A1 : : : An�1A1 : : : �nAn: : : : : :�n�11 A1 : : : �n�1n An1CCA ; where Ai = 0BB� 1 : : : 1�i;1 : : : �i;m: : : : : :�m�1i;1 : : : �m�1i;m 1CCA :Let B the 
orresponding matrix to d(1; �; : : : ; �n�1). From the blo
kmatrix stru
-ture we get that det(C)2 = (det(A1) � � � det(An) det(B)m)2 =NM=k(d(1; �; : : : ; �m�1))d(1; �; : : : ; �n�1)m: �The following Lemma 
an be found in [1, Lemmata 4,5℄ for the 
ase k = Q.Lemma 12. Let L=M=k su
h that [L : M ℄ = 2, [M : k℄ = 3 and suppose L =M(p�).(1) Let Gal(M=k) = S3. Then L=k has Galois group 6T7 if and only ifNM=k(�) is a square.(2) Let Gal(M=k) = C3. Then L=k has Galois group 6T4 = A4(6) if and onlyif NM=k(�) is a square.Proof. Let 1, �, �2 be a basis of M=k. The group 6T7 is a subgroup of A6 andtherefore d(1; �; : : : ; ��2) is a square. Using Lemma 11 we get d(1; �; : : : ; ��2) =d(1; �; �2)2NM=k(d(1;p�)). It follows NM=k(d(1;p�)) = 4NM=k(�) is a square.On the other hand if NM=k(�) is a square we get that d(1; �; : : : ; ��2) is a squareand therefore Gal(L=k) � A6 \ C2 o S3 using [13℄. The group 6T7 is the onlytransitive subgroup whi
h has all these properties. The proof for the A4 
ase isanalogous. �We remark that NM=k(�) is a square implies that NM=k(dL=M ) is a square.9. A4In order to 
onstru
t tables of A4-extensions K of quadrati
 �elds subje
t tojdK=Qj � B, we will work with the following �eld diagram:From dK=Q = d4kN(dK=k) we immediately get jdkj � 4pB and N(dK=k) � B=d4k.Furthermore, from Corollary 6 we 
on
lude N(dM=k) � N(dK=k) � B=d4k. Sin
eGal(M=k) �= C3, this implies N(fM=k) �pB=d4k = pB=d2k (be
ause dM=k = f2M=k).In the last step we need to 
ompute V4-extensions N ofM su
h that N=k is normal,but Ni=k is not normal for 1 � i � 3.In our a
tual 
omputations, we started by 
omputing a table of all C3-extensionsM of quadrati
 �elds with absolute dis
riminant jdM=Qj � BM using:
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4 k C2A4K C3 M C2N1 N2 N3C2

Q

N

Algorithm 13. Computation of C3-extensionsM of real quadrati
 �elds of absolutedis
riminant jdM=Qj � BM .(1) dk := 5(2) while dk � 3pBM do(3) let k be the quadrati
 �eld of dis
riminant dk(4) let b = 2, if 3 is unrami�ed in k, and b = 4 otherwise (Lemma 10).(5) 
ompute a list l of ideals a � Zk su
h that a apart from the 3 part is squarefree, the exponents of the 3 parts are bounded by b, and N(a) �pBM=d3k.(6) for ea
h a in l do(7) if the 
ondu
tor of Cla is di�erent from a, try next a.(8) for all Pa � U � Ia with [Ia : U ℄ = 3 do(9) 
he
k if fU equals a. If not, try next U .(10) 
ompute M as the 
lass �eld 
orresponding to U .(11) end do U(12) end do a(13) �nd the next quadrati
 dis
riminant.(14) end do(and a 
orresponding algorithm for imaginary quadrati
 base �elds).A total of 7121 C3-extensions of imaginary quadrati
 �elds with BM = 1010 and10601 extensions of real quadrati
 �elds with BM = 1012 have been 
omputed.In the next stage, we 
ompute V4-extensions of those sexti
 �elds:Algorithm 14. Computation of V4-extensions.(1) For ea
h M in the list 
omputed before do(2) Compute k as a sub�eld of M(3) Compute a non trivial automorphism � of M=k(4) Let b = 2e + 1, where e denotes the maximal rami�
ation index of aprime ideal in ZM lying over 2.(5) Compute a list l of ideals a � ZM that are square free (apart from the2 part, whi
h is bounded by b) and invariant under �. For ea
h a do:(6) Let V be the F2 [�℄ module Ia=(Ia)2.Compute all irredu
ible 2-dimen-sional quotients U of V(7) if fU = a, 
ompute N as the 
orresponding 
lass �eld.(8) extend � to N (this still has order 3)(9) 
ompute K as the �eld �xed by �



MINIMAL DISCRIMINANTS 9(10) end do U(11) end doA total of 60 �elds with group 8T33, 36 �elds with 8T34 and 1437 �eld with 8T42have been 
omputed. Therefore we proved:Theorem 15. The minimal dis
riminants for imprimitive degree 8 �elds with rel-ative Galois group A4 are as given in Table 2.10. S4The 
omputation of S4-extensions follows the following diagram of �elds. In oursituation k is a quadrati
 extension of Q.
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K 22�

k1
k2(�3)

k1(�3)k2
S3 C3ML

As one 
an see, the �rst step is the 
ompilation of tables of S3 extensions ofquadrati
 �elds. This task is addressed here: To 
ompute the relativeS3-extensionswe use the dotted part of the diagram. We de
ided to use a two pass approa
h: we�rst 
omputed imprimitive quarti
 �elds k1=Q and, in a se
ond pass, extend these�elds by C3-extensions and get the S3 sub�eld using Galois theory.The task of 
ompiling tables of quarti
 �elds was further split up by Galois groupsand signatures.Gal(K=Q) Gal(k1=Q) r1 28T41 V4 f0; 4; 8g8T45 V4 f0; 4; 8g8T46 C4 f0; 4; 8g8T47 D4 f0; 2; 4; 6; 8gWe have used di�erent bounds for the dis
riminant for ea
h group and signature.The tables of D4 and C4-extensions were 
omputed using 
lass �eld theory, for theV4-extensions a more dire
t approa
h was used.Algorithm 16. Computation of D4-extensions of Q up to dis
riminant jdk1 j �Bk1 .(1) dk := 5(2) while dk � 2pBk1 do(3) Let k be the quadrati
 �eld of dis
riminant dk, Gal(k=Q) = h�i.(4) Let b = 2e+1, where e denotes the rami�
ation index of a prime ideal inZk lying over 2.
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ompute a list l of ideals a � Zk su
h that a apart from the 2 part is squarefree, the exponents of the 2 parts are bounded by b, and N(a) � Bk1=d2k.(6) for ea
h a in l do(7) if the �nite part of the 
ondu
tor of Cla1112 is di�erent from a, trynext a.(8) for all Pa < U < Ia with [Ia : U ℄ = 2 do(9) 
he
k if the �nite part of fU equals a. If not, try next U .(10) if �(U) = U , try next U .(11) 
ompute k1 as 
lass �eld 
orresponding to U .(12) end do U(13) end do a(14) �nd the next quadrati
 dis
riminant.(15) end doIn order to 
ompute C4-extensions of Q stronger 
riteria were used. First of alla C2-extension embeds into a C4-extension if and only if it is totally real and allodd rami�ed primes are 
ongruent 1 mod 4. It is ne
essary that all primes whi
hare rami�ed in k must ramify in k1. This redu
es the number of ideals in the listl dramati
ally. Furthermore, we only enumerate subgroups U invariant under thea
tion of �.The V4-extensions were obtained dire
tly as the produ
t of two quadrati
s.We 
omputed 582 totally 
omplex C4 �elds of dis
riminant < 108, 13360 totallyreal �elds of dis
riminant < 5 � 1010, 13076 
omplex V4 �elds (< 108), 32262 totallyreal V4 �elds (< 4 � 1010), and 426788 D4 �elds of all signatures.To �nally get the S3-extensions of k, a similar pro
edure was used. A total of64432 S3-extension was obtained.The last step is to 
ompute the S4-extensions. Suppose that we have 
omputed alist of S3-extensions of k up to a suitable bound (the �eld M in the diagram). Wewant to 
ompute relative quadrati
 extensions as explained in Se
tion 8.Algorithm 17. Computation of S4-extensions of a quadrati
 �eld k up to dis-
riminant jdK j � B.(1) Compute all S3-extensions M=k su
h that jdMdkj � B.(2) For all M do(3) Compute b a

ording to Lemma 10.(4) Compute a list l of ideals a � ZM of absolute norm smaller or equal toBdMdk that are square free (apart from the 2 part, whi
h is bounded byexponent b) su
h that the norm is a square (see Lemma 12).(5) for ea
h a do(6) Compute all quotients U of size 2 su
h that fH = a.(7) For all of these U 
ompute the 
lass �eld L =M(p�).(8) For all of these L with NM=k(�) is a square in k use Algorithm 3.5 in[12℄ to 
ompute the �eld K.(9) end do a(10) end do MUsing the above algorithm we proved:Theorem 18. The minimal dis
riminants for imprimitive degree 8 �elds with rel-ative Galois group S4 are as given in Table 3.11. Minimal dis
riminants for some Frobenius groupsIn Corollary 6 we gave dis
riminant relations for the Frobenius groupsG := CpoCl,where p is prime and 1 6= l j (p � 1). The 
onstru
tion of �elds with these Galoisgroups over a given number �eld k is as follows. First 
onstru
t a 
y
li
 extension



MINIMAL DISCRIMINANTS 11M=k with Galois group Cl = h�i. Now we have to �nd 
y
li
 extensions N=M withGalois group Cp su
h that Gal(N=k) �= Cp oCl. Using Corollary 8 we have to �nd�-invariant subspa
es of dimension 1 whi
h are not an eigenspa
e to the eigenvalue1 (to avoid the dire
t produ
t Cp � Cl). We 
omputed the minimal dis
riminantsfor these groups for p = 7; 11; 13. Sin
e all non trivial elements in Frobenius groupsin its natural permutation representation on p points have at most one �x point,the 
orresponding �elds are totally real or have exa
tly one real embedding. Usingsimilar algorithms as in Se
tions 9 and 10 we proved:Theorem 19. The minimal dis
riminants for �elds of prime degree 7 � p � 13with Galois group Cp o Cl are as given in Table 1.In Corollary 6 we noted a relation for the Frobenius group 8T25 = C32 o C7. Toprodu
e su
h extensions we have to �nd extensions M=k with Galois group C7 =h�i. Afterwards we have to �nd extensions N=M su
h that Gal(N=M) = C32 andGal(N=k) = C32 oC7. Using Corollary 8 we have to �nd all irredu
ible �-invarianteigenspa
es of dimension 3. Analogously we proved:Theorem 20. The minimal dis
riminants for �elds of degree 8 with Galois groupC32 o C7 are as given in Table 4.As noted above we 
an �nd a similar dis
riminant relation for the group 8T36=C32o(C7 o C3). This is a primitive group whi
h is no Frobenius group. In order to
onstru
t �elds with group 8T36 we pro
eed as follows: Let N=k be a normalextension with Galois group 8T36. Denote by K;M , and L sub�elds of degree8,7, and 14, respe
tively. We suppose that M � L. Using Theorem 1 we getNk=Q(dK=k) = NK=Q(dM=kNM=k(dL=M )). Therefore we have to �nd degree 7 exten-sions M su
h that the Galois group of the splitting �eld is isomorphi
 to C7 o C3.We have des
ribed in Se
tion 11 how to 
onstru
t su
h �elds. For ea
h of thesesM 's we have to 
ompute quadrati
 extensions L=M su
h that the splitting �eld ofL=k has Galois group 8T36. Similar to the S4-
ase we 
an prove that the normof the �nite part of the 
ondu
tor of L=M must be a square. The Galois groupof L=k is 14T11 whi
h is a subgroup of A14 and therefore dL=k is a square. FromdL=k = d2M=kNM=k(dL=M ) we get the desired result. For the 
oprime 2-part we 
ando better by looking at the possible 
onjuga
y 
lasses of that group. Denote by ~fthe part of f whi
h is prime to 2. Then NM=k( ~f) has to be a fourth power. Usingthese restri
tions we produ
e all quadrati
 �elds (up to the given bound) and 
he
kif we get the desired Galois group. After the 
omputation of L=k we 
an 
omputeK=k using the algorithms des
ribed in [12℄. We remark that the norm of the 2-partis not ne
essarily a fourth power. We proved:Theorem 21. The minimal dis
riminants for �elds of degree 8 with Galois groupC32 o (C7 o C3) are as given in Table 4.12. TablesThe following tables 
ontain the minimal dis
riminants of �elds with pres
ribedGalois groups and r1 real zeros. The notation \Hilbert 
lass �eld or ray 
lass �eldof a polynomial" means that our �eld is 
ontained in the 
orresponding 
lass �eldof the �eld generated by a zero of that polynomial. In these 
ases we have provedthe minimum, but were not able to 
ompute a generating polynomial.



12 CLAUS FIEKER AND J�URGEN KL�UNERSTable 1: Minimal dis
riminants of Frobenius groups Cp o Clgroup r1C7 o C2 7 192 100 033=5773x7 � 2x6 � 7x5 + 10x4 + 13x3 � 10x2 � x+ 11 -357 911=�713x7 � 2x6 + 2x5 + x3 � 3x2 + x� 1C7 o C3 7 1 817 487 424=26734x7 � 8x5 � 2x4 + 16x3 + 6x2 � 6x� 2C7 o C6 7 12 431 698 517=741733x7 � x6 � 12x5 + 9x4 + 37x3 � 26x2 � 21x+ 51 -38 014 691=�113134x7 � 3x6 + 9x5 � 13x4 + 17x3 � 10x2 + 4x+ 1C11 o C2 11 3 670 285 774 226 257=12975x11 � 5x10 � 4x9 + 54x8 � 53x7�127x6 + 208x5 + 69x4 � 222x3 + 29x2 + 56x� 51 -129 891 985 607=�1675x11�x10+5x9�4x8+10x7�6x6+11x5�7x4+9x3�4x2+2x+1C11 o C5 11 1 771 197 285 652 216 321=1918Hilbert 
lass �eld of x5 + x4 � 76x3 � 359x2 � 437x� 155C11 o C10 11 3 483 293 138 903 825 541=3575318Hilbert 
lass �eld of x10 � 7x9 � 29x8 + 272x7 � 78x6�1948x5 + 1274x4 + 4243x3 � 1393x2 � 2035x+ 6251 -34 522 712 143 931=�1113x11 � 11x9+55x7+11x6� 143x5� 66x4+165x3+121x2+11C13 o C2 13 282 638 808 125 771 304 198 601=81016x13 � x12 � 50x11 � 6x10 + 857x9 + 943x8 � 5045x7 � 9319x6+3890x5 + 13442x4 + 1835x3 � 2759x2 + 304x+ 41 48 551 226 272 641=1916x13 � 6x12 + 10x11 � 16x10 + 22x9 � 19x8+11x7 � 5x6 � x5 + 5x4 � 4x3 + 2x� 1C13 o C3 13 353 629 668 200 918 277 880 881=3121316x13 � 39x11 + 468x9 � 1989x7 � 507x6+2886x5 + 1443x4 � 624x3 � 234x2 + 3C13 o C4 13 4 832 905 768 528 976 580 078 125=5911636Hilbert 
lass �eld of x4 + 3x3 � 1456x2 � 4368x+ 4161411 51 185 893 014 090 757=1315x13 + 13x10 � 26x8 + 13x7 + 52x6 � 39x4 + 26x2 + 13x+ 2C13 o C6 13 157 840 477 768 256 032 709 001=31278616Ray 
lass �eld of (3) ofx6 + 3x5 � 56x4 � 131x3 + 637x2 + 164x� 10791 38 376 770 428 210 201=138196Hilbert 
lass �eld of x6 � x5 + 6x4 + x3 + 85x2 � 118x+ 415C13 o C12 13 145 952 577 189 773 202 214 912=212761313Ray 
lass �eld of (26) ofx12 � x11 � 25x10 + 25x9 + 235x8 � 235x7 � 1013x6+1013x5 + 1899x4 � 1899x3 � 1013x2 + 1013x� 1811 33 171 021 564 453 125=59198Hilbert 
lass �eld of x12 +2x11 +9x10 +29x9+105x8� 163x7+228x6 � 254x5 + 469x4 � 104x3 + 23x2 � 5x+ 1



MINIMAL DISCRIMINANTS 13Table 2: Minimal dis
riminants of imprimitive degree 8 extensions with relativeGalois group A4group r18 94 540 875 625=54742512x8 � 2x7 � 14x6 + 32x5 + 44x4 � 121x3 � 19x2 + 126x� 368T33 4 2 522 550 625=5474412x8 + 3x7 � 2x6 � 13x5 + 2x4 + 34x3 + 4x2 � 30x+ 50 1 262 025 625=5474292x8 + 2x7 + 4x5 + 12x4 � 2x3 � 14x2 + 5x+ 118 3 747 708 810 000=2438542392x8 � 2x7 � 29x6 + 34x5 + 223x4 � 62x3 � 151x2 � 46x� 48T34 4 20 880 250 000=2456174x8 + x7 � 6x6 � 13x5 � 6x4 � x3 � 14x2 � 7x+ 10 1 614 110 976=2838312x8 � 2x7 � 2x6 + 8x5 + 14x4 � 40x3 + 40x2 � 20x+ 48 22 982 560 000=28543792x8 � 2x7 � 18x6 � 2x5 + 63x4 + 44x3 � 22x2 � 4x+ 18T42 4 618 765 625=561992x8 � 3x7 � 5x6 + 17x5 + 9x4 � 27x3 � 10x2 + 13x+ 10 12 075 625=541392x8 + 4x5 + 2x4 + 4x2 � x+ 1Table 3: Minimal dis
riminants of imprimitive degree 8 extensions with relativeGalois group S48 47 461 236 736=216232372x8 � 24x6 + 44x5 + 20x4 � 64x3 � 4x2 + 24x+ 48T41 4 258 405 625=546432x8 � 4x7 + 2x6 + 18x5 � 19x4 � 10x3 + 21x2 � 9x+ 10 24 255 625=541972x8 + 3x7 + 4x6 + 4x5 + 6x4 + 6x3 + 4x2 + 2x+ 18 43 816 955 625=325427912x8 + x7 � 11x6 � 8x5 + 40x4 + 17x3 � 54x2 � 6x+ 198T45 4 118 810 000=24541092x8 � 3x7 � 3x6 + 17x5 � 12x4 � 9x3 + 13x2 � 6x+ 10 55 115 776=216292x8 � 2x6 + x4 + 4x2 + 4x+ 18 210 791 778 125=554321912x8 + x7 � 31x6 � 20x5 + 130x4 � 10x3 � 170x2 + 125x� 258T46 4 402 753 125=553592x8 � x7 + x5 � 4x4 + 5x3 + 6x2 � 2x� 10 275 653 125=3655112x8 + 2x7 + 7x6 + 11x5 + 19x4 + 20x3 + 20x2 + 10x+ 58 661 518 125=54439124111x8 + x7 � 9x6 � 13x5 + 11x4 + 17x3 � 4x2 � 4x+ 16 �74 906 875=�541198511x8 � 3x6 + 3x5 + 3x4 � 7x3 � 2x2 + 3x+ 18T47 4 16 643 125=543118591x8 � x7 � 2x6 + 2x5 � x3 + x+ 12 �5 756 875=�546111511x8 � 2x6 + 3x5 � 3x3 + 2x2 + x� 10 1 342 413=34165731x8 + 3x7 + 6x6 + 7x5 + 7x4 + 6x3 + 4x2 + 2x+ 1



14 CLAUS FIEKER AND J�URGEN KL�UNERSTable 4: Minimal dis
riminants of some primitive groups of degree 8group r18T25= 8 9 745 585 291 264=214296x8�2x7�20x6+10x5+102x4+26x3�112x2�50x+7C32 o C7 0 594 823 321=296x8 � 4x7 + 8x6 � 6x5 + 2x4 + 6x3 � 3x2 + x+ 38T36= 8 6 423 507 767 296=2121994x8 � 40x6 � 16x5 + 272x4 + 144x3 � 320x2 � 40x+ 44C32 o (C7 o C3) 0 1 817 487 424=26734x8 + 3x7 + 20x4 + 18x3 � 18x2 � 8x+ 14All of the above 
omputations were done using Kash 2.2 ([8, 17℄). For a large part ofthe tables (all of the degree 4 and 6 �elds) we used a network of 30 IBM-PPC run-ning under AIX. The �nal step was done on some PC running under Linux. We useda total of about 2 weeks on the network plus 1 more week on the PC. The �elds 
anbe obtained from ftp://ftp.math.tu-berlin.de/pub/algebra/Kant/tables.Referen
es[1℄ A. M. Baily. On the density of dis
riminants of quarti
 �elds. J. reine angew. Math., 315:190{210, 1980.[2℄ R. Brauer. Beziehungen zwis
hen Klassenzahlen von Teilk�orpern eines galoiss
hen K�orpers.Math.Na
hr., 4:158{174, 1950.[3℄ Lynne M. Butler. Subgroup latti
es and symmetri
 fun
tions. Mem. Am. Math. So
., 539,1994.[4℄ J. J. Cannon. MAGMA. http://www.maths.usyd.edu.au:8000/u/magma/, 2000.[5℄ H. Cohen, F. Diaz y Diaz, and M. Olivier. Tables of o
ti
 �elds with a quarti
 sub�eld.Math.Comput., 68:1701{1716, 1999.[6℄ Henri Cohen. Advan
ed Topi
s in Computational Number Theory. Springer, 2000.[7℄ J.H. Conway, A. Hulpke, and J. M
Kay. On transitive permutation groups. London Math.So
. J. of Comp. and Math., 1:1{8, 1998.[8℄ Mario Daberkow, Claus Fieker, J�urgen Kl�uners, Mi
hael Pohst, Katherine Roegner, andKlaus Wildanger. KANT V4. J. Symb. Comput., 24(3):267{283, 1997.[9℄ Claus Fieker. Computing 
lass �elds via the artin map. Math. Comput., 70(235):1293{1303,2001.[10℄ A. Fr�ohli
h and M.J. Taylor. Algebrai
 Number Theory. Cambridge University Press, 1991.[11℄ Derek F. Holt and Sarah Rees. Testing modules for irredu
ibility. J. Aust. Math. So
., Ser.A, 57(1):1{16, 1994.[12℄ J�urgen Kl�uners and Gunter Malle. Expli
it Galois realization of transitive groups of degreeup to 15. J.Symb.Comput., 30:675{716, 2000.[13℄ M. Krasner and L.A. Kaloujnine. Produit 
omplet des groupes de permutation et probl�emed'extension de groupes II. A
ta S
i. Math. (Szeged), 14:39{66, 1951.[14℄ S. Kuroda. �Uber die Klassenzahlen algebrais
her Zahlk�orper. Nagoya Math. J., 1:1{10, 1950.[15℄ Serge Lang. Algebrai
 Number Theory, volume 110 of Graduate Texts in Mathemati
s.Springer, 2nd edition, 1994.[16℄ Ri
hard A. Parker. The 
omputer 
al
ulation of modular 
hara
ters. (the meat-axe). In Com-putational group theory, Pro
. Symp., pages 267{274, Durham/Engl., 1982.[17℄ M. Pohst. KASH. http://www.math.tu-berlin.de/algebra/, 2001.[18℄ M. S
h�onert et al. GAP 3.4, pat
hlevel 4. S
hool of Mathemati
al and Computational S
i-en
es, University of St.Andrews, S
otland, 1997.[19℄ J.-P. Serre. Lo
al Fields. Springer, New York, 1995.S
hool of Mathemati
s and Statisti
s F07, University of Sydney NSW 2006, AustraliaE-mail address: 
laus�maths.usyd.edu.auUniversit�at Heidelberg, IWR, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.E-mail address: klueners�iwr.uni-heidelberg.de


