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Abstract. We prove that the distribution of the values of the 4–rank of ideal

class groups of quadratic fields is not affected when it is weighted by a divisor

type function. We then give several applications concerning a new lower bound
of the sums of class numbers of real quadratic fields with discriminant less

than a bound tending to infinity and several questions of P. Sarnak concerning

reciprocal geodesics.

1. Introduction

All along this paper the letter D, without index, will be reserved to denote a fun-
damental discriminant, that means the discriminant of a quadratic extension of Q.

A fundamental discriminant D is said to be a special discriminant when it sat-
isfies

D > 0 and p | D ⇒ p 6≡ 3 mod 4.
(As usual, the letter p is reserved for prime numbers.) In other words, a fundamental
discriminant is special if and only if it is the sum of two squares. Recall also that
if the fundamental unit εD of Q(

√
D) has norm −1, then necessarily, D is special

(see §1.1 below).
We are concerned with some aspects of the average behavior of the ideal class

group (in the narrow sense) of the ring of integers OD of the number field Q(
√
D).

We denote by N the norm on that field. Recall that two non zero ideals I and J of
OD are said to be equivalent in the narrow sense, (denoted by I ∼ J) if and only if
there exists α ∈ OD, such that I = (α) · J with N (α) > 0. We denote by CD this
class group and by h(D) its cardinality (the class number).

We now say that the non zero ideals I and J are equivalent in the ordinary sense,
if they satisfy I = (α) · J for some α ∈ OD, without any condition on the sign of
N (α). With this definition we build the ordinary class group ClD.

What is the structure of the finite abelian group CD? Cohen and Lenstra have
built a probabilistic model to guess the average behavior of CD, in particular of the
p–rank of that group, denoted by

rkp(CD) := dimFp
(
CD/C

p
D

)
.

Recall that the case p = 2 is entirely solved by a famous result of Gauss (see (10)
below). The original so–called heuristics of Cohen–Lenstra (see [3]) only concerned
the cases p ≥ 3. These heuristics were extended and approached by Gerth [10] in
the case of the 4–rank of CD, which, by definition, is

rk4(CD) := dimF2

(
C2
D/C

4
D

)
.
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Recently Fouvry and Klüners proved the Cohen–Lenstra–Gerth conjecture in the
case of the 4–rank (see [6]). They also proved the analogous conjecture, due to
Stevenhagen [25], on the distribution of the values of the function D 7→ rk4(CD)
but when D now belongs to the set of special discriminants. They also applied
their results to the frequency of the solvability of the negative Pell equation

(1) x2 − dy2 = −1,

when d is a squarefree integer (see [8]).
To state the above results of Fouvry & Klüners, we introduce the function ηk

(2) ηk(t) :=
k∏
j=1

(1− t−j),

which is defined for |t| > 1 and k ∈ {0, 1, 2, . . . ,∞} and which frequently appears
in the theory of partitions. With these conventions we proved (see [6, Theorem 3]
& [8, Theorem 2]).

Theorem A. For every integer r ≥ 0 as X →∞, we have

(3)
∑

0<D<X
rk4(CD)=r

1 ∼r 2−r(r+1) · η∞(2)
ηr(2) ηr+1(2)

∑
0<D<X

1,

(4)
∑

0<−D<X
rk4(CD)=r

1 ∼r 2−r
2
· η∞(2)
ηr(2)2

∑
0<−D<X

1,

and

(5)
∑

0<D<X,D special
rk4(CD)=r

1 ∼r 2−
r(r+1)

2 · η∞(2)
η∞(4) ηr(2)

∑
0<D<X,D special

1.

(6)
∑

0<D<X,D special
rk4(CD)=rk4(ClD)=r

1 ∼r 2
−r(r+3)

2 · η∞(2)
η∞(4) ηr(2)

∑
0<D<X,D special

1.

Similar statements remain true if one restricts the summation over D to one of
the following congruence classes

(7) D ≡ 1 mod 4, D ≡ 12 mod 16 or D ≡ 8 mod 16,

in the case of (3) and (4), and

(8) D ≡ 1 mod 4 or D ≡ 8 mod 16,

in the case of (5) and (6).

In other words, (3), (4) and (5) of Theorem A give the probability for a discrim-
inant to have its associated 4–rank equal to r, when r is a fixed integer and when
D is considered as an element of the set of positive fundamental discriminants,
of negative fundamental discriminants, or of special discriminants, respectively. A
similar interpretation can be given to (6).

Fouvry and Klüners also proved some partial result on the 8–rank of CD, which
by definition is

rk8(CD) := dimF2

(
C4
D/C

8
D

)
.
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Theorem B. ([9, Theorem 2]) As X →∞, we have

(9)
∑

0<D<X,D special
rk4(CD)=rk4(ClD)=1

rk8(CD)=0

1 ∼ 1
4
· η∞(2)
η∞(4)

∑
0<D<X,D special

1.

Similar statement remains true if one restricts the summation over D to one of the
congruences classes written in (8).

Theorem B is used to improve our knowledge of the frequency of the solvability
of (1) or equivalently, of the parity of period of the expansion of

√
d in continued

fractions for squarefree d.
As far as we know, Theorem B is the only result concerning the distribution law

of the function D 7→ rk8(CD) (D special or not) since the function rk8 seems very
difficult to understand by algebraic properties that can be treated by the present
methods of analytic number theory.

In April 2008, the second author visited Princeton University and P. Sarnak
pointed out the interest of generalizing Theorems A & B by replacing the weight 1
(appearing in (3), (4), (5), (6) & (9)), by another weight. He mainly had in mind
the weight 2ω(|D|), where ω(n) is the number of distinct prime divisors of the integer
n. Recall the interpretation of that weight via the famous result of Gauss

(10) 2ω(|D|)−1 = 2rk2(CD)
(

= ]
{
I ∈ CD ; I2 ∼ OD

})
,

(see [17, Theorem 8.8], for instance). Such a generalization would not be sterile since
P. Sarnak pointed out precise applications in number theory. These applications
concerned reciprocal geodesics and were presented in [23] & [24] (see §4 below for
a description of these notions).

The main purpose of the present paper is to prove that the statements of The-
orems A & B are not affected by the intrusion of a weight of the above type. We
have decided to present this extension with the multiplicative weight

D 7→ κω(|D|), with κ ∈]0,+∞[,

and, then present two types of applications, with the particular choice κ = 2.
We first write

Theorem 1. For every integer r, for every κ ∈]0,∞[ and for X →∞, we have

(11)
∑

0<D<X
rk4(CD)=r

κω(D) ∼r, κ 2−r(r+1) · η∞(2)
ηr(2) ηr+1(2)

∑
0<D<X

κω(D),

(12)
∑

0<−D<X
rk4(CD)=r

κω(|D|) ∼r, κ 2−r
2
· η∞(2)
ηr(2)2

∑
0<−D<X

κω(|D|),

and

(13)
∑

0<D<X,D special
rk4(CD)=r

κω(D) ∼r, κ 2−
r(r+1)

2 · η∞(2)
η∞(4) ηr(2)

∑
0<D<X,D special

κω(D),

(14)
∑

0<D<X,D special
rk4(CD)=rk4(ClD)=r

κω(D) ∼r, κ 2
−r(r+3)

2 · η∞(2)
η∞(4)ηr(2)

∑
0<D<X,D special

κω(D).
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Similar statements remain true if one restricts the summation over D to one of
the congruence classes written in (7) in the case of (11) and (12), and to one of
the congruence classes written in (8) in the case of (13) and (14).

We also have

Theorem 2. For every κ ∈]0,∞[ and for X →∞, we have

(15)
∑

0<D<X,D special
rk4(CD)=rk4(ClD)=1

rk8(CD)=0

κω(D) ∼κ
1
4
· η∞(2)
η∞(4)

∑
0<D<X,D special

κω(D).

A similar statement remains true if one restricts the summation over D to one of
the congruences classes written in (8).

The right hand sides of (11),....,(15) can be reduced to sums of multiplicative
functions. Classical methods of analytic methods lead to the existence of positive
constants cκ and c′κ such that
(16)∑

0<±D<X
κω(|D|) ∼ cκX(logX)κ−1 and

∑
0<D<X, D special

κω(D) ∼ c′κX(logX)
κ
2−1,

as X →∞.

1.1. List of applications. The first application is an easy deduction from Theo-
rems 1 & 2. It concerns the special discriminants, for which the fundamental unit
εD of OD satisfies

N (εD) = −1.
We have

Corollary 1. As X →∞, we have

(17)
∑

0<D<X,D special
N(εD)=−1

2ω(D) >
(5

4
− o(1)

)
· η∞(2)
η∞(4)

∑
0<D<X
D special

2ω(D),

(18)
∑

0<D<X,D special
N(εD)=−1

2ω(D) 6

(
2
3

+ o(1)
) ∑

0<D<X
D special

2ω(D),

(19)
∑

0<D<X,D special
N(εD)=1

2ω(D) >

(
1
3
− o(1)

) ∑
0<D<X
D special

2ω(D),

and

(20)
∑

0<D<X,D special
N(εD)=−1

h(D) >
(3

4
− o(1)

)
· η∞(2)
η∞(4)

∑
0<D<X
D special

2ω(D).

Proof. For (17) and (20), we use the implication

rk4(CD) = 0
or

rk4(CD) = rk4(ClD) = 1 and rk8(CD) = 0

 =⇒ N (εD) = −1.

This implication is an easy consequence of the three following facts (see [9, §1.1],
for instance).
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• ClD is a factor group of CD of index 1 or 2,
• for special D the two groups CD and ClD have the same 2–rank,
• N (εD) = −1 if and only CD = ClD.

Hence we have the inequality∑
0<D<X,D special
N(εD)=−1

2ω(D) ≥
( ∑

0<D<X,D special
rk4(CD)=0

+
∑

0<D<X,D special
rk4(CD)=rk4(ClD)=1

rk8(CD)=0

)
2ω(D).

It remains to apply (13) of Theorem 1 (with r = 0 and κ = 2) and (15) of Theorem
2 to complete the proof of (17).

For (20), the proof is the same after inserting the trivial inequality

h(D) ≥ 2rk2(CD) · 2rk4(CD) =
1
2
· 2ω(D) · 2rk4(CD),

(see (10)), and replacing rk4(CD) by 1 when applying Theorem 2.
The proof of (18) is a consequence of (14), Theorem 2, (10), and Lemma 3 in [8].
Furthermore note the equality

∞∑
r=0

2
−r(r+3)

2 · η∞(2)
η∞(4)ηr(2)

=
∞∑
r=0

2−r · η∞(2)
η∞(4)

∏r
j=1(2j − 1)

=
2
3
,

which was shown in the course of the proof of [8, Theorem 1 in §1.2].
For (19) note that N (εD) is either 1 or -1. Hence (19) is a consequence of (18)

by additivity. �

We shall postpone to §4 the interpretation of Corollary 1 in terms of the questions
raised in [24, p.231] concerning reciprocal geodesics. This interpretation really was
the starting point of the present paper.

The second application concerns an average lower bound of the function h(D),
more precisely let ∇(X) be the sum

(21) ∇(X) :=
∑

0<D<X
D≡1 mod 4

h(D).

In the definition of ∇, the summation is over positive fundamental discriminants D,
however the restriction D ≡ 1 mod 4 is not obligatory at all, but it avoids several
technical complications, which will be mentioned in §1.3. To state the central result
in that direction, we introduce the Euler product

(22) Π0 :=
∏
p≥2

(
1− 3

p2
+

2
p3

)
= . 286 747 · · ·

In §5.4, we shall prove

Theorem 3. As X →∞, we have∑
1<D<X
D≡1 mod 4

h(D) ≥ (c0 − o(1))X logX,

where the constant c0 has the value

c0 =
71
336
·Π0.
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The trivial asymptotic lower bound is

(23) ∇(X) ≥
(1

8
·Π0 − o(1)

)
X logX, (X →∞)

(see (68) and Proposition 2 below). Hence our result represents an improvement of
69% of the trivial lower bound. However, we are far from the conjectural value of
∇(X) (see Conjecture 1 below). We shall also indicate how to improve the value of
the above constant c0, by introducing arguments due to Hooley [14] which consists
to carefully study the contribution of the D the associated regulators of which are
small (see Theorem 5 below).

1.2. Remarks. Before embarking the proofs of Theorems 1 & 2, we make the
following comments

(i) We did not find attractive applications of Theorems 1 & 2 for some κ 6= 1, 2.
However for instance, the case κ = 4 would lead to a non trivial lower bound
for the sum ∑

0<D<X
D≡1 mod 4

h2(D).

But the lower bound that we obtain has not the expected asymptotic order
of magnitude.

(ii) Another interesting case is

κ = −1.

By the methods that will be developed in §2 and which leads to Proposition
1, one can show that∑

0<±D<X
(−1)ω(|D|) · 2k rk4(CD) = ok

( ∑
0<±D<X

1
)
.

Now, since (1 + (−1)ω(|D|))/2 is the characteristic function of the set of dis-
criminants D with an even number of prime divisors, we get the following
extension of (3) & (4)∑

0<D<X, 2|ω(D)
rk4(CD)=r

1 ∼r 2−r(r+1)−1 · η∞(2)
ηr(2) ηr+1(2)

∑
0<D<X

1,

and ∑
0<−D<X, 2|ω(|D|)

rk4(CD)=r

1 ∼r 2−r
2−1 · η∞(2)

ηr(2)2

∑
0<−D<X

1,

for every integer r ≥ 0. This shows that the value of the rk4(CD) is statisti-
cally independent of the parity of ω(|D|).

1.3. Organization of the paper. The proof of Theorems 1 and 2 will be given in
§2. We shall closely follow the proofs given in [6], [8] & [9] and only quote the parts
which have to be modified in order to incorporate the weight κω(|D|). To shorten
this part, we shall even restrict ourselves to the case of odd negative fundamental
D or of odd (positive) special D. As usual the prime 2 creates extra difficulty which
is only of practical order, but not of theoretical one (the same phenomenon already
appeared in [6], [8] & [9]). In §4, we shall develop some applications of Corollary 1
to some questions raised in [24]. This is the content of Theorem 4 below.
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Finally, in §5, we shall prove Theorem 3. This proof is based on several sources of
improvements, among which the richest one is Proposition 1 below, which implies
Theorems 1 & 2. We shall also explain how to improve Theorem 3, this is the
content of Theorem 5.

Acknowledgement. As written above, this paper was initiated in courses of
conversations with P. Sarnak. The authors thank him for generously sharing his
ideas.

2. Proof of theorems 1 and 2

As said above, Theorems 1 and 2 are only variations of results contained in [6],
[8] and [9]. Our aim is to enumerate the modifications of the original proofs to
incorporate the coefficient κω(|D|). Actually, Theorem 1 contains ten results and
Theorem 2 two results, if one considers the different cases of congruences modulo
8. The modifications due to these twelve cases have flagrant similarities, so we
decided to only present the case D fundamental, negative and odd (in other words
(12) when D ≡ 1 mod 4). This case is certainly the most typical one.

2.1. Basic concepts. In [6, p.470], we introduced the moment of order k (k ∈ N)
of the arithmetical function 2rk4(CD) on the set of odd negative discriminants D ≡
1 mod 4 by the formula

(24) S−(X, k, 1, 4) :=
∑

0<−D<X
D≡1 mod 4

2k rk4(CD).

To make our proof more fluent, we shall systematically insert the index w, (as
weighted) to quote the expression corresponding to our present question, when
compared with [6]. So, in our case, we introduce the weighted moment of order k

(25) S−w (X, k, 1, 4) :=
∑

0<−D<X
D≡1 mod 4

κω(|D|) · 2k rk4(CD),

and we want to study its asymptotic behavior, for k ≥ 1, since the case k = 0 is
trivial. This will be the content of Proposition 1 eq. (52).

We first transform the coefficient 2rk4(CD) by the following formula (see [6, (20)])
based on a sum of products of Jacobi symbols

(26) 2rk4(CD) =
1

2 · 2ω(|D|)

∑
−D=D0D1D2D3

(
D2

D0

)(
D1

D3

)(
D3

D0

)(
D0

D3

)
.

In that formula, the integers D with index are not necessarily fundamental discrim-
inants, but they certainly are squarefree and coprime. We raise the formula (26)
to the power k, and sum over all odd D between −X and 0 giving (see [6, Lemma
17])

S−(X, k, 1, 4) = 2−k
∑

(Du)∈D−(X,k)

(∏
u

2−k ω(Du)
)∏

u,v

(
Du

Dv

)Φk(u,v)

,

where u = (u1, . . . , u2k) and v = (v1, . . . , v2k) are indices taken in F2k
2 (∼= (F2

2)k),
D−(X, k) is the set of 4k–tuples of squarefree, positive and coprime integers (Du)
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with u = (u(1), . . . ,u(k)) ∈ (F2
2)k satisfying

∏
u∈F2k

2
Du ≤ X and

∏
u∈F2k

2
Du ≡

−1 mod 4. We also denote by Φk(u,v) the polynomial

Φk(u,v) = (u1 + v1)(u1 + v2) + · · ·+ (u2k−1 + v2k−1)(u2k−1 + v2k).

(Recall that all these combinatorics of [6] concerning the geometry over F2 were
inspired by [12].) In our case, since we have ω(|D|) =

∑
u ω(Du), we directly get

the equality
(27)

S−w (X, k, 1, 4) = 2−k
∑

(Du)∈D−(X,k)

(∏
u

κω(Du)
)
·
(∏

u

2−k ω(Du)
)∏

u,v

(
Du

Dv

)Φk(u,v)

.

2.2. Error terms. Our task is is to go through all the error terms appearing in
[6, §5], in the proof of Theorem A to determine the effect of the newly inserted
coefficient

(∏
u κ

ω(Du)
)

. Compared with [6], the extra difficulty comes from the
fact that this coefficient is unbounded when κ > 1 (see (29)). Let

Ωw := eκ 4k (log logX +B0) + 1,

where B0 is any constant which satisfies the Hardy–Ramanujan inequality [11],
which asserts the inequality

]
{
n ≤ X ; ω(n) = `, µ2(n) = 1

}
≤ B0 ·

X

logX
· (log logX +B0)`−1

(`− 1)!

for any X ≥ 2 and ` ≥ 1 (see [6, Lemma 11]). Let Σ1,w be the contribution to the
right part of (27) of those (Du) ∈ D−(X, k) which satisfy ω(Du0) > Ωw for at least
one index u0 ∈ (F2

2)k. Then as in [6, (30)] or in [8, (61)], we get

(28) Σ1,w �
X

logX
,

for k ≥ 1. This is acceptable as an error term in the formula (52), since we have
Σ−w(X, k, 1, 4)� X(logX)κ−1.

To shorten the formulas, we denote by κ1 any constant ≥ 0, only depending on
k and κ, such that we have

(29) max
{
κω(d) ; d ≤ X, ω(d) ≤ Ωw

}
≤ (log 2X)κ1 (X ≥ 2).

Now we introduce the dissection parameter

∆w := 1 + log−κ·2
k

X,

and for each u ∈ F2k
2 , Au denotes a number of the form 1, ∆w, ∆2

w, ∆3
w,... For each

A = (Au)u∈F2k
2

we define the restricted sum Sw(X, k,A) by the formula (compare
with [6, (31)])
(30)

Sw(X, k,A) = 2−k
∑

(Du)∈D−(X,k)

(∏
u

κω(Du)
)
·
(∏

u

2−k ω(Du)
)∏

u,v

(
Du

Dv

)Φk(u,v)

,

where the (Du) satisfies the conditions

(31) (Du) ∈ D−(X, k), Au ≤ Du < ∆wAu, ω(Du) ≤ Ωw for all u ∈ F2k
2 .
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By appealing to (28), the splitting process gives the equality

(32) S−w (X, k, 1, 4) =
∑
A

Sw(X, k,A) +O
(
X(logX)−1

)
,

where the sum is over all A such that
∏

u∈F2k
2
Au ≤ X. Note that the sum in (31)

contains O((logX)4k(1+κ·2k)) terms. The contribution of the A such that

(33)
∏

u∈F2k
2

Au ≥ ∆−4k

w X,

satisfies

(34)
∑

A satisfies (33)

|Sw(X, k,A)| � X(logX)−1,

by a proof similar to [6, (34)], with the new choice of the dissection parameter ∆w.
We introduce two parameters

X†w := (logX)3[1+4k(1+κ1+κ·2k)]

and
X‡w is the least power ∆`

w ≥ exp
(
logη(k)X

)
,

where η(k) is a small positive function of k (and κ) to be defined later, in order to
obtain (43). The contribution of the A, such that

(35) At most 2k − 1 of the Au are larger than X‡w

satisfies ∑
A satisfies (35)

|Sw(X, k,A)| � X(logX)κ·η(k)·2k+κ−1−κ·2−k ,(36)

by a computation similar to [6, (38) & (39)].
We say that two indices u and v are linked if they satisfy

Φk(u,v) + Φk(v,u) = 1.

With this convention, consider the condition
(37)

∏
uAu ≤ ∆−4k

w X

and
there exists two linked indices u and v such that Au and Av are ≥ X†w.

By the definition of κ1 (see (29)) and by a proof similar to [6, p.476], we can prove
that, if A satisfies (37), we have

|Sw(X, k,A)| � X (X†w)−
1
3 (logX)κ1·4k ,

then trivially summing over all possible A, and by the definition of X†w, we get∑
A satisfies (37)

|Sw(X, k,A)| � X(X†w)−
1
3 (logX)4k(1+κ1+κ·2k),

which reduces to

(38)
∑

A satisfies (37)

|Sw(X, k,A)| � X(logX)−1,

by the definition of X†w.
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The last contribution we look at, concerns those A such that
(39)
∏

uAu ≤ ∆−4k

w X,

there exists no linked indices u and v such that Au and Av are ≥ X†w
and
there exist two linked indices u and v such that 2 ≤ Av < X†w and Au ≥ X‡w.

As in [6, p.477–478], we apply the Siegel–Walfisz Theorem to the largest prime
factor of Du, where the index u is defined in the last condition of (39), giving the
inequality

|Sw(X, k,A)| �A X(X†w)
1
2 (logX)κ1·4k−Aη(k)/2,

where A is any positive constant. Then summing over possible A satisfying (39),
and choosing A = A(k, κ) very large, we get

(40)
∑

A satisfies (39)

|Sw(X, k,A)| � X(logX)−1.

Recall that a subset U of F2k
2 is maximal unlinked when any pair of elements of

U are unlinked and when U is maximal for inclusion. Actually, it is proved (see [6,
Lemma 18]), that such maximal unlinked U are vector subspaces of dimension k of
F2k

2 or cosets of such vector subspaces. In particular, the cardinality of each U is
equal to 2k.

Using the properties of these subsets (see [6, Lemma 18]) and gathering (32),
(34), (36), (38) & (40), we arrive at (compare with [6, Prop.3]

(41) S−w (X, k, 1, 4) =
∑

A satisfies (42)

Sw(X, k,A) +O
(
Xw(logX)κ·η(k)·2k−κ·2−k

)
with

(42)


∏

uAu ≤ ∆−4k

w X,

U := {u ; Au > X‡w} is a maximal subset of unlinked indices and
Au = 1 for u /∈ U .

and
Xw :=

∑
0<−D≤X
D≡1 mod 4

κω(|D|),

which naturally appears as a scale of comparison in this problem with weights.
Recall that Xw satisfies (see (16))

Xw ∼ cκX(logX)κ−1, (X 7→ ∞)

for some positive cκ. Choosing η(k) sufficiently small in terms of k and κ, we
simplify (41) into

(43) S−w (X, k, 1, 4) =
∑

A satisfies (42)

Sw(X, k,A) + ok(Xw).

Replacing the weight 1 by κω(|D|) and using (16), we easily extend the proof of
[6, Lemma 19], to write
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Lemma 1. Let κ be a positive number. For ν = ±1 mod 4, for every A ≥ 0 and
for Y ≥ y ≥ 1, we have the equality∑
y≤n≤Y

n≡ν mod 4
ω(n)=`

µ2(n0n)κω(n) =
1
2

∑
y≤n≤Y
(2,n)=1
ω(n)=`

µ2(n0n)κω(n)

+OA

(
(`+ 1)A+1 Y (log 2Y )κ−1−A + ω(n0)Y 1− 1

` (log 2Y )κ−1
)
,

uniformly for ` ≥ 1 and for odd squarefree integer n0.

This lemma shows the equidistribution of the function κω(n) in reduced con-
gruences modulo 4, when the number of prime factors of n is fixed. It allows to
transform (41) into the following formula (compare with [6, Prop. 5])

(44) S−w (X, k, 1, 4) = 21−k−2k ·
(∑
U
γ(U)

)
·Xw + ok(Xw),

where the sum is over all maximal unlinked subsets U ⊂ F2k
2 , and where

γ(U) :=
∑
(hu)

(∏
u,v

(−1)Φk(u,v)·hu−1
2 ·hv−1

2

)
.

In the above line, the product is over unordered pairs {u, v} ⊂ U and (hu)u∈U ∈
{±1 mod 4}2k satisfies

∏
u hu ≡ −1 mod 4.

The coefficient of the main term of (44) is computed in [6, (74) & Lemma 26].
Then, introducing N(m, p) to denote the total number of vector subspaces (of any
dimension) of Fmp , we obtain the equality

(45) S−w (X, k, 1, 4) = N(k, 2) ·Xw + ok(Xw),

which has to be compared with [6, Theorem 6].
This study of the weighted moments can be easily adapted to the other situations

present in Theorem 1. Hence following the proofs of [6, Theorems 7, 8, 9, 10
& 11], [8, Theorems 3 & 4] and [9, Theorem 3], we obtain the evaluation of the
corresponding weighted moments. To state our results in a global way, we introduce
the following moments

(46) S±w (X, k, a, q) :=
∑

0<±D<X
D≡a mod q

κω(|D|) · 2k rk4(CD),

(47) Sspec
w (X, k, a, q) :=

∑
0<D<X, D special

D≡a mod q

κω(D) · 2k rk4(CD),

(48) Smix
w (X, k, a, q) :=

∑
0<D<X, D special

D≡a mod q

κω(D) · 2k rk4(CD) · 2rk4(ClD),

and

(49) Smix,λ
w (X, k, a, q) :=

∑
0<D<X, D special

D≡a mod q

κω(D) · 2k rk4(CD) · 2λD ,

for integers a, q and k ≥ 0. In (49), by definition we have

2λD = ]
{

(D1, D2) ; D = D1D2, D1 and D2 are special discriminants, [D1, D2]4 = 1
}
,
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where the symbol [a, b]4 is defined, for coprime positive a and b, as a multiplicative
function of b and satisfies, for p odd

[a, p]4 =


1 if a is a fourth power mod p,
−1 if a is a square but not a fourth power mod p,
0 if a is not a square mod p,

and

[a, 2]4 =


1 if a ≡ 1 mod 16,
−1 if a ≡ 9 mod 16,
0 otherwise.

The crucial property of λD for special D is to satisfy the inequality rk8(CD) ≤ λD,
and this inequality becomes an equality when rk4(CD) ≤ 1 (see [9, Theorem 3]).

To approximate these moments, we introduce the following expressions which
generalizes Xw introduced above

(50) Σ±w(X, a, q) :=
∑

0<±D<X
D≡a mod q

κω(|D|),

(51) Σspec
w (X, a, q) :=

∑
0<D<X, D special

D≡a mod q

κω(D).

Extending the proof of (45) to the other situations, we can finally write

Proposition 1. Let κ be a fixed positive real number. Then for every k ≥ 0, for
every ε > 0 and for (a, q) = (1, 4), (4, 8) or (0, 8), we have

(52) S−w (X, k, a, q) = (1 + ok(1)) ·N(k, 2) · Σ−w(X, a, q),

and

(53) S+
w (X, k, a, q) = (1 + ok(1)) ·

{ 1
2k
(
N(k + 1, 2)−N(k, 2)

)}
· Σ+

w(X, a, q),

when X →∞.
For every k ≥ 0, for every ε > 0 and for (a, q) = (1, 4) or (0, 8), we have

(54) Sspec
w (X, k, a, q) = (1 + ok(1)) ·

k−1∏
j=0

(2j + 1) · Σspec
w (X, a, q),

(55) Smix
w (X, k, a, q) = (1 + ok(1)) · (2k−1 + 1) ·

k−1∏
j=0

(2j + 1) · Σspec
w (X, a, q),

and

(56) Smix,λ
w (X, k, a, q) = (1 + ok(1)) · (2k−2 + 1) ·

k−1∏
j=0

(2j + 1) · Σspec
w (X, a, q),

when X →∞.

From the asymptotic expansions of these moments for any integral order k, we
deduce Theorems 1 & 2 as it was done in [6], [8] & [9], using tools presented in [7].
This completes the proof of these theorems.
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3. Some easy formulas

In this section we want to compute the asymptotics of some functions which will
be used below.

Lemma 2. Let χ be the non principal character modulo 4. Then for X → ∞ we
have ∑

0<D<X
D special

2ω(D) ∼ βX, where

(57) β :=
5π
32

∏
p≥3

(
1− 2 + χ(p)

p2
+

1 + χ(p)
p3

)
≈ 0.3617230.

Proof. This is a direct application of Ikehara’s theorem. Note that each special D
can be written as D = 2ap1 · · · pr, where the pi are pairwise different and congruent
to 1 mod 4, and a ∈ {0, 3}. Hence

F (s) :=
∑

0<D<X
D special

2ω(D)

Ds
= (1+

2
23s

)
∏

p≡1 mod 4

(
1 +

2
ps

)
= (1+

2
23s

)
∏
p≥3

(
1 +

1 + χ(p)
ps

)
.

Introducing the ζ–function we get

F (s) = ζ(s)(1− 1
2s

)(1 +
2

23s
)
∏
p≥3

(
1 +

1 + χ(p)
ps

)(
1− 1

ps

)

= ζ(s)
(

1− 1
2s

+
2
8s
− 2

16s

)∏
p≥3

(
1 +

χ(p)
ps
− 1 + χ(p)

p2s

)

= ζ(s)
(

1− 1
2s

+
2
8s
− 2

16s

)
L(s, χ)

∏
p≥3

(
1− 2 + χ(p)

p2s
+

1 + χ(p)
p3s

)
.

Since L(1, χ) 6= 0 we have∑
0<D<X
D special

2ω(D) ∼ 5
8
L(1, χ)

∏
p≥3

(
1− 2 + χ(p)

p2
+

1 + χ(p)
p3

)
X.

Recall the classical formula L(1, χ) = π/4 which finishes the proof. �

The proof of the following lemma is obvious by applying Lemma 2 and (17).

Lemma 3. ∑
0<D<X,D special
N(εD)=−1

2ω(D) >
(5

4
− o(1)

)
· η∞(2)
η∞(4)

βX ≥ 0.1896434 X.

Note that the constant

η∞(2)
η∞(4)

=
∞∏
j=1

1
1 + 2−j

≈ 0.4194224

is often denoted by α, e.g. see [8, (5)].
Let us prove the corresponding lower bound when we sum over special discrimi-

nants which have a fundamental unit of positive norm.
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Lemma 4. ∑
0<D<X,D special

N(εD)=1

2ω(D) >

(
1
3
− o(1)

)
β X ≥ 0.1205743 X.

Proof. Apply Lemma 2 and (19). �

4. Applications to reciprocal geodesics

In this section we would like to introduce the necessary notations and facts given
in [24]. For more details we refer the reader to [24] or to the corresponding review
of Popa in Mathematical Reviews.

Denote by Γ = PSL(2,Z) the special projective group. Reciprocal geodesics are
closed geodesics on the modular surface H/Γ which are equivalent to themselves
when their orientation is reversed.

These are in one-to-one correspondence to
• conjugacy classes of hyperbolic elements γ ∈ Γ which are conjugate to their

inverse, i.e. γ−1 = SγS−1.
• conjugacy classes of maximal dihedral subgroups of Γ.
• the equivalence classes of integral, primitive, binary quadratic forms f of

non-square discriminant which are equivalent to −f under the action of Γ.
The latter characterization is the best one for our applications. Denote by Fd the
set of those forms which have discriminant d > 0, where d is not a square. It is
well known that the narrow class group of a quadratic order of discriminant d is
in bijection with Fd. As usual, the narrow class group is the group of invertible
fractional ideals modulo the principal ideals which are generated by elements which
are totally positive. In case d is fundamental this coincides with the previous
definition of Cd.

In his note Sarnak is interested in the asymptotic behavior of reciprocal elements
ordered by their length, as well ordered by their discriminant. The first ordering
is more natural in the geometric interpretation, where the discriminant ordering is
more natural in the number field setting.

Let us remark that in the geometric ordering all the interesting asymptotics can
be computed, see formulas (11–15) in [24]. In more details, denote by Π the set of
conjugacy classes of primitive hyperbolic elements of Γ. We have three interesting
automorphisms of order 2 which act on Γ:
• ΦR(γ) = γ−1,

• Φw(γ) = w−1γw, where w =
(

1 0
0 −1

)
,

• ΦA = ΦR ◦ Φw = Φw ◦ ΦA.
Note that Φw is an outer automorphism induced by the action coming from PGL(2,Z).
Denote by e the trivial automorphism and let H be a subgroup of the Klein group
of order 4 given by {e,ΦR,Φw,ΦA}. We define:

ΠH := {{p} ∈ Π | Φ({p}) = {p} for Φ ∈ H}.

Therefore we have:
• Π{e} = Π,
• Π〈ΦR〉 = ρ, which is the set of conjugacy classes of reciprocal elements.
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Let us call elements in Π〈ΦA〉 ambiguous classes and elements in Π〈Φw〉 inert classes.
Let p ∈ Γ be a primitive hyperbolic element. Then the length of the corre-

sponding primitive closed geodesics (which only depends on the conjugacy class) is
log(((t(p) +

√
t(p)2 − 4)/2)2), where t(p) denotes the trace of p. Ordering these el-

ements (conjugacy classes) by their length is therefore equivalent to ordering them
by their trace t(p). Like in (10) in [24] we define:

ΠH(x) :=
∑

{p}∈ΠH ,t(p)≤x

1.

Then we get for x→∞ the formulas (11–15) in [24].
When we interpret the formulas (11–15) in [24] in this way, we can e.g. say that

the asymptotic cardinality of the set of reciprocal classes is the square root of the
cardinality of the set of all primitive classes while that the asymptotic cardinality of
the set of classes which are simultaneously reciprocal, ambiguous, and inert, is the
fourth root of the cardinality of the set of all primitive classes. All these statements
refer to the geometric ordering by the length of the geodesics.

Let us now come to the ordering which is more natural in the number field setting,
i.e. we order by discriminant. The action of our automorphisms on quadratic forms
is given via:
• ΦR : f 7→ −f ,
• Φw ∼ ∗ : [a, b, c]∗ = [−a, b,−c],
• ΦA ∼ ′ : [a, b, c]′ = [a,−b, c].

Let us reformulate the above properties in the language of quadratic forms.
Denote by D := {d | d > 0, d ≡ 0, 1 mod 4, d not a square} the set of positive
discriminants of quadratic orders. We get that the primitive hyperbolic conjugacy
classes are in 1-1 correspondence with classes of forms of discriminants d ∈ D. For
a given d there exist h(d) forms of discriminant d, where h(d) denotes the (narrow)
class number. In order to parameterize the ambiguous classes we have (more or
less) to count the elements of order 2 in the above class group and the number of
elements is given by ν(d), where the definition of ν(d) can be found in [24, formula
(6’)]. Denote by DR ⊆ D the set of special discriminants d, i.e. odd primes dividing
d are congruent to 1 mod 4 and the prime 2 can only occur with exponent 0, 2, 3.
This set quite naturally occurs when looking at the negative Pell equation. For
d ∈ DR the definition of ν(d) is easier to state:

(58) ν(d) :=

{
2ω(d)−1 if 2 - d or 23||d
2ω(d)−2 if 22||d.

Some computations show that reciprocal elements can only occur when d ∈ DR.
The set DR has the nice property that there is no local obstruction for the Pell
equation:

(59) t2 − du2 = −4.

Note that the solvability of (59) is equivalent to the statement that the order of
discriminant d has a unit of norm −1.

We write DR = D+
R∪̇D

−
R , where the latter set contains exactly those d, where

the above Pell equation is solvable. The reciprocal classes are inert (and therefore
ambiguous) if and and only if d ∈ D−R . Here we see why it is interesting to study
the asymptotics of such d, where the negative Pell equation is solvable.
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Denote by ΨH(x) the number of classes of quadratic forms with discriminant
bounded by x which are invariant under the automorphisms in H (compare (71) in
[24]). When we order by discriminant we arrive at formulas (72–76) of [24], these
are equations (60)–(64) in this paper. Note that G = {e,ΦA,ΦR,Φw} is the Klein
four group. So we have

Ψ{e}(x) =
∑

d∈D,d≤x

h(d),(60)

Ψ〈ΦA〉(x) =
∑

d∈D,d≤x

ν(d)
(
∼ 3

2π2
x log x, as x→∞

)
,(61)

Ψ〈ΦR〉(x) =
∑

d∈DR,d≤x

ν(d)
(
∼ 3

4π
x, as x→∞

)
,(62)

Ψ〈Φw〉(x) =
∑

d∈D−R ,d≤x

h(d),(63)

ΨG(x) =
∑

d∈D−R ,d≤x

ν(d).(64)

Our methods are sufficient to give upper and lower bounds for (64) which are of
the same asymptotic size. In other words, our results show that a positive density
of reciprocal elements are inert (and therefore ambiguous), too. On the other hand
we give an improvement of the constant in (79) of [24], which is based on the trivial
fact that Ψ{e}(x) ≥ Ψ〈ΦA〉(x). However, we are obliged to restrict ourselves to the
subset of fundamental discriminants D instead of the whole set D defined above.
This is the content of Theorem 3.

Theorem 4. As x→∞ we have the following inequalities:

(i) ΨG(x) ≥
(

5
8 − o(1)

) η∞(2)
η∞(4)β x ≈ 0.0948217 x.

(ii) ΨG(x) ≤
(

3
4π −

β
6 + o(1)

)
x ≈ 0.1784452 x.

(iii) Ψ〈Φw〉(x) ≥
(

3
4 − o(1)

) η∞(2)
η∞(4)β x ≈ 0.1137861 x.

Proof. For the lower bound we restrict to fundamental special discriminants

ΨG(x) =
∑

d∈D−R ,d≤x

ν(d) ≥
∑

0<D<X,D special
N(εD)=−1

ν(D).

Noting the equality ν(D) = 2rk2(CD) = 2ω(D)−1 we get the desired bound by apply-
ing Lemma 3. For the upper bound recall that DR = D+

R∪̇D
−
R . Denote by D+f

R the
subset of fundamental discriminants of D+

R . These are exactly the fields of special
discriminant D such that the fundamental unit has positive norm. Therefore, by
Lemma 4, we have:

ΨG(x) =
∑

d∈D−R ,d≤x

ν(d) =
∑

d∈DR,d≤x

ν(d)−
∑

d∈D+
R,d≤x

ν(d)

≤
∑

d∈DR,d≤x

ν(d)−
∑

D∈D+f
R ,D≤x

ν(D)

≤
(

3
4π

+ o(1)
)
x−

(
1
6
− o(1)

)
β x =

(
3

4π
− β

6
+ o(1)

)
x.
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The proof of the last statement is analogous to the proof of the first statement
when we use (20) and Lemma 2. �

Also note that the trivial upper bound (see (62)) is given by

ΨG(x) ≤ Ψ〈ΦR〉(x) ' 0.2387324 x.

Playing with that constant and the constants appearing in Theorem 4 (i) and (ii),
we deduce the following result that we voluntarily express in natural words.

Corollary 2. In the set of reciprocal classes of quadratic forms, ordered by the
increasing value of the discriminants, the percentage of those classes which are
inert (and therefore ambiguous) is asymptotically larger than 39 % and smaller
than 75 %.

Using Ψ〈ΦA〉(x) ≤ Ψ{e}(x) and ΨG(x) ≤ Ψ〈Φw〉(x) we get the trivial lower as-
ymptotic bounds for Ψ{e}(x) and Ψ〈Φw〉(x). The 3rd part of Theorem 4 improves
the trivial lower bound by a constant factor. We remark that applying Theorem 3
and the trivial equality

Ψ{e}(x) ≥ ∇(x) +
∑
d≤x

d non fund. discr.

ν(d)

gives also an improvement for the trivial lower bound. Note that we defined ∇(x)
in (21) for odd fundamental discriminants.

Let us remark that for all improvements in Theorem 4 we only used non-trivial
information coming from the set of fundamental discriminants, which is a subset
(with positive density) of the set of all discriminants. Unfortunately, introducing
non-fundamental discriminants is more than a slight modification of our previous
results. We refer the reader to our short discussion around Lemma 1 in [9]. We
have

Lemma 5. Let d be an integer and p be an odd divisor of d. Then the following
are equivalent:

(i) t2 − du2 = −1 is solvable for t, u ∈ Z.
(ii) t2 − p2du2 = −1 is solvable for t, u ∈ Z.

Proof. This is Lemma 1 in [9]. �

Lemma 6. Let d be an integer and p be an odd divisor of d. Then the following
are equivalent:

(i) t2 − du2 = −4 is solvable for t, u ∈ Z.
(ii) t2 − p2du2 = −4 is solvable for t, u ∈ Z.

Proof. (ii) implies (i) is trivial. For the other direction note that d ∈ DR and
therefore there exists an order R of discriminant d. Since (i) is solvable, R has an
unit ε of norm -1. Since p | d and p odd, we have that εp has norm -1 and εp is an
element of the order of discriminant dp2. The latter is equivalent to the solvability
of (ii). �

We can use this Lemma to improve the lower bound of Theorem 4 (i). Another
easy statement is that when t2 − du2 = −1 is unsolvable for d, then it is also
unsolvable when we replace d by dp2 for an arbitrary p. This might be useful to
improve the upper bound in Theorem 4 (ii).
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5. Applications to the class number of real quadratic fields

The purpose of this section is to prove Theorem 3. In other words, we are
concerned by the following question about the function ∇ defined in (21)

What is the asymptotic behavior of ∇(X) as X →∞ ?

The authors are convinced that the following is true

Conjecture 1. There exists a positive constant c1, such that, as X →∞, one has

∇(X) ∼ c1X log2X.

Such a conjecture seems quite deep and, if it is correct, it shows that on average,
the class number of real quadratic fields is much smaller than the class number of
imaginary quadratic fields. Conjecture 1, which apparently is new in these terms,
can be seen as a transcription – in the scenery of real quadratic fields – of a con-
jecture due to Hooley [14] concerning the sum

(65) ∇̃(X) :=
∑
d<X

H(d).

Here H(d) is the number of properly primitive classes of indefinite forms ax2 +
2bxy + cy2 satisfying d = b2 − ac. Hooley [14, Theorem 2] was the first to prove a
lower bound of the form ∇̃(X) ≥ c̃2X logX with a non trivial c̃2 by considering the
contribution of the d with a small regulator (hence a large value of H(d)). Pushing
his arguments further, he was led to propose the conjectural asymptotic value [14,
Conjecture 7]

(66) ∇̃(X) ∼ 25
12π2

·X log2X for X → +∞,

which inspirated our Conjecture 1.
Actually, the work of Hooley around this subject was anticipated by a result of

Sarnak [21], which is of great interest. The author proves an asymptotic formula for
the sum

∑
εd<x

H(d), where d now is the discriminant of the more general quadratic
form ax2 +bxy+cy2 and εd is the associated regulator. In other words, surprisingly,
when one sums H(d) according to the the size of the fundamental solution εd of
the Pell equation t2 − du2 = ±4 (and not on the size of d, which is the natural
way of ordering of the discriminants), one finds and proves some regularity. One
can summarize Sarnak’s result in saying that H(d) and εd have the same order of
magnitude, when one uses the ordering by the size of εd. (For a generalization and
a transposition of the results of [21] to the case of arithmetic progressions and of
fundamental discriminants, see [20]). In [22, Conjecture 1], Sarnak also proposes a
conjecture to guess the statistical size of h(D) with D fundamental. It is also very
valuable to bring Sarnak’s and Hooley’s approaches face to face with the Cohen–
Lenstra heuristics, leading, for instance, to the conjecture∑

p≤X
p≡1 mod 4

h(p) ∼ X

8

(see [3], [14], [15, p.96], [22], [24],... ). It is also interesting to numerically test the
conjecture (66) and related conjectures (see [16] & [18]).



WEIGHTED DISTRIBUTION OF THE 4–RANK OF CLASS GROUPS 19

We prefer to work on ∇(X) rather than on ∇̃(X), the main reason being that
we want to directly benefit from the algebraic number theory related to the ring of
integers OD.

5.1. The trivial lower bound for ∇(X). The first result in the direction of
Conjecture 1 is well known but very weak, it is a consequence of the inequality:

(67) h(D) ≥ 2rk2(CD) = 2ω(D)−1,

already mentioned in (10). Then we deduce the following inequality (that we want
to call trivial lower bound )

(68) ∇(X) ≥ ∇2(X) (X ≥ 1),

with

(69) ∇2(X) =
∑

0<D<X
D≡1 mod 4

2rk2(CD)
(

=
1
2

∑
0<D<X
D≡1 mod 4

2ω(D)
)
.

To treat∇2(X), let χ be the non principal Dirichlet character modulo 4 (see Lemma
4 ). We now consider the Dirichlet series

F (s) :=
∑

D≡1 mod 4

2ω(D)

Ds

(
=
∑
n≥1

an
ns

say
)
.

One has the equality

F (s) =
1
2

∑
n odd

2ω(n)µ2(n)
ns

+
1
2

∑
n

2ω(n)µ2(n)χ(n)
ns

,

which in terms of Euler products gives the equality

F (s) =
1
2

∏
p≥3

(
1 +

2
ps

)
+

1
2

∏
p≥3

(
1 +

2χ(p)
ps

)
:= F1(s) + F2(s),

say. Introducing the ζ–function and the function L(s, χ) one has the equalities
(<s > 1)

F1(s) =
1
2
ζ2(s)G1(s),

F2(s) =
1
2
L(s, χ)2G2(s),

with

G1(s) = (1− 1
2s
)2 ∏

p>3

(
1− 3

p2s
+

2
p3s

)
,

and

G2(s) =
∏
p>3

(
1− 3

p2s
+

2χ(p)
p3s

)
.

The products defining the functions G1(s) are G2(s) are convergent for <s > 1/2.
By the classical properties of ζ and L(s, χ), one deduces that F (s) has a meromor-
phic continuation in the open half plane {s ∈ C ; <s > 1/2}, where F (s) has only
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one pole. It is of second order and it is located at s = 1. By classical integration
techniques (mainly based on Perron’s formula), one gets the equality

2∇2(X) =
∑
n<X

an =
1

2πı

∫
<s= 3

2

F (s)
Xs

s
ds.

Moving the line of integration to the left and inserting classical bounds in vertical
strips of ζ(s) and L(s, χ), one gets the formula∑

n≤X

an ∼
1
2
·G1(1)X logX,

as X tends to infinity. Hence we get

(70) ∇2(X) ∼ 1
8
·Π0X logX (X →∞),

where Π0 is defined in (22). Note that (70) could have been equally proved by
variations of the Dirichlet hyperbola method for the divisor function. Hence we
proved

Proposition 2. As X →∞, the following holds

(71) ∇2(X) ∼ c3X logX,

where

(72) c3 =
1
8
·Π0 = 0.035843 · · · .

Combining this Proposition with (68) we obtain (23), which is the starting point
of our investigations on ∇(X). We shall see that its improvements will require
rather involved tools. The authors are convinced that the proof of the equality

(73) lim
∇(X)
X logX

= +∞,

which is much weaker than Conjecture 1, would give a new light on our understand-
ing of the function h(D). Our modest goal is to improve the value of c3 appearing
in the lower bound ∇(X) ≥ (c3 − o(1))X logX (see (23)).

We shall follow four paths, which we can describe in terms of the new imple-
mented ideas:

(i) Incorporate results the 3–part of CD;
(ii) Incorporate results on the 4–part of CD, in other words benefit from (11) of

Theorem 1, (actually (53) of Proposition 1 with k = 1 and κ = 2 will be
sufficient);

(iii) Finally mix the two tools mentioned above, to complete the proof of Theorem
3;

(iv) Give improvement by the use of ideas of Hooley [14] on the size of the regu-
lator.

Each of these items is described in the next four subsections.
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5.2. Inserting results on the 3–rank. We shall use a better inequality than
(67), where now both 2 and 3–ranks are taken into account, that is

(74) h(D) ≥ 2rk2(CD) · 3rk3(CD) = 2ω(D)−1 · 3rk3(CD).

which implies the lower bound

(75) ∇(X) ≥ ∇2,3(X) (X ≥ 1),

with

(76) ∇2,3(X) :=
∑

0<D<X
D≡1 mod 4

2rk2(CD) · 3rk3(CD).

Let τ be the usual divisor function. Since D is squarefree, we have 2ω(D) = τ(D),
from which we deduce the equality

(77) 2rk2(CD) · 3rk3(CD) = τ(D) · 3rk3(CD) − 1
2

+
2ω(D)

2
.

We now insert the equality

τ(D) = 2
∑

q|D, q≤
√
D

1,

which is the key of Dirichlet’s hyperbola method. By (76) & (77), we get

∇2,3(X) = 2
∑
q<
√
X

q odd

( ∑
q2≤D≤X
q|D

3rk3(CD) − 1
2

)
+

1
2

∑
D<X

2ω(D)

≥ 2
∑
q<Y
q odd

( ∑
q2≤D≤X
q|D

3rk3(CD) − 1
2

)
+∇2(X).(78)

In the above summations, we always assumed the condition D ≡ 1 mod 4 and Y
is any parameter ≤

√
X. By the classical upper bound (see [17, Prop. 8.7], for

instance)

3rk3(CD) − 1
2

< h(D) < D
1
2 .

we simplify (78) into

∇2,3(X) ≥ 2
∑
q<Y
q odd

( ∑
D≤X

D≡1 mod 4, q|D

3rk3(CD) − 1
2

)
+∇2(X)−O(Y 3)

≥ 2 · 0(X,Y ) +∇2(X)−O(Y 3),(79)

by definition. If we choose Y = 1 in (79) and appeal to (75), we recover (68).
Hence, if for some Y ≤

√
X one finds a non trivial lower bound of 0(X,Y ), one

immediately improves the lower bound (23). Producing such a lower bound is the
object of the end of that subsection.

At that point we appeal to a result of Belabas & Fouvry [1, Théorème 2], based
on the famous result of Davenport & Heilbronn ([4]).
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Lemma 7. Let ν be the unique multiplicative function defined on the set of square-
free integers such that ν(p) = p

p+1 , for every prime p. Then, for every positive ε,
we have the equality∑

q≤X
2
7−ε

µ2(q)
∣∣∣ ∑
D≤X
q|D

3rk3(CD) − 1
2

− ν(q)
q
· X

2π2

∣∣∣ = Oε

( X

logX log logX

)
,

uniformly for X ≥ 3.

To apply this lemma to 0(X,Y ) defined in (79), we first notice the trivial identity∑
D<X

D≡1 mod 4, q|D

f(D) =
∑
D<X
q|D

f(D)−
∑
D<X
2q|D

f(D),

(which is true for any function f and any odd q) and we fix Y = Y0 = X
2
7−ε. This

gives the equality

0(X,Y0) =
( ∑
q≤Y0
q odd

µ2(q) · ν(q)
q
−
∑
q≤Y0
q odd

µ2(q) · ν(2q)
2q

)
· X

2π2
+O(X)

=
2
3

( ∑
q≤Y0
q odd

µ2(q) · ν(q)
q

)
· X

2π2
+O(X).(80)

Now a standard lemma coming from complex analysis asserts

Lemma 8. As Z tends to infinity, we have∑
q≤Z
q odd

µ2(q) · ν(q)
q
∼ 1

2

∏
p≥3

(
1− 2

p(p+ 1)

)
logZ.

Proof. For <s > 1, consider the Dirichlet series

F3(s) :=
∑
n≥1

µ2(2n)ν(n)
ns

=
∏
p≥3

(
1 +

p/(p+ 1)
ps

)
= ζ(s)G3(s),

with
G3(s) = (1− 1

2s
)
∏
p≥3

(
1− 1

(p+ 1)ps
− 1

(p+ 1)p2s−1

)
.

Since G3 has an holomorphic continuation in <s > 1/2, we can apply classical
tools. For instance the Hardy–Littlewood–Karamata Theorem (see [26, Theorem 8
p. 227]) implies that the sum in consideration is ∼ G3(1) logZ. �

Combining Lemma 8 with (79) and (80), we obtain the inequality

(81) ∇2,3(X) ≥ 2− o(1)
21 · π2

∏
p≥3

(
1− 2

p(p+ 1)

)
X logX +∇2(X).

Recall the classical formula
6
π2

=
∏
p≥2

(
1− 1

p2

)
,

which transforms (81) into

∇2,3(X) ≥
( 1

42
− o(1)

)
·Π0X logX +∇2(X).
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It remains to combine with (71) to finally write

Proposition 3. As X →∞, the following holds

∇2,3(X) ≥
(
c4 − o(1)

)
X logX,

where
c4 =

25
168
·Π0 (=

25
21
· c3).

Comparing the numerical values of c4 and c3, we may say that Proposition 3
combined with (75) improves the trivial lower bound (23) by 19 %, approximately.

5.3. Inserting results on the 4–rank. Instead of working with (74), we start
from the other trivial inequality

(82) h(D) ≥ 2rk2(CD) · 2rk4(CD) = 2ω(D)−1 · 2rk4(CD),

which gives

(83) ∇(X) ≥ ∇2,4(X),

with

(84) ∇2,4(X) :=
∑

0<D<X
D≡1 mod 4

2rk2(CD) · 2rk4(CD).

This function has been already met in §2, this is exactly half of the weighted
moment of order 1, i.e. S+

w (X, 1, 1, 4), with κ = 2 (see (46)). Appealing to (53) of
Proposition 1 and dividing by 2, we have

(85) ∇2,4(X) ∼ N(2, 2)−N(1, 2)
2

· ∇2(X) =
3
2
· ∇2(X).

Combining with (71) we finally proved

Proposition 4. As X →∞, one has

∇2,4(X) =
(
c5 + o(1)

)
·X logX,

with c5 = 3
16 ·Π0 = 3

2 · c3.

Clearly, Proposition 4 combined with (83) improves the trivial lower bound (23)
by 50%.

5.4. Mixing the two methods : the proof of Theorem 3. We start from a
most intricate lower bound

h(D) ≥ 2rk2(CD) · 3rk3(CD) · 2rk4(CD),

which gives the inequality

(86) ∇(X) ≥ ∇2,3,4(X),

where

(87) ∇2,3,4(X) =
∑

0<D<X
D≡1 mod 4

2rk2(CD) · 3rk3(CD) · 2rk4(CD).

It seems difficult to control simultaneously the 3–rank and the 4-rank. So we
separate these quantities by appealing to the following lower bound

tu ≥ t+ u− 1 (t&u ≥ 1),
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which we apply with t = 3rk3(CD) and u = 2rk4(CD). Multiplying by 2rk2(CD),
summing over allD ≤ X, congruent to 1 mod 4, and introducing the already defined
summatory functions ∇, ∇2, ∇2,3 and ∇2,4, we deduce from (87) the inequality

∇2,3,4(X) ≥ ∇2,3(X) +∇2,4(X)−∇2(X).

It remains to apply Propositions 2, 3 and 4 to get

Proposition 5. As X →∞, one has

∇2,3,4(X) ≥
(
c0 − o(1)

)
·X logX,

with

c0 =
71
336
·Π0 (=

71
42
· c3).

Combining with (86), we complete the proof of Theorem 3.

5.5. Further improvements. We want to show how to incorporate the ideas that
were introduced by Hooley in [14] to improve the lower bound of the function ∇̃(X)
as defined in (65) above. His idea essentially consists in searching for discriminants
d with small regulators (which means less than d

1
2 +α for some small positive α).

This set of d corresponds to the case where the equation

T 2 − dU2 = ±4,

has a primitive solution ηd, written as T + U
√
d satisfying

√
d ≤ ηd ≤ d

1
2 +α.

If α is not too large, the cardinality of such d ≤ X is �
√
X log2X. This set of

discriminants has some regularity, since one can prove that the attached L–function
is constant, on average, at the point 1. By the Dirichlet class number formula (see
[14, form. (3)] for instance), the class number of these d, is �

√
d/ log d, on average.

We easily see that the contribution of this set of discriminants to the sum ∇̃(X) is
� X logX, which is exactly the order of magnitude of the trivial lower bound of
∇̃(X). Here is the origin of the improvement stated in [14, Theorem 2].

In our context of positive fundamental discriminants D ≡ 1 mod 4, let εD be the
fundamental unit of the group of units UD of OD (in other words, εD is the unique
unit > 1 such that UD can be written as UD = {±εnD ;n ∈ Z}). For α > 0 define

E(X,α) :=
{

0 < D ≤ X ; D ≡ 1 mod 4, D
1
2 ≤ εD ≤ D

1
2 +α

}
.

We can prove

Proposition 6. There exists three positive constants α0, β0 and γ0, such that, as
X →∞, one has

(88) ] E(X,α0) ∼ β0X
1
2 log2X,

and

(89)
∑

D∈E(X,α0)

h(D) ∼ γ0 ·Π0 ·X logX.

Proof. The proof mimics [14, p. 98–123]. We give some hints about the strategy
we have to follow in our context. Searching for small εD can be reduced to finding
solutions to the equation

T 2 −DU2 = ±4,
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with the constraint T + U
√
D ≤ 2D

1
2 +α0 , and D ≤ X. By an easy argument, we

are led to study the pairs (T,U) of positive integers, satisfying some inequalities
(in terms of X and α0) and such that

(T 2 ± 4)/U2,

is an integer which is congruent to 1 mod 4 and which is squarefree. This last con-
dition is new, when compared with [14] and is far from being an innocent condition.
However, since we are working with polynomials of degree 2, a sieve of dimension
0 is sufficient. This gives (88). The study of the average value of L(1,

(
D
·
)
), for

D ∈ E(X,α0), looks like [14, §6]. By appealing to the class number formula for
h(D) (see [2, Prop. 5.6.9]), we get (89).

Our computations (not published) show that in Proposition 6, we can choose
any positive α0 < 1/4. The associated γ0 has the value

(90) γ0 =
1
6
(
α0 −

1
2

log(1 + 2α0)
)
.

Taking α0 arbitrarily close to 1/4, one obtains

γ0 = . 007 877 · · ·

It is an interesting problem to prove Proposition 6 for values of α0 > 1/4. Such an
improvement will certainly depend on sophisticated techniques of analytic number
theory. �

We now explain how to improve the result of Theorem 3 with the help of the
results of Proposition 6.

Theorem 5. Let α0, β0 and γ0 be three positive constants as in Proposition 6.
Then we have

∇(X) ≥
( 71

336
+ γ0 − o(1)

)
·Π0 ·X logX

Proof. We start from the relations

∇(X) =
∑

D∈E(X,α0)

h(D) +
∑

D/∈E(X,α0)
D≡1 mod 4, D≤X

h(D)

≥
∑

D∈E(X,α0)

h(D) +
∑

D/∈E(X,α0)
D≡1 mod 4, D≤X

2rk2(CD) · 3rk3(CD) · 2rk4(CD)

≥
∑

D∈E(X,α0)

h(D) +∇2,3,4(X)−O
(
Xε ]E(X,α0) max

D≤X
3rk3(CD)

)
.(91)

By Proposition 6, we know that the first term on the right of (91) is

(92) ∼ γ0 ·Π0 ·X logX.

By Proposition 5, we know that the second term is

(93) ≥
(
c0 − o(1)

)
·X logX.

Finally, appealing to the deep results of [19], [5] or [13], we know the existence of a
positive δ0, such that

3rk3(CD) � |D| 12−δ0 ,
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for every fundamental D, positive or negative. This inequality combined with (88)
proves that the error term in the right part of (91) is

(94) � X.

Gathering (91),..., (94), we complete the proof of Theorem 5. �

Remarks
(i) It is worth noticing that the introduction of the constant γ0 (corresponding

to α0 slightly less than 1/4) only produces an improvement of 6.3 % on the
trivial lower bound for ∇(X). This is much smaller than the improvements
coming from the study of the 3 and 4–ranks. This situation would change if
we could take for α0, values much larger than 1/4 in Proposition 6. However,
for larger values of α0, it is not sure that the definition of γ0 continues to be
given by (90) (for a discussion on that subject see [14]).

(ii) The authors think that a proof of (73) could pass through an improvement
of the inequality (86) where infinitely many powers of primes would appear
or through the study of the contribution of the D with εD larger than any
fixed power of D. These two approaches seem quite difficult.
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