INTERSECTION THEOREMS FOR FINITE
GENERAL LINEAR GROUPS

ALENA ERNST AND KAI-UWE SCHMIDT

ABSTRACT. A subset Y of the general linear group GL(n, q) is called t-intersecting
if rk(zx —y) < n—tfor all ,y € Y, or equivalently = and y agree pointwise on
a t-dimensional subspace of Fy for all z,y € Y. We show that, if n is sufficiently
large compared to t, the size of every such t-intersecting set is at most that of
the stabiliser of a basis of a ¢t-dimensional subspace of Fy. In case of equality, the
characteristic vector of Y is a linear combination of the characteristic vectors of
the cosets of these stabilisers. We also give similar results for subsets of GL(n, q)
that intersect not necessarily pointwise in ¢-dimensional subspaces of Fy and for
cross-intersecting subsets of GL(n,q). These results may be viewed as variants of
the classical Erdés-Ko-Rado Theorem in extremal set theory and are g-analogs of
corresponding results known for the symmetric group. Our methods are based on
eigenvalue techniques to estimate the size of the largest independent sets in graphs
and crucially involve the representation theory of GL(n, q).

1. INTRODUCTION AND RESULTS

One of the most famous results in extremal set theory is the Erdds-Ko-Rado The-
orem [9]. In its strengthened version [27] it states that, for all fixed k£ and ¢t and all
sufficiently large n, every t-intersecting family of k-subsets of {1,2,...,n} has size at
most (Z:f) and equality holds if and only if there are ¢ distinct points of {1,2,...,n}
contained in all members of the family.

There are several analogs of the Erdés-Ko-Rado Theorem (see [13], for example).
Most notably, following important earlier work [10], [5], [18], [12], a corresponding
result for the symmetric group S, was obtained by Ellis, Friedgut, and Pilpel in a
landmark paper [7]. A subset Y of S, is t-intersecting if, for all z,y € Y, there exist
distinct i1,49,...,% in {1,2,...,n} such that x(ix) = y(ix) for all k. It was shown
in [7] that, for each fixed ¢ and all sufficiently large n, every t-intersecting set in S,
has size at most (n —t)! and equality holds if and only if Y is a coset of the stabiliser
of a t-tuple of distinct points in {1,2,...,n}.

In this paper we consider a g-analog of this problem, namely we study a corre-
sponding problem for the finite general linear groups. Throughout this paper ¢ is
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a fixed prime power and G, denotes the general linear group of degree n over the
finite field IF;, namely the group of invertible n x n matrices over F,. We say that
two elements z,y € G, are t-intersecting if there exist linearly independent elements
U1, ug, ..., u in Fyosuch that zug = yuyg for all k. Equivalently z,y € G, are t-
intersecting if rk(x —y) < n —t. A subset Y of G, is called t-intersecting if all pairs
inY x Y are t-intersecting.

A coset of the stabiliser of a t-tuple of linearly independent elements of Fy has the
form

{g€ Gy :gur =v1,...,9us = v}

for some t-tuples (uj,uo,...,us) and (v, ve,...,vy) of linearly independent elements
of Fy. We call such a coset a t-coset. It is plain that every {-coset is {-intersecting.
Note that the size of a t-coset is

n—1
(1.1) [ —d)

i=t
The t-cosets are however not the only t-intersecting sets of this size in G,,, as the
transpose of every t-intersecting set is t-intersecting.

We shall often identify a subset Y of G,, with its characteristic vector 1y € C(Gy,)
(where C(G,,) is the vector space of functions from Gy, to C). It is well known (see [2]
or [3], for example) that, since G,, contains a Singer cycle as a regular subgroup,
the size of every l-intersecting set in G, is at most the expression given in (1.1) for
t = 1. Meagher and Razafimahatratra [21] have shown that, if Y is a l-intersecting
set of size ¢> — ¢ in Go, then 1y is in the span of the characteristic vectors of the
1-cosets. We prove a corresponding result for all ¢ and n for which n is sufficiently
large compared to .

Theorem 1.1. Let t be a positive integer and let Y be a t-intersecting set in G,.
If n is sufficiently large compared to t, then

n—1

Vi<]]" -d)

i=t
and, in case of equality, 1y is spanned by the characteristic vectors of t-cosets.

We also prove a result on cross-intersecting subsets of GG,,. Two subsets Y and Z
are t-cross-intersecting if all pairs in Y x Z are t-intersecting.

Theorem 1.2. Lett be a positive integer and let Y and Z be t-cross-intersecting sets
in Gyn. If n is sufficiently large compared to t, then

n—1
VIVIFZI < ][ =)
1=t

and, in case of equality, 1y and 1z are spanned by the characteristic vectors of t-
cosets.
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Theorems 1.1 and 1.2 may be seen as g-analogs of [7, Thm. 5 and 6]. It seems
plausible that corresponding g-analogs of [7, Thm. 3 and 4] also hold. In the case
of t-intersecting sets, this means that the extremal t-intersecting sets in G,, are the
t-cosets and their transposes whenever n is sufficiently large compared to ¢. In fact,
Ahanjideh [1] has shown that every 1-intersecting set in G of size ¢> —q must be either
a 1-coset or the transpose of a 1-coset. We therefore pose the following conjectures.

Conjecture 1.3. Let Y be a t-intersecting set in G, whose size meets the bound in
Theorem 1.1. If n is sufficiently large compared to t, then' Y or YT is a t-coset.

Conjecture 1.4. Let Yand Z be t-cross-intersecting sets in Gy, whose sizes meet the
bound in Theorem 1.2. If n is sufficiently large compared to t, then Y = Z and Y
or YT is a t-coset.

A subset Y of the symmetric group S, is t-set-intersecting if, for all z,y € Y, there
is a subset I of {1,2,...,n} containing ¢ elements such that z(/) = y(I). It was
shown in [6] that, for each fixed t and all sufficiently large n, every t-set-intersecting
set in S, has size at most t!(n — t)! and equality holds if and only if Y is a coset of
the stabiliser of a subset of {1,2,...,n} containing ¢ elements.

We also obtain a g-analog of this result. We say that two elements =,y € G,, are
t-space-intersecting if there exists a ¢-dimensional subspace U of Fy (or t-space for
short) such that xU = yU. A subset Y of G,, is called t-space-intersecting if all pairs
in Y x Y are t-space-intersecting. Of course in this context it would be more natural
to replace G,, by the projective linear group PGL(n, q). However results for G,, and
for PGL(n, ¢) can be easily translated into each other and for consistency we prefer to
work with G,,. A coset of the stabiliser in GG, of a t-space is clearly t-space-intersecting
and has order

t—1
(1.2) [H(qt —q')

=0

n—1 )
[ - qz)] :
i=t

Note that again the transpose of a t-space-intersecting set is t-space-intersecting. The
transpose of the stabiliser of a t-space is in fact the stabiliser of an (n — t)-space, so
the stabiliser of an (n — t)-space is an example of a t-space-intersecting set that has
the same size as that of the stabiliser of a t-space.

Using an argument involving a Singer cycle, similarly as that above, Meagher and
Spiga [22] have shown that the size of every 1-space-intersecting set in Gy, is at most
the expression given in (1.2) for ¢ = 1. We show that this is true for all ¢ and all
sufficiently large n.

Theorem 1.5. Let t be a positive integer and let Y be a t-space-intersecting set
in Gn. If n is sufficiently large compared to t, then
n—1

t—1
n<qt—qi>”n<qn—qi>]
i=0

Y| <
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and, in case of equality, 1y is spanned by the characteristic vectors of cosets of sta-
bilisers of t-spaces.

Again, we have a corresponding result on cross-intersecting subsets of G,,, in which
we call two subsets Y and Z of G, t-space-cross-intersecting if all pairs in Y x Z are
t-space-intersecting.

Theorem 1.6. Lett be a positive integer and let Y and Z be t-space-cross-intersecting
sets in Gp. If n is sufficiently large compared to t, then

t—1 n—1
VIYT-12] < [H(qt - qi)] [ - qi)]

1=0 i=t

and, in case of equality, 1y and 1z are spanned by the characteristic vectors of cosets
of stabilisers of t-spaces.

Meagher and Spiga [22] conjectured that the extremal 1l-space-intersecting sets
in GG, must be cosets of the stabiliser of a 1-space or cosets of the stabiliser of an
(n — 1)-space. This was proved by the same authors for n = 2 [22] and n = 3 [23]
and by Spiga for all n > 4 [25]. We therefore pose the following conjectures.

Conjecture 1.7. Let Y be a t-space-intersecting set in G, whose size meets the
bound in Theorem 1.5. If n is sufficiently large compared to t, then Y is a coset of
the stabiliser of a t-space or a coset of the stabiliser of an (n — t)-space.

Conjecture 1.8. Let Yand Z be t-space-cross-intersecting sets in G, whose sizes
meet the bound in Theorem 1.6. If n is sufficiently large compared to t, then Y = Z
and Y is the stabiliser of a t-space or the stabiliser of an (n — t)-space.

Not surprisingly, as in [7] and [6], our proofs are based on eigenvalue techniques,
in particular weighted versions of the Hoffman bound on independent sets in graphs,
and crucially involve the representation theory of GG,. We organise this paper as
follows. In Section 2 we summarise relevant background on the representation theory
of G,,. In Section 3 we recall versions of the Hoffman bound from [7] and explain
how they can be applied in our setting. In Section 4 we prepare some key steps of
the proofs of our main results and in particular study properties of a matrix related
to the character table of GG,,. Sections 5 and 6 contain the main arguments of our
proofs of Theorems 1.1 and 1.2 and Theorems 1.5 and 1.6, respectively. In Section 7
we prove some auxiliary ingredients used in our proofs.

We close this introduction by noting that, after a first version of this paper was
made publically available, Ellis, Kindler, and Lifshitz [8] independently proved a
result that is slightly more general than Theorem 1.1 and also proved Conjecture 1.3.
Their methods are completely different compared to ours and in particular make no
use of the representation theory of G,,.
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2. THE FINITE GENERAL LINEAR GROUPS

In this section we mostly recall some relevant facts about the conjugacy classes
and the character theory of G,,.

2.1. PARTITIONS

An (integer) partition is a sequence A = (A1, Ag,...) of nonnegative integers satis-
fying A1 = Ao = ---. The set of partitions is denoted by Par. We often omit trailing
zeros and write A = (A1, Ao, ..., Ag) if A\p > 0 and A1 = 0. The size of (A1, A2,...)
is defined to be |A| = A1 + Ao + ---. If |A\| = n, then we also say that A is a partition
of n. We denote the unique partition of 0 by &.

The Young diagram of a partition (A1, A2, ..., \x) of n is an array of n boxes with
left-justified rows and top-justified columns, where row i contains A; boxes. To each
partition A belongs a conjugate partition N whose parts are the number of boxes in
the columns of the Young diagram of A. For two partitions A = (A1, Ag,...) and
= (u1, 2, ...) of the same size, we say that A is dominates p and write A > p if

k k
Z)\Z-) Zm for each k > 1.
i=1 i=1

This indeed defines a partial order on the set of partitions of a fixed size, which is
called the dominance order.

2.2. CONJUGACY CLASSES

We shall now describe the conjugacy classes of G,, (see [20, Ch. IV,§ 3], for exam-
ple). Let ® be the set of monic irreducible polynomials in Fy[X] distinct from X.
For a € F} (where [y is the multiplicative group of [F,), we shall often write a instead
of X —a when the meaning is clear from the context. We also write |f| for the degree
of f e ®. Let A be the set of mappings A\: & — Par of finite support (with @ being
the zero element in Par). We define the size of such a mapping to be

1A= DS IA)] - If]

fed

and put A, = {A € A : ||A|] = n}. The companion matriz of f € & with f =
X9 4 fd_le_l +--+ f1iX + fois

_ .
1 -1
C(f) = 1 —f2 | e Fdxd

i 1 —fag-1]
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(where blanks are filled with zeros). For f € ® of degree d and a positive integer k,
we write

C(f,k): eIF-l;dxkd7

where [ is an identity matrix of the appropriate size. For f € & and o € Par,
we define C'(f,o0) to be the block diagonal matrix of order |o| - |f| with blocks
C(f,01),C(f,02),.... Finally, with every o € A, we associate the block diagonal
matrix R, of order n whose blocks are C'(f,a(f)), where f ranges through the sup-
port of g. Then every element g of G,, is conjugate to exactly one matrix R, for
g € Ay, which is called the Jordan canonical form of g. Hence A,, indexes the conju-
gacy classes of G),; we denote by C, the conjugacy class containing R,. The following
result gives an explicit expression for the number of elements in Cj,.

Lemma 2.1 ([26, Thm. 1.10.7]). For each g € A,,, we have

-T1 h mﬁ M@ (1 — g I113)y,

Q fed i=1

where m;i(o) = |{j = 1: 0; = i}| and s;(0) = Z;Zl oj for a partition o.

2.3. PARABOLIC INDUCTION

Recall that, given a finite group G, a subgroup H of G, and a class function ¢
on H, the induced class function Ind% (qb) on ( is given by

(2.1) Ind%(¢)(g Z P(xgz™).
zeG
xgx_leH
The character theory of G, crucially relies on the induction of characters from para-
bolic subgroups of G,,.

A composition is much like a partition, except that the parts do not need to
be nonincreasing. Let A = (A1, A2,...,Ax) be a composition of n. Let Py be the
parabolic subgroup of G,, consisting of block upper-triangular matrices with block
sizes A1, Ao, ..., A\p, namely

gl * PR *
gs - %
(2.2) Py = .| eie Gy,

9k
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Let m; : P, — G}, be the mapping that projects to the i-th diagonal block, so that

gl * e *
g9 N %k
(2.3) T e
9k
Let ¢; be a class function on G;. Then
k
[ [(¢iom)
i=1

is a class function on Py. We define the product ¢1 ©¢2®- - - O ¢ to be the induction
of this class function to G,,, that is

k k
(2.4) (© ¢i = Indr (H(@ o m)) .
=1

=1
2.4. CHARACTER THEORY OF G,

The complete set of complex irreducible characters has been obtained by Green [14].
A good treatment of this topic is also contained in [20, Ch. IV]. The complex irre-
ducible representations were obtained by Gelfand [11] and the irreducible represen-
tations over fields of nondefining characteristic were obtained by James [17]. The
approach of [17] is in fact very similar to the standard combinatorial approach to
obtain the complex irreducible representations of the symmetric group (see [24], for
example) and we mostly follow [17] to recall some relevant background on the complex
characters of G,,.

The irreducible characters of G,, are naturally indexed by A, and, for A € A, we
denote by x2 the corresponding irreducible character. We shall use the short-hand
notation /™ for 2 if )\ is supported only on f € ® and A(f) = A. These are
typically called the primary irreducible characters of G,. It is well known (see [17,
§ 8], for example) that the irreducible characters of G,, satisfy
(2.5) XA _ @ XfHA(f)_

fed
In order to construct the primary irreducible characters, James [17] constructs char-
acters of Gy, denoted by &~ where f € ® has degree d and p is a partition of m.
Writing u = (p1, po, - - -, i), these characters satisfy [17, (6.2)]

k
(2.6) gf'—w — @gf'—’(m)

i=1
and [17, (7.19)]

(2.7) £01 = 3 Ky x I,
A
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where )\ ranges over the partitions of |u| and K, is a Kostka number, which equals
the number of semistandard Young tableaux of shape A and content p. It is well
known (see [24, § 2.11], for example) that the Kostka numbers satisfy

(2.8) Ky,=1and Ky, #0=A>pu.

Conversely it is readily verified that there are integers H,,\ satisfying

(2.9) XA =Y Hpemr
o
and
(2.10) HA,\zlandHM;éOﬁuE)\

(see [20, p. 105], for example).
Now, for p € A, we define the characters

(2.11) =0 gfelh),

fed

We denote by Xé and {g the characters x2 and &~, respectively, evaluated on the
conjugacy class Cj.

We now express ££ and x2 in terms of each other. To do so, we define the shape of
A € A, to be the mapping s : & — Z given by s(f) = |A(f)| for each f € ®. We write
A~ pif A\, € Ay, have the same shape. Then ~ is an equivalence relation on A,.
For A\, u € A, with A ~ 4, write

Ky =] Kx(pur)

fed
Hyy = [ [ Hupacs)-
fed
We then find that
(2.12) gt = Z Ky, x* for each e Ay,
g
(2.13) X2 = 2 Hy) & for each A € A,,.
p~A

An explicit expression for the degree x2(1) (where 1 is the identity of G,,) of x2 is
given by the so-called g-analog of the hook-length formula.

Lemma 2.2 ([14, Thm. 14]). We have

1 noo 1
‘1o e ) _
ey gy e -v=11mem 1 @™ D:
-l fes (9N

7
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where, for each partition X = (A1, Ag,...),
b(A) = D (i — DA
i>1
and h; j(\) is the hook length of A at (i,7), namely
hi7j()\):)\i+)\3-—i—j+1

and the corresponding product over (i,j) is over all boxes of the Young diagram

of A(f)-

It can be readily verified from Lemma 2.2 that the linear (degree-one) irreducible
characters of G,, are precisely the primary characters x/~(), where |f| = 1. These
are the only characters of (G, that we shall need explicitly. Let a be a generator of
the multiplicative group Fy of Fy, let w = exp(2mv/—1/(q — 1)) be a complex root of
unity, and let 6 : F; — C be the linear character of Iy given by 0(a’) = w*. The
following result is essentially given in [14, pp. 415 and 444].

Lemma 2.3 ([14]). For all g € G,,, we have

XX (g) = 6(det(g)?).

X=1=(n) js the trivial character.

In particular x

In what follows we consider certain characters of G,, related to the permutation
character of G, on the set of t-tuples of linearly independent elements of Fy;. Fort < n,
let Hy+ be the stabiliser of a fixed ¢-tuple of linearly independent elements of ;. We
define (9 to be the character obtained by inducing the linear character

Hn,t —-C
g = 0(det(g)")

to Gp. Then ¢*9 is the permutation character of G, on the set of t-tuples of
linearly independent elements of Fy. These characters are related to each other in
the following way.

(2.15)

Lemma 2.4. For each g € G,,, we have
¢ (g) = 0(det(9)")¢“V(g).

Proof. Since similar matrices have the same determinant, we find from (2.1) that

(g = 2~ f(det(ngz 1))

a ’Hn,t‘ 2eGnp
:chfleHnyt
1 .
= 0(det(g)")
| Ho ¢ erG]n
:cga:’leHnyt

= 0(det(9)" )¢ (g). O
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We shall also need the following information about the decomposition of ¢*% into
irreducible characters of G,,.

Lemma 2.5. We have

C(t,i) = Z mi,AXA)

AN,

where m; ) # 0 if and only if AM(a'); =n —t.

Proof. We may choose H,,; to be

I
Hn,t:{[ ;} ZQEGn—t}u

so that Hy+ is a subgroup of the parabolic subgroup P ,_;) given in (2.2). Let m
and w9 be the projections onto the diagonal blocks of orders ¢t and n — ¢, respectively,
as given in (2.3). Using Lemma 2.3, the character (2.15) can be written as

(2.16) (Lom) (XX_ai'_’("_t) o Tg).

where 1 is the trivial character of the trivial subgroup of G;. By Frobenius reci-
procity, 1 induces on G; to the character

D XE(L) X"
KEA:
Since Py y—y)/Hnt = Gy, it is then readily verified that (2.16) induces on P ,,_¢) to
the character
> X (o m) (KT o ),
KEA:
Hence, by transitivity of induction, we have

C(t,i) _ Z (1) (Xﬁ@XX—aiH(n—t)).

KEAt
It is well known [20, Ch. IV, § 4] that, for each fixed f € ®, characters x/~* form an
algebra with multiplication ® that is isomorphic to the algebra of symmetric functions

and the images of the characters x/™* are the Schur functions. We then find from
Pieri’s rule (see [20, Ch. I, (5.16)], for example) that

XX—a’Hn o XX—a’H(n—t) _ Z XX—oﬂ#»)\7
A
where A runs through all partitions whose Young diagram is obtained from that of x

by adding n —t boxes, no two of which in the same column. Using (2.5) the statement
of the lemma is then readily verified. 0
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3. THE HOFFMAN BOUND

Henceforth we use the following notation. For a field K and finite sets X and Y, we
denote by K(X,Y) the set of | X| x |Y| matrices A with entries in K, where rows and
columns are indexed by X and Y, respectively. For z € X and y € Y, the (z, y)-entry
of A is written as A(z,y). If |Y| = 1, then we omit Y, so K(X) is the set of column
vectors a indexed by X and, for z € X, the z-entry of a is written as a(x).

The adjacency matriz of a graph I' = (X, F) is the matrix A € R(X, X) given by

Alz.y) 1 for {z,y} e E
T,Y) =
Y 0 otherwise.

Then A is a real symmetric matrix, which of course has an orthonormal system of | X|
eigenvectors forming a basis of R(X). All eigenvalues of A are real and referred to as
the eigenvalues of I'. Note that, if I" is d-regular, then d is an eigenvalue of I" and the
all-ones vector is a corresponding eigenvector.

Our starting point arises from the following generalised versions of the Hoffman
bound [15], stated and proved by Ellis, Friedgut, and Pilpel [7, § 2.4] in the following
form.

Proposition 3.1. LetT' = (X, E) be a graph onn vertices. Suppose thatTy,T'q,..., T,
are regular spanning subgraphs of T', all having {vy,v1,...,vp—1} as an orthonormal
system of eigenvectors with vy being the all-ones vector. Let P;(k) be the eigenvalue
of vy in T';. Let wo, w1, ..., w, € R and write P(k) = >,;_,w; Pi(k).
(i) If Y < X is an independent set in T, then
m < |Prnin’
1X| = P(0) + |Puin|’

where Ppin = ming.o P(k). In case of equality we have
ly € <{1)0} U {’Uk : P(k}) = Pmin}>-
(ii) If Y, Z < X are such that there are no edges between Y and Z in T, then

D12l Po
| X[ 1X] ~ P(0) + Prax’

where Ppax = maxyo|P(k)|. In case of equality we have
1y, 17 € <{v0} U {Uk : |P(k)‘ = Pmax}>~

In order to study graphs induced by G,, and their eigenvalues, we shall bring the
theory of association schemes into play. We refer to [4] and [13] for background on
association schemes. Every finite group gives rise to an association scheme (see [4,
Section 2.7] or [13, Section 3.3] for details). We shall recall relevant background about
this association scheme and its symmetrisation for G,,.
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For each g € A,,, we define B, = C(G,, G,) by

1 forz7lyeCy

Bg(x7y) = {

0 otherwise.

The vector space generated by {B, : o € Ay} over the complex numbers turns out
to be a commutative matrix algebra A, which contains the identity and the all-
ones matrix and is closed under conjugate transposition. The collection of zero-one
matrices B, therefore defines an association scheme. Since A is commutative, it
can be simultaneously diagonalised and therefore there exists a basis {F) : A € A}
of A consisting of primitive idempotent matrices. These matrices are given by [4,
Theorem I1.7.2]

(3.1) F\ = () N 2B,

Using the orthogonality of characters of the second kind, it is readily verified that

‘CU| =\
(3.2) B, = Z E-X5 By,
AeA, Xi(]‘) B

where X2 is the character of G,, whose values at g € G,, are the complex conjugates
of x*(g).

For each f € @, let f* € ® be its reciprocal polynomial, namely the monic polyno-
mial whose roots (in an algebraic closure of ;) are precisely the inverses of the roots
of f. For each A € A,,, define \* to be the element of A,, given by A*(f) = A(f*) for
all f € ®. We record the following lemma, in which we write ;1 = {g7! : g € Oy}
for o € A,,. ;

Lemma 3.2. Let o,A € A,,. Then we have
(i) Cox = Cg_l,
(i) X2 =%,
Nt A

(it)) Xa = Xg«-

Proof. Statement (i) is a basic fact in linear algebra, (ii) is essentially [17, (7.32)],
and (iii) can be deduced from (i) and (ii). O

Let €2, be the subset of A,, that contains all A € A,, satisfying A = \* and precisely
one of X\ or \* for all A € A, satisfying A # A\*. For \ € ,,, we define the character

P for A = A"
X2+ XA* otherwise,
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and, for g € €, we define D, = C; U Cp+. Lemma 3.2 implies that Y2 is constant
on D,. We write
(3.3) 1/% — 9Y2(g), where g is an arbitrary element of D,.

For o, A € Q,, write
Fy for A = \*

and FE) =< =~
- Fy+ FA* otherwise.

B, for o = o*

(3.4) A; =<4
- By + B+ otherwise

Note that A, is symmetric, so all of its eigenvalues are real, and that F) has only
real entries. Let V) be the column span over the reals of F) and, for o, A € {),,, write

| Dg|
(3.5) PA2) = 575 V5.

The following lemma, containing essentially standard results, will be crucial in the

following.

Lemma 3.3. We have the following orthogonal direct sum decomposition

R(Gn) = C—D VA'
AeQn
Moreover, for all o,\ € Qy, every element of V) is an eigenvector of A, and the
corresponding eigenvalue is P(A, o).

Proof. Since F} is a primitive idempotent in C(G,,, Gy,) for each A € A,,, it is readily
verified that F) is a primitive idempotent in R(G,,, G,,) for each A € Q,,. Therefore
the E) are pairwise orthogonal, namely we have E)\E, = 0y,FE) for all A\, u € Q,.
Since E) is idempotent, rk(E)) is just the trace of Ey. It follows from (3.1) that the
trace of F) equals x2(1)2. Hence we have

ModimVy= Y k(B = Y A1) = |Gyl

AEQy, AeQy, AEA,
by standard properties of the degrees of irreducible characters. This proves the first
statement. We have x2(1) = x2* (1) by Lemma 2.2, from which together with (3.2)
and Lemma 3.2 it is readily verified that

A; = ). P(\0)E).
AEQn

Since the F) are pairwise orthogonal, we obtain the second statement. O

In fact the proof of Lemma 3.3 shows that {4, : o € ,,} is a symmetric association
scheme with primitive idempotents given by {E) : A € Q,}. However we will not
exploit this further.

Note that A, is the adjacency matrix of a |D,|-regular graph for each g € €,
except for o given by o(1) = (1"), and that P(A,a) = |D,| if A € €, is given by
X -1~ (n).
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The strategy to prove Theorems 1.1 and 1.2 is as follows (Theorems 1.5 and 1.6
will be proved using slight modifications). We call an element x € G a t-derangement
if there is no ¢-tuple of linearly independent elements of Fy that is fixed by z. Equiv-
alently z € Gy, is a t-derangement if rk(z — I) > n —t. It is readily verified that
either all elements of D, are t-derangements or none of them. We wish to identify
an appropriate subset X of €2, such that D, consists of ¢-derangements for all ¢ € ¥
and then apply Proposition 3.1 to the graph I' with adjacency matrix dez Ay and
| Dy |-regular spanning subgraphs I', having adjacency matrix A, for ¢ € ¥. In view
of Lemma 3.3, we wish to construct some w € R(X) such that both the minimum
value and the negative of the second-largest absolute value over all A € €2,, of
(3.6) > w(@)P(A o)

oY
equals
1
(3.7) n=—
(" =1)(@"—q)-(¢" —¢"1) =1
and such that w is normalised in the sense that (3.6) equals 1 if )2 is the trivial
character (or equivalently A\ € €2, is given by X — 1 +— (n)). This will ensure that

Proposition 3.1 will give the bounds of Theorems 1.1 and 1.2.

4. AN INVERTIBLE MATRIX

This section contains some key preparations for our main proofs. We first identify
relevant conjugacy classes of G, whose elements are either ¢-derangements or do not
fix a t-space. We then use these conjugacy classes to identify a matrix related to the
character table of G,,. A key step is to show that this matrix is invertible.

We call an element of G, regular elliptic if its characteristic polynomial is irre-
ducible. The following lemma shows that regular elliptic elements in GG, play the role
of an n-cycle in the symmetric group S,.

Lemma 4.1 ([19, Prop. 4.4]). Each regular elliptic element of G,, fizes no proper
nontrivial subspace of Fy.

Note that, for each f € ® of degree d, its companion matrix satisfies det(Cy) =
(—1)?£(0). It is well known [16] that, for each a € F}, there exists an irreducible
polynomial f € Fy[z] of degree d such that f(0) = a. Hence we can always find a
polynomial in ® with prescribed degree and prescribed nonzero determinant of its
companion matrix. Also note that, for each f € ®, we have f(0)f*(0) = 1 and
therefore

det(Cf) det(Cf*) = 1.

We now continue to use a to denote a fixed generator of Fy. For all integers ¢, j
satisfying 0 < £ < n and 0 < j < g — 2, we fix an irreducible polynomial h,; € ®
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of degree n — ¢ such that its companion matrix has determinant o/ and such that
h}‘j = hy_;j. We define

Yoj={ce N, :a(he;) = (1)}

and
q—2 t
Se=|J%e; and T =)
j=0 /=0

Note that, for each o € ¥<;—1, the conjugacy class C, consists of elements that do
not fix a t-space of Fy. In addition, for each o € 3J; with the ¢ — 1 exceptions g € %
satisfying o(X — 1) = (1'), the conjugacy class C, consists of elements that do not
fix a t-space pointwise. Next we define

;= {Ae Ay Mah)y =n — k}.

and
q—2 t
0, = U Mp; and Tg = U I,
=0 k=0

Note that, for & < n/2, we have |II} ;| = |X ;| and |[Q, N I = [y N B
We define Q € R(Q,,,) by

Q(A,0) =5 for each A\, 0 € Q,
and let @y be the restriction of @ to R(2, n <, O, N X<;). We emphasise that Q

is a square matrix. A key step in our proof is the following proposition.

Proposition 4.2. Forn > 2t, the matriz QQ; has full rank and is independent of n.

In the remainder of this section we essentially only prove Proposition 4.2. The
reader who is interested in maintaining the flow of the proof of our main results may
wish to skip to the next section at first reading.

We define R € C(A,, Ay,,) by

R(M\, o) = Xé for each \,oc € A,

and let R; be the restriction of R to C(Il<;,¥<¢). We shall prove a counterpart of
Proposition 4.2 for the matrix R;.

Proposition 4.3. For n > 2t, the matriz Ry has full rank and is independent of n.

Note that @); is obtained from R; by first applying elementary row operations, then
deleting some rows, and then (in view of (3.3)) deleting duplicate columns. Hence
Proposition 4.2 follows from Proposition 4.3.

We now prove Proposition 4.3. We let S € C(A,, A;,) be the matrix defined by

(4.1) S(p,o) = ¢ for each o €N,
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and let S be the restriction of S to C(Il<, ¥<;). Now recall the equivalence relation ~
on A, and the numbers K, from Section 2.4. Define T' € C(Ap,Ap) by

Ky, forA~p

0 otherwise

T(p,A) = {

and let T} be the restriction of T to C(Il¢, I1<). We first prove the following.
Lemma 4.4.

(i) We have S = TR and T has full rank.
(ii) For n > 2t, we have Sy = T;R; and T; has full rank and is independent of n.

Proof. From (2.12) we have S = TR and T is block diagonal, where the blocks are
induced by the equivalence classes under ~. Each diagonal block corresponds to one
equivalence class. If s : ® — Z is the shape of such an equivalence class, then the
corresponding block can be written as a Kronecker product

X K66

fed
where K™ e C(Par,,, Par,,) is a Kostka matrix given by K™ (u,\) = Ky, with
the convention K(®) = (1) and Par,, is the set of partitions of m. By (2.8) the
Kostka matrices are invertible. Hence T is a block-diagonal matrix whose blocks
are Kronecker products of matrices of full rank and so T itself has full rank. This
proves (i).

From (2.8) we find that S; = T;R;. Note that T; is still block diagonal with one

diagonal block for each equivalence class of A, under ~ whose shape s : & — Z
satisfies s(a’) = n — t for some i. The corresponding block can be written as

(4.2) K@) g ® K60,
fed\fa'}

where K@) is the matrix K@) restricted to partitions A of s(a?) satisfying
A (n —t, 1500~ (=0),

From (2.8) we find that, after a suitable ordering of rows and columns, all matrices
occuring in the Kronecker product (4.2) are upper-triangular with ones on the diag-
onal. Again T} is a block-diagonal matrix whose blocks are Kronecker products of
matrices of full rank and so T} itself has full rank.

From the proof of [7, Thm. 20] we know that K(¢(¢") is independent of n. Moreover
all other matrices occuring in the Kronecker product (4.2) are also independent of n.
Hence T; itself is also independent of n. This proves (ii). O

Next we shall show that the matrix S; has full rank. Recall that, for a composi-
tion A, we denote by Py the parabolic subgroup of G|y given in (2.2). We start with
the following lemma.
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Lemma 4.5. Let m and n be positive integers satisfying m < n and let ¢ and 1 be
class functions of Gy, and G,,, respectively. Let my : Ponm) — G and s : Ponn) —
Gy be the natural projections onto the corresponding diagonal blocks. Let g € Py )
be such that ma(g) is regular elliptic. Then we have

(@O ¥)(g) = d(mi(g)) P(m2(g))-

Proof. From (2.4) we have
(43)  (6OU)(g) = = ST p(m(egr )b (ma(zga ),

|P(m,n) | mEGm+n
xgx_leP(mm)

Since ma(g) is regular elliptic and m < n, we find from Lemma 4.1 that g stabilises
a unique m-dimensional subspace U of F ;"*". Hence the number of x € G4y, such
that xgz—! e Py ) is the number of ordered bases {u1, ..., up, w1, ..., wy} of Fy'™™
such that {u1,...,un} spans U. This number equals [P, »)|. Since zgrt e Pl
for each z € P, n), we conclude that

(0 € Gruin s 2927 € Py} = Pl

Since m;(zgz~') is conjugate to m;(g) for each i € {1,2} and each z € P, ), the
statement of the lemma follows from (4.3). O

We use Lemma 4.5 to prove the following lemma on the structure of the matrix S.

Lemma 4.6. Let k,{ be integers satisfying 0 < k,£ < n/2 and let p € Iy; and

o€ Xy If k> {, then we have 5& = 0. For k < {, let v be the partition obtained
from p(X — o) by replacing the part n —k by £ — k and define v, T € Ay by

4 for f =X —a
()= {,u(f) otherwise

1%} for f=hy;

v
N a(f) otherwise.

and 7(f) = {

If k < ¢, then we have 55 =W,
Proof. Let g € Cy. Define k € Ay, by

_ {(/L(O‘i)%#(ai)s,--.) for f=X —ao
K(f) =
H(f otherwise,
so that by (2.6) and (2.11)
(4.4) e g5 o X —aim(nk)

For ¢£(g) to be nonzero, g must be conjugate to an element of Plgn—r)- Each such
element fixes a k-dimensional subspace of Fy. If k > £, then by Lemma 4.1, g fixes
no k-dimensional subspace of Iy and hence {£(g) = 0.
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Henceforth assume that k& < ¢. We shall frequently use &/~ = /(™) which
follows from (2.7) and (2.8). Since k < ¢ we have

(4.5) g =gEEX T,
Write
E= |J ¢
BEAnfk

phe;)=(1)
We claim that
(4.6) fX_ai'_)(n_k)(e) = (EX_aiH(E_k) @ﬁx_ai'_’("_é))(e) for each e € E.
Indeed, each e € E is conjugate to an element of Py_j g with blocks e; € Gy

and ey € G,,_y on the main diagonal, where e is regular elliptic. Hence we find from
Lemma 2.3 that, for each e € E, the left hand side of (4.6) equals

6(det(e)’) = H(det(ey)?) - O(det(es)?)
_ €X—ain—>(€—k) (61) . £X—ai»—>(n—8) (62),

which by Lemma 4.5 equals the right hand side of (4.6). From (4.4) we have

) pp——— Y Em(aga )N R (1 (aga ),

zeGp
xg:v’leP(k)n,k)

where m1 : Py — Gi and m2 @ Py k) — G-k are the natural projections
onto the diagonal blocks. Since k,¢ < n/2, Lemma 4.1 implies that each ma(zgz~!)
occuring in the summation is forced to lie inside E. Hence by subsequent applications
of (4.4), (4.6), and (4.5) we then find that

gi(g) = (2@ Xkl (g)
_ (£§® gX—ai»—»(Z—k) 0 gX—aiH(n—Z))(g)
= (2@ XD (),

Without loss of generality, we may assume that g € Py ,_s and that the diagonal
blocks of g are g; and g2, where g € C; and g2 is the companion matrix of hy ;.
Since go is regular elliptic, we may apply Lemma 4.5 once more to obtain

£8(g) = E%(g1) X010 (gy).

Since g1 € Cr, we have £%(g1) = &%, and since go is the companion matrix of hy j, we
find from Lemma 2.3 that

X0 o) = B(det(g2)') = .
Hence we obtain £%(g) = & w¥ | as required. O

We can now prove the required property of the matrix S;.
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Lemma 4.7. For n > 2t, the matrix Sy has full rank and is independent of n.

Proof. To indicate dependence on n, write S for the matrix S given in (4.1) and St(n)
for the corresponding restricted matrix S;. Let n > 2t. From Lemma 4.6 we find
that all entries in SIS") are independent of n, which proves the second statement of
the lemma.

To show that St(n) is invertible, we view St(n) as a block matrix, where the blocks are
indexed by Il and ¥, for k, £ € {0,1, ..., t}. Let By be the block corresponding to I,
and ¥y. Lemma 4.6 implies that By, ¢ is zero for k > £ and, for 0 < k < ¢, the block
By, is the Kronecker product of S®) and the Vandermonde matrix (wij )o<i,j<q—2-
Since the character table of irreducible characters of every finite group is invertible,
Lemma 4.4 implies that S®*) is invertible and so By is invertible. Hence St(n) is
block upper-triangular and all diagonal blocks are invertible. Therefore St(n) itself is
invertible. ]

Finally, by combining Lemmas 4.4 and 4.7, we obtain a proof of Proposition 4.3.

5. PROOF OoF THEOREMS 1.1 AND 1.2

Now recall the definition (3.5) of the eigenvalues P(A, o) and the definition (3.7)
of the prescribed extremal eigenvalue 7. As a first step in constructing the required
weight function w occuring in (3.6), we prove the following result.

Proposition 5.1. Let n and t be positive integers satisfying n > 2t. Then there
exists w € R(Qp, N X<t) such that w(o) =0 for o(1) = (1Y) and

(5.1)
1 fOT‘A € Qn N H(]’O
Z w(@)P(A, o) =1 forAeQ,nllzpand 1 <k <t
o€ttt 0 forAeQ,nlly; and0<k<tandl<i<qg-—2
and
(5.2) lw(og)| < ‘gt | forallg e Q, N X

for some constant v, depending only on t.

Proof. From Proposition 4.2 we know that @ has full rank. In view of (3.5) there
exists a unique w € R(2,, n X«;) satisfying (5.1).

We now show that w(g) = 0 for the |¢/2] + 1 elements o € Q, N X< satisfying
a(1) = (1%). Without loss of generality we may assume that ,, contains X — o’ and
hej for all i,j = 0,1,...,|q/2]. Accordingly we define ¢; € 3 ; by o,(1) = (1) for
j=0,1,...,]q/2]. Recall the definition of the character ¢t from Section 2.4 and
write Cg ) for this character evaluated on the conjugacy class C,. We evaluate the
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sum

(5.3) Si= Y. w(@)|Dgl (¢ + )

g€Qn Nt

in two ways. Since (49 is the permutation character on the set of ¢-tuples of linearly
independent elements of Fy, we find by Lemma 2.4 that the summand in (5.3) is
nonzero only when the elements of C, fix a t-tuple of linearly independent elements
of Fy, hence only when g = g, for some j. By the definition of g;, each element
in C’gj has determinant o’/. Hence by applying Lemma 2.4 twice we obtain

Cg,i) _ wijcg;,()) — Y (80)

feiy)

and therefore

la/2] o]
(5.4) $i =219 S (o) Dy, cos( )
j=0

ot q-— 1
On the other hand, since ¢(t?) + ¢ is a real-valued class function, we find from
Lemma 3.2 that it is a linear combination of 2 for X € ©,,. Hence by Lemma 2.5
there exists numbers n; 5 such that

Cg,z’) +Cg,—i) - Z nia v
AEQ,
Aaf)1=n—t

and hence

(5.5) Si= >, mia Y, wo)|Dgl vy

AEQ7L Qeﬂnmzét
Ala*)1=n—t

Since (5.1) holds, we conclude that S; = 0 for each i satisfying 1 < i < |g/2].
Since ¢ (t.0) is a permutation character, it contains the trivial character with multi-
plicity 1 (this can be seen by Frobenius reciprocity, for example). Hence we have
no = 2 for A € Q,, satisfying A(1) = (n). We therefore find from (5.5) and (5.1) that

So=2+n > moavr(1) =2+2mC"0(1) - 1).
AEQ,
n—t<A(1)1<n

Since ¢ (1) equals the number of ¢-tuples of linearly independent elements of Fys
we have

(5.6) CHO1) = (¢" = 1)(¢" —q) -+ (¢" — ¢" ).

Therefore Sy = 0 and so S; = 0 for each i satisfying 0 < i < |g/2|. Since each element
of Cg, fixes a ¢-tuple of linearly independent elements of Fy, we have Cg&o) # 0.
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Thus (5.4) implies

4)

la/2] i
Z i) |Dg,| < < 1) =0 for each 7 satisfying 0 < i < |gq/2|
=0 q

and it is readily verified, using that (w™)o<; j<g—11sa Vandermonde matrix, that this
in turn implies that w(g;) = 0 for all j satisfying 0 < j < |g/2], as required.
Now, for each \ € Q, samsfylng n—t < A(1); <n, we find from Lemma 2.5 that

[ e2(1) < ol (¢PO(1) = 1) =1,
using (5.6). Since 92(1) = x2(1) = 1 for ) € Iy, we conclude from (5.1) that

Z w(o)|De| 1/%

geQnnXgt

<1 foreach AeQ, nllg.

By Lemma 4.2 all entries of @; (which are precisely the values of @bé occuring in
the sum) are independent of n and so are uniformly bounded by some value only
depending on t. The same also holds for the inverse of @Q;, which establishes (5.2). O

In what follows we treat the remaining eigenvalues.

Lemma 5.2. Let n andt be positive integers satisfying n > 2t and let w € R(Q,nX <)
be such that
lw(o)| < e forallg e Q, N Y«
| Ds |

for some constant v depending onlyion t. Then

>, w@Po)| <Inl forall Ae 2\,

g€t

provided that n is sufficiently large compared to t.

In the proof of the lemma we use the usual scalar product on class functions of G,,,
which is given by

(5.7) ) =

> x(9)¥(9),

geGyp,

1
|Gl
where ¥, ¢ are class functions of G,.

Proof of Lemma 5.2. By the definition (3.5) of P(),¢) and (3.3) we have

(5.8) PO ) — ’G( ‘)

Since x2 is irreducible, we have (1)2,92) = 1 or 2 and therefore we obtain, by an
application of the Cauchy-Schwarz inequality,

B DU>

2| Dy |
|Gl

(W2, 1p,)l < 4 /2{1p,. 1p,) =
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From (5.8) and our hypothesis on w we then find that

> w@Po) < Y |w(@)]|PQ o)

QEQnﬁESt QEQnF\Eg
< % Do e
< L ‘E<t| 2’Gn’

== 1/}&(1) gEan?J\)éét ‘DQ‘

» 2|G
- %L <t _— | n\.
XA(1) oexa |Cg|

Note that |X<| is independent of n. Using Lemmas 7.1 and 7.2, to be stated and
proved in Section 7, we find that there is a constant 7, depending only on ¢, such
that

no 1

¢ ¢t

Y w@)P\o)| <

geQnngt

for all A € Q,\II<; and all sufficiently large n. The right hand side is certainly strictly
smaller than 1/¢"™ for all sufficiently large n and the proof is completed by noting
that |n| > 1/¢"™. O

Recall that V) is the column span of E). Define

U= > W

AEQ,
A(l)1=n—t

Now we obtain the following.

Theorem 5.3. Let t be a positive integer. Then, for all sufficiently large n, the
following holds.

(i) Every t-intersecting set Y in G, satisfies
n—1 '
V<[] —q)
i=t

and, in case of equality, we have 1y € Us.
(ii) Every pair of t-cross-intersecting sets Y, Z in G, satisfies

n—1
VIV ZI < T = o)
i=t

and, in case of equality, we have 1y, 15 € Us.
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Proof. As explained at the end of Section 3, we apply Proposition 3.1 to the graph
with adjacency matrix
2, As

oeQn Yt

a(1)#(1%)
and the |D,|-regular spanning subgraphs with adjacency matrix A, for those g oc-
curing in the above set union. Since none of the elements in D, for such ¢ fix a
t-space pointwise, every t-intersecting set in GG, is an independent set in this graph.
Recall from Lemma 3.3 that every element of V) is an eigenvector of A, with eigen-
value P(A,0). Let w € R(2, n X<;) be the vector given by Proposition 5.1 and
write

P = > w(@P)o).
g€t
a(1)#(1)
Proposition 5.1 and Lemma 5.2 imply that, for all sufficiently large n, we have

1 for A\(1); =
PO = or A(1)1 =n
n forn—t<A1)1<n

and |P(A)| < |n| for A(1)1 < n —t. Hence, writing Ay for X — 1 — (n), we have

= min P = P(A)l.
1= pip (A) and |y gg;\ (D]

Then the required result follows from Proposition 3.1 and the decomposition of R(G,,)
given in Lemma 3.3. 0

Our proof of Theorems 1.1 and 1.2 is completed by the following result.
Theorem 5.4. U; is spanned by the characteristic vectors of t-cosets.

Proof. Let A; be the set of ¢-tuples of linearly independent elements of Fy. Define
the incidence matrix M; € C(G,, Ay x A;) of elements of Gy, versus t-cosets by

1 forzu=wv

My(x, (u,v)) = {

0 otherwise,

so that the columns of M; are precisely the characteristic vectors of the ¢t-cosets. Let
¢t = ¢(9) be the permutation character of the set of ¢t-tuples of linearly independent
elements of Fy and define Cy € C(G,, Gy) by

Ci(z,y) = "z 'y).
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Denoting by 1,,—, the indicator of the event that x € G,, maps u to v, we have

(M, M, ZMt (u,v))M(y, (u,v))

= Z Il:tu:v ]]-yu:v
U,

= Z ]la:u:yu
u

= Z I[:E*Lyu:u
u

= "z y) = Ci(z,y).

Hence we have C; = M;M; and so the column span of C; equals the column span
of My or equivalently the span of the characteristic vectors of the ¢-cosets.
From Lemma 2.5 we have

=D max?

)\eAn
for some integers m, satisfying m, # 0 for each A occuring in the summation. Since ¢*
is real-valued, we find by Lemma 3.2 that my« = m) and therefore have

(5.9) = D myut
AEQ,
A(L)1=n—t

Lemma 2.2 implies that x2(1) = 2" (1). We therefore obtain from (3.4) and (3.1)
that

A
A1 -
Ej(z,y) = >|<G( |) O
and thus find from (5.9) that
mx
(5.10) Co=1Gnl D, —A Ea
A1)1=n—t

Hence the column span of C} is contained in U;. Conversely, let v be a column of E;
for some k € Q,, satisfying (1)1 = n —t. Since E) is idempotent, we have Eyv = v
for K = A and Lemma 3.3 implies Eyv = 0 for k # A. Hence from (5.10) we find that

Civ = |Gp|—== v,
w =G

and, since m,, # 0, we conclude that v is in the column span of C;. This completes
the proof. 0
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6. PROOF OF THEOREMS 1.5 AND 1.6

Our proofs of Theorems 1.5 and 1.6 follow along similar lines as those in the
previous section and therefore our proofs will be less detailed.

Since the parabolic subgroup Py, is the stabiliser of a t-space of [y, the charac-
ter £X—17 (=11 i5 the permutation character of the set of t-spaces of F7. From (2.7)
we obtain its decomposition

¢
(6.1) gX—lH(n—t,t) _ 2 XX—1>—>(n—57s).
s=0

Let [Z]q denote the g-binomial coefficient, which counts the number of k-spaces of Fy.
Then we have

(62) X1t () m

and so (6.1) implies that

(63) K1) (1) = {”] -1, ]

s s—1

Also note that X 1= = xX=1=A for all partitions A. Throughout this section, we
define
1
], =1
which will be our prescribed extremal eigenvalue.
We begin with the following counterpart of Proposition 6.1.

Proposition 6.1. Let n and t be positive integers satisfying n > 2t. Then there
exists w € R(Q, N X<t—1) such that
1 for A(1) = (n),
A1) = (n—s,8) with1 < s <{,
(6.4) Z w(o)P(A o) = e for A1) = (n—s,s) wi s
NS B 0 for AeQ, nllg_1, where
A1) #(n—s,s) with0<s<t—1

and

(6.5) lw(o)] < ’gt | foralloce Qp N Yeiq.

for some constant ¢ depending only on t.

Proof. From Lemma 4.2 we know that ;— has full rank. In view of (3.5) there exists
a unique w € R(Q, nX<;1) satisfying (6.4) except for A of the form A(1) = (n—t,t).
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Next we show that (6.4) also holds when A(1) = (n —t,¢). By Lemma 4.6 we have

X1 (n—tyt
- ==t _ 0 for each g € Y<;—1. Hence we have

0= > w@)DyleF "t

oeQnnSgi—1

t
(6.6) = 2 w@IDghg ),

s=0 gEQnﬂE<t71

using (6.1). Since (6.4) holds with the only exception A(1) = (n —t,t), the inner sum

equals 1 for s = 0 and £ X ~1~("=9)(1) for each s satisfying 1 < s <t—1. Assuming

that this is true also for s = ¢ and using (6.3), the right hand side of (6.6) is indeed

e 5L,

Hence (6.4) also holds when A(1) = (n —t,1t).
It remains to prove (6.5). For each s satisfying 1 < s < ¢, we find from (6.1) that

|€’ XX—l»—>(n—s,s)(1) < ’5‘ (é'X—lH(n—t,t)(l) _ 1) =1,
using (6.2). Since X1 (1) = 1, we conclude from (6.4) that

Y, w@)Dslvy

gEQn (\th_1

<1 foreach AeQ, nllg ;.

By Lemma 4.2 all entries of (J;_1 are independent of n and so are uniformly bounded
by some value only depending on t. The same also holds for the inverse of @), which
establishes (6.5). O

The bound (6.5) and Lemma 5.2 ensure that the right hand side of (6.4) is small
in modulus for each A\ € Q,\II;. It therefore remains to deal with the case that
A€ Q, n Il except for A € 2, given by A(1) = (n — t,t), which is the subject of the
following lemma.

Lemma 6.2. Let w € R(Q2, n X<i—1) be given in Proposition 6.1 (so that n > 2t).
Then, for all A € Qy, N I, with A(1) # (n —t,t), we have

Y w@PQ,o)| <l

gEQn ﬁzgtfl

provided that n is sufficiently large compared to t.

Proof. By slight abuse of notation, we view w as an element of R(G),) by setting
w(x) =0ifz ¢ QN Y and w(z) = w(o) f x € Q, " X1 and x € D,.
Recalling the scalar product on class functions of G,, from (5.7), the statement of the
lemma is equivalent to

|Gl
PA(1)

(6.7) [Cw, ¥ < ]
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for all A € Q, nII; with A(1) # (n—t,t), provided that n is sufficiently large compared
to t.

Pick )\ € Q,, n1II; such that A(1) # (n—t,t). Then A(a’); = n —t for some 4. First
assume that |[A(1)| # n. Denoting by Rex the real part of a complex number z, we
find from Lemma 3.2 and (2.13) that

3l(w, v)] < [Re (w, xH)| =

> Hyx Re (w, €

w~A

Lemma 4.6 implies that fg = 0 for each p ¢ <41 and each g € ¥¢;—1. For p € Ay,
we have

Re (w, &%) = 3" Ky Re (w, x5).

E~p

By (2.8), the summation can be taken over all  such that x(a") > p(a’). Hence if
€ llg—q, then k € ll¢;—1. By the assumed properties of w given in Proposition 6.1,
we have (w,y%) = 0 for each k € Q,, N Il satisfying |£(1)| # n. Since |A(1)| # n
we conclude that (w, ) = 0.

Now assume that |A(1)| = n and write A(1) = A. From (2.9) and (2.10) we have

Cw, XTI = 3 Hyn (w, EX717,

PN
pni>n—t

since by Lemma 4.6 in the case u; = n —t we have 52(71'%“
From (2.7) and (2.8) we then find that

<'UJ, wX—lH)\> _ 2 H,u)\ Z KK/J, <'UJ, wX—l'—nﬂ>

= ( for each g € X ;1.

u>A KB p
p1>n—t
1 1
(6.8) airen DI Ho+ D, Haoo D) Keuw, ¥ 7179,
LU= JI=9N (n)>r>p
pn1>n—t pn1>n—t

using that |G| (w, pX 1)) = 1 by the assumed properties of w given in Proposi-
tion 6.1 and K, = 1 for each partition u of n. We first show that the first sum is
zero. We have

(6.9) DU Huo= D KeyuHux = D) Ko Huns
u>X HEA TN
pn1>n—t

using that \; = n — ¢ and that, for each partition u of n, we have

K _J1 forp =n—t
(bt 0 for u; >n—t.
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It is readily verified that

(6.10) D KipHpux = .
HEA

Since A is neither (n) nor (n —t,t), we conclude that (6.9) equals zero. Hence (6.8)
becomes

(6.11) (XN = N Hy D K Cw, X,
u>A (n)>k>p
pn1>n—t

By the assumed properties of w given in Proposition 6.1, the inner summand is
nonzero only when k = (n — s, s) for some s satisfying 1 < s <t — 1. In particular,
for k of this form, Proposition 6.1 and (6.3) give

Gl =L, L), =1 g

X—1—>r\| __ _
|Gl [K{w, ¥ = [?]q 1 < [?]q gl —1 S q"

By Lemma 4.4 the Kostka numbers K, occuring in (6.11) are independent of n and
it is readily verified from (6.10) that the numbers H,y occuring in (6.11) are also
independent of n. Moreover the number of summands in (6.11) is also independent
of n. From Lemma 7.2, to be stated and proved in Section 7, we have X ~1=*(1) >
di—1 ¢™ for some constant d;_1 only depending on ¢. Hence there is a constant c;,
depending only on t, such that

|Gl X1\ Ct
SXT=N (1) [{w, 1 )l < P
Since |g| > 1/¢™, this shows that (6.7) holds provided that n is sufficiently large
compared to t. O

Recall that V) is the column span of E). Define

W= > T
AEQy,
AN > (n—t,t)

Now we obtain the following.

Theorem 6.3. Let t be a positive integer. Then, for all sufficiently large n, the
following holds.
(i) Every t-space-intersecting set Y in G, satisfies

t—1 n—1
[« - qi)] [ [ - qi)]

1=0 i=t

Y] <

and, in case of equality, we have 1y € W;.
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(ii) Every pair of t-space-cross-intersecting sets Y, Z in G, satisfies

VIV 2] < [H«f - ql'>]

1=0

and, in case of equality, we have 1y, 1z € Wy.

Proof. We apply Proposition 3.1 to the graph with adjacency matrix
2 As

geQnngi—1
and the | Dy |-regular spanning subgraphs with adjacency matrix A, for those o oc-
curing in the above set union. Every t-space-intersecting set in GG, is an independent
set in this graph. Let w € R(Q, n X<;—1) be given by Proposition 6.1 and write

P = ) w@PQo).
geQnni<i—1

Proposition 6.1 and Lemmas 5.2 and 6.2 imply that, for all sufficiently large n, we

have

1 for A(1) =

Py - [ Tor A=

e for AM(1)=(n—s,s) with 1 <s <t
and |P(A)| < |e] for M(1) # (n — s,s) with some s satisfying 0 < s < t. Hence,
writing A, for X — 1 — (n), we have P();) = 1 and

e =min P(A) and [¢] = max|P(}))|.

A#N A#)
Then the required result follows from Proposition 3.1 and the decomposition of R(G,,)
given in Lemma 3.3. (|

Our proof of Theorems 1.5 and 1.6 is completed by the following result.

Theorem 6.4. W; is spanned by the characteristic vectors of cosets of stabilisers of
t-spaces.

Proof. The proof is almost identical to that of Theorem 5.4 with A; replaced by the
set of t-spaces and (! replaced by the permutation character £X 17—t of t-spaces

and the decomposition of ¢! replaced by the decomposition given in (6.1). ([l

7. ESTIMATES ON CONJUGACY CLASS SIZES AND CHARACTER DEGREES

In this section we provide bounds on the size of certain conjugacy classes and de-
grees of certain irreducible characters of GG,,, which are used in the proof of Lemma 5.2.

Lemma 7.1. Let n andt be positive integers satisfying n > 2t and let 0 € ¥<y. Then

we have
|Gl

Cyl ST
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Proof. From Lemma 2.1 we find that (With the same notation as in Lemma 2.1)

(7.1) yc | <11 H M5 ().

Since o € Y« and t < n/2, there is exactly one polynomial h € ® of degree at
least n — ¢ in the support of g. This polynomial must satisfy o(h) = (1) and the
corresponding factor in (7.1) is at most ¢". There are at most ¢ other polynomials in

the support of o. Each such polynomial f has degree at most ¢ and satisfies |o(f)| < ¢
and hence the corresponding factor in (7.1) has a crude upper bound of qt4. As there
are at most t such factors, the proof is completed. ]

Lemma 7.2. Let t be a positive integer. Then there is a constant 6; such that, for
all sufficiently large n and for all A € Ap\ll<;, we have

XA(1) = 6",
Proof. Let A € Ap\Il<;. Using elementary calculus we find that
l—z>24"" for0<x<1/2
and therefore
¢ -1 ~ 1 s T a1y 1
H;;n(nﬂ) 1H< > H<1_2i>>g4 1/2 22114 Ve =2
Substitute into (2.14) of Lemma 2.2 to give

(7.2) L 4N O-MQ)-fnlnt)

where

=Y hig(A())

fe®  (i,g)eA(f)

= 2 IF16(A()

fed
and b and h; ; are as in Lemma 2.2. Note that for each partition A, we have

Al
1
(7.3) D higN) < k= S AL+ 1).
(3,7)eX k=1
First assume that there exists a polynomial i € ® such that |h| = 1 and A(h)] = n—t.
In this case we have

n—t—1

M) ZbA0) = ) k= gm0t 1)

k=

—_



INTERSECTION THEOREMS FOR FINITE GENERAL LINEAR GROUPS 31
and by (7.3)

N < 3 SUAADIA]+1)

fed
n+1

= DA

fed
n(n+1)
5

A

Therefore (7.2) implies that

1 —Ln—t)(n—t—1
20 < 4q 30 )
so that we have x2(1) = ¢"**1 for all sufficiently large n by very crude estimates.

Hence we can assume that \(f)] <n—t—1land A(f)1 <n—t—1forall fe®
satisfying |f| = 1. Note that the second assumption is implied by the hypothesis
A ¢ II<;. In what follows we use the trivial bound M()) = 0. We distinguish two
cases.

In the first case we assume that |A(f)] <n —t—1 for all f € ® satisfying |f| = 1.
Let £ be the maximum of |A(f)| over all f € ® satisfying |f| = 1, hence £ <n—t¢—1.
By (7.3) we have

N < 3 SUAADIA]+ 1)

fed

n 1
=5%35 Z|f||A(f)|2-
fed

If £ < n/2, then we have |A(f)] < n/2 for all f € ® and so N(\) < n?/4 + n/2.
From (7.2) we then find that x2(1) > ¢"(*+1) for all sufficiently large n, again by very
crude estimates. If ¢ > n/2, then

1

NQ) <5+ 8+ (n=07)
1
< §(n+(n—t—1)2+(t+1)2)
n?+n

- —n(t+1)+ (t+1)2

where we have used that 22 + (n — z)? is increasing for x > n/2. Hence in this case
we obtain 1/y2(1) < 4¢ D HED? By (7.2).

In the remaining case we assume that there exists h € ® such that |h| = 1 and
IA(R)| = n—t. Recall that we also assume that A(h); < n—t—1and A(h)] < n—t—1.
Since N()) depends only on the hook lengths of A(f) for f € ®, we may replace A(h)
by its conjugate A(h)’. Assuming that n is sufficiently large, namely n > (t + 2)2, we
have AM(h)1 =t + 2 or A(h)] =t + 2 and we assume without loss of generality that

2
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A(h)1 = t+2. Write A(h)1 = n—r, so that our assumptions imply t+1 < r < n—t—2.
Then, writing s = |A(h)], there exist nonnegative integers c; satisfying

nihu( Z_: (j +¢;), where nz—:rcj —s—(n—r).
Jj=1 j=1 o

Hence

ghlj(k(h)) = (n_; i 1) +(s—n+r).

Application of (7.3) with A = (A(h)2, A(h)s,...) gives

s—nm+r—+1 n—r+1
Z hi j(A 5 + 5 +(s—n+r)

(i.3)€A(h)
2
:%—F%—i—n —sn—n+r(r—(2n—-s—1))
s 3s
5+?+n —sn—n+{t+1)((t+1)—2n—s—-1)),

since the term depending on r is maximised for r = ¢ + 1 over the interval [t + 1,n —
t — 2]. This last expression equals

1
g+53(3—2(71—15—2))+n2—n+(t+1)((t+1)—(2n—1)).
The second summand is increasing for s > n—t and so is at most 3n(n—2(n—t—2)).

Hence we obtain
2

Z hij(A(h)) < g + % —n(t+1)+(t+1)(t+2).
(4,5)€A(h)
Invoking (7.3) once more, we obtain
NQ)< ), hi+s Zlfl\/\ (HI+1).
(4,7)eA(h) fe@
F#h
We have
S
> 45 DU = 5 DA
fed fecb
f#h
and
_1 t2
5 AR < 5 ( S <f.
fed fed
f#h f#h
Collecting all terms, we find that
1 t2
N()) < M—n(t—l—l)—i—(t—i—l)(t—i—Q)—i——.

2
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From (7.2) we then obtain

1
x2(1)

< 4q—n(t+1)+(t+1)(t+2)+%t2 7

which completes the proof. ]
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