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Abstract. A subset Y of the general linear group GLpn, qq is called t-intersecting

if rkpx ´ yq ď n ´ t for all x, y P Y , or equivalently x and y agree pointwise on

a t-dimensional subspace of Fnq for all x, y P Y . We show that, if n is sufficiently

large compared to t, the size of every such t-intersecting set is at most that of

the stabiliser of a basis of a t-dimensional subspace of Fnq . In case of equality, the

characteristic vector of Y is a linear combination of the characteristic vectors of

the cosets of these stabilisers. We also give similar results for subsets of GLpn, qq

that intersect not necessarily pointwise in t-dimensional subspaces of Fnq and for

cross-intersecting subsets of GLpn, qq. These results may be viewed as variants of

the classical Erdős-Ko-Rado Theorem in extremal set theory and are q-analogs of

corresponding results known for the symmetric group. Our methods are based on

eigenvalue techniques to estimate the size of the largest independent sets in graphs

and crucially involve the representation theory of GLpn, qq.

1. Introduction and results

One of the most famous results in extremal set theory is the Erdős-Ko-Rado The-

orem [9]. In its strengthened version [27] it states that, for all fixed k and t and all

sufficiently large n, every t-intersecting family of k-subsets of t1, 2, . . . , nu has size at

most
`

n´t
k´t

˘

and equality holds if and only if there are t distinct points of t1, 2, . . . , nu

contained in all members of the family.

There are several analogs of the Erdős-Ko-Rado Theorem (see [13], for example).

Most notably, following important earlier work [10], [5], [18], [12], a corresponding

result for the symmetric group Sn was obtained by Ellis, Friedgut, and Pilpel in a

landmark paper [7]. A subset Y of Sn is t-intersecting if, for all x, y P Y , there exist

distinct i1, i2, . . . , it in t1, 2, . . . , nu such that xpikq “ ypikq for all k. It was shown

in [7] that, for each fixed t and all sufficiently large n, every t-intersecting set in Sn
has size at most pn´ tq! and equality holds if and only if Y is a coset of the stabiliser

of a t-tuple of distinct points in t1, 2, . . . , nu.

In this paper we consider a q-analog of this problem, namely we study a corre-

sponding problem for the finite general linear groups. Throughout this paper q is
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a fixed prime power and Gn denotes the general linear group of degree n over the

finite field Fq, namely the group of invertible n ˆ n matrices over Fq. We say that

two elements x, y P Gn are t-intersecting if there exist linearly independent elements

u1, u2, . . . , ut in Fnq such that xuk “ yuk for all k. Equivalently x, y P Gn are t-

intersecting if rkpx´ yq ď n´ t. A subset Y of Gn is called t-intersecting if all pairs

in Y ˆ Y are t-intersecting.

A coset of the stabiliser of a t-tuple of linearly independent elements of Fnq has the

form

tg P Gn : gu1 “ v1, . . . , gut “ vtu

for some t-tuples pu1, u2, . . . , utq and pv1, v2, . . . , vtq of linearly independent elements

of Fnq . We call such a coset a t-coset. It is plain that every t-coset is t-intersecting.

Note that the size of a t-coset is

(1.1)
n´1
ź

i“t

pqn ´ qiq.

The t-cosets are however not the only t-intersecting sets of this size in Gn, as the

transpose of every t-intersecting set is t-intersecting.

We shall often identify a subset Y of Gn with its characteristic vector 1Y P CpGnq
(where CpGnq is the vector space of functions from Gn to C). It is well known (see [2]

or [3], for example) that, since Gn contains a Singer cycle as a regular subgroup,

the size of every 1-intersecting set in Gn is at most the expression given in (1.1) for

t “ 1. Meagher and Razafimahatratra [21] have shown that, if Y is a 1-intersecting

set of size q2 ´ q in G2, then 1Y is in the span of the characteristic vectors of the

1-cosets. We prove a corresponding result for all t and n for which n is sufficiently

large compared to t.

Theorem 1.1. Let t be a positive integer and let Y be a t-intersecting set in Gn.

If n is sufficiently large compared to t, then

|Y | ď
n´1
ź

i“t

pqn ´ qiq

and, in case of equality, 1Y is spanned by the characteristic vectors of t-cosets.

We also prove a result on cross-intersecting subsets of Gn. Two subsets Y and Z

are t-cross-intersecting if all pairs in Y ˆ Z are t-intersecting.

Theorem 1.2. Let t be a positive integer and let Y and Z be t-cross-intersecting sets

in Gn. If n is sufficiently large compared to t, then

a

|Y | ¨ |Z| ď
n´1
ź

i“t

pqn ´ qiq

and, in case of equality, 1Y and 1Z are spanned by the characteristic vectors of t-

cosets.



INTERSECTION THEOREMS FOR FINITE GENERAL LINEAR GROUPS 3

Theorems 1.1 and 1.2 may be seen as q-analogs of [7, Thm. 5 and 6]. It seems

plausible that corresponding q-analogs of [7, Thm. 3 and 4] also hold. In the case

of t-intersecting sets, this means that the extremal t-intersecting sets in Gn are the

t-cosets and their transposes whenever n is sufficiently large compared to t. In fact,

Ahanjideh [1] has shown that every 1-intersecting set in G2 of size q2´q must be either

a 1-coset or the transpose of a 1-coset. We therefore pose the following conjectures.

Conjecture 1.3. Let Y be a t-intersecting set in Gn whose size meets the bound in

Theorem 1.1. If n is sufficiently large compared to t, then Y or Y T is a t-coset.

Conjecture 1.4. Let Y and Z be t-cross-intersecting sets in Gn whose sizes meet the

bound in Theorem 1.2. If n is sufficiently large compared to t, then Y “ Z and Y

or Y T is a t-coset.

A subset Y of the symmetric group Sn is t-set-intersecting if, for all x, y P Y , there

is a subset I of t1, 2, . . . , nu containing t elements such that xpIq “ ypIq. It was

shown in [6] that, for each fixed t and all sufficiently large n, every t-set-intersecting

set in Sn has size at most t!pn ´ tq! and equality holds if and only if Y is a coset of

the stabiliser of a subset of t1, 2, . . . , nu containing t elements.

We also obtain a q-analog of this result. We say that two elements x, y P Gn are

t-space-intersecting if there exists a t-dimensional subspace U of Fnq (or t-space for

short) such that xU “ yU . A subset Y of Gn is called t-space-intersecting if all pairs

in Y ˆ Y are t-space-intersecting. Of course in this context it would be more natural

to replace Gn by the projective linear group PGLpn, qq. However results for Gn and

for PGLpn, qq can be easily translated into each other and for consistency we prefer to

work with Gn. A coset of the stabiliser in Gn of a t-space is clearly t-space-intersecting

and has order

(1.2)

«

t´1
ź

i“0

pqt ´ qiq

ff«

n´1
ź

i“t

pqn ´ qiq

ff

.

Note that again the transpose of a t-space-intersecting set is t-space-intersecting. The

transpose of the stabiliser of a t-space is in fact the stabiliser of an pn´ tq-space, so

the stabiliser of an pn´ tq-space is an example of a t-space-intersecting set that has

the same size as that of the stabiliser of a t-space.

Using an argument involving a Singer cycle, similarly as that above, Meagher and

Spiga [22] have shown that the size of every 1-space-intersecting set in Gn is at most

the expression given in (1.2) for t “ 1. We show that this is true for all t and all

sufficiently large n.

Theorem 1.5. Let t be a positive integer and let Y be a t-space-intersecting set

in Gn. If n is sufficiently large compared to t, then

|Y | ď

«

t´1
ź

i“0

pqt ´ qiq

ff«

n´1
ź

i“t

pqn ´ qiq

ff
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and, in case of equality, 1Y is spanned by the characteristic vectors of cosets of sta-

bilisers of t-spaces.

Again, we have a corresponding result on cross-intersecting subsets of Gn, in which

we call two subsets Y and Z of Gn t-space-cross-intersecting if all pairs in Y ˆZ are

t-space-intersecting.

Theorem 1.6. Let t be a positive integer and let Y and Z be t-space-cross-intersecting

sets in Gn. If n is sufficiently large compared to t, then

a

|Y | ¨ |Z| ď

«

t´1
ź

i“0

pqt ´ qiq

ff«

n´1
ź

i“t

pqn ´ qiq

ff

and, in case of equality, 1Y and 1Z are spanned by the characteristic vectors of cosets

of stabilisers of t-spaces.

Meagher and Spiga [22] conjectured that the extremal 1-space-intersecting sets

in Gn must be cosets of the stabiliser of a 1-space or cosets of the stabiliser of an

pn ´ 1q-space. This was proved by the same authors for n “ 2 [22] and n “ 3 [23]

and by Spiga for all n ě 4 [25]. We therefore pose the following conjectures.

Conjecture 1.7. Let Y be a t-space-intersecting set in Gn whose size meets the

bound in Theorem 1.5. If n is sufficiently large compared to t, then Y is a coset of

the stabiliser of a t-space or a coset of the stabiliser of an pn´ tq-space.

Conjecture 1.8. Let Y and Z be t-space-cross-intersecting sets in Gn whose sizes

meet the bound in Theorem 1.6. If n is sufficiently large compared to t, then Y “ Z

and Y is the stabiliser of a t-space or the stabiliser of an pn´ tq-space.

Not surprisingly, as in [7] and [6], our proofs are based on eigenvalue techniques,

in particular weighted versions of the Hoffman bound on independent sets in graphs,

and crucially involve the representation theory of Gn. We organise this paper as

follows. In Section 2 we summarise relevant background on the representation theory

of Gn. In Section 3 we recall versions of the Hoffman bound from [7] and explain

how they can be applied in our setting. In Section 4 we prepare some key steps of

the proofs of our main results and in particular study properties of a matrix related

to the character table of Gn. Sections 5 and 6 contain the main arguments of our

proofs of Theorems 1.1 and 1.2 and Theorems 1.5 and 1.6, respectively. In Section 7

we prove some auxiliary ingredients used in our proofs.

We close this introduction by noting that, after a first version of this paper was

made publically available, Ellis, Kindler, and Lifshitz [8] independently proved a

result that is slightly more general than Theorem 1.1 and also proved Conjecture 1.3.

Their methods are completely different compared to ours and in particular make no

use of the representation theory of Gn.
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2. The finite general linear groups

In this section we mostly recall some relevant facts about the conjugacy classes

and the character theory of Gn.

2.1. Partitions

An (integer) partition is a sequence λ “ pλ1, λ2, . . . q of nonnegative integers satis-

fying λ1 ě λ2 ě ¨ ¨ ¨ . The set of partitions is denoted by Par. We often omit trailing

zeros and write λ “ pλ1, λ2, . . . , λkq if λk ą 0 and λk`1 “ 0. The size of pλ1, λ2, . . . q

is defined to be |λ| “ λ1 ` λ2 ` ¨ ¨ ¨ . If |λ| “ n, then we also say that λ is a partition

of n. We denote the unique partition of 0 by ∅.

The Young diagram of a partition pλ1, λ2, . . . , λkq of n is an array of n boxes with

left-justified rows and top-justified columns, where row i contains λi boxes. To each

partition λ belongs a conjugate partition λ1 whose parts are the number of boxes in

the columns of the Young diagram of λ. For two partitions λ “ pλ1, λ2, . . . q and

µ “ pµ1, µ2, . . . q of the same size, we say that λ is dominates µ and write λD µ if

k
ÿ

i“1

λi ě
k
ÿ

i“1

µi for each k ě 1.

This indeed defines a partial order on the set of partitions of a fixed size, which is

called the dominance order.

2.2. Conjugacy classes

We shall now describe the conjugacy classes of Gn (see [20, Ch. IV,§ 3], for exam-

ple). Let Φ be the set of monic irreducible polynomials in FqrXs distinct from X.

For a P F˚q (where F˚q is the multiplicative group of Fq), we shall often write a instead

of X´a when the meaning is clear from the context. We also write |f | for the degree

of f P Φ. Let Λ be the set of mappings λ : Φ Ñ Par of finite support (with ∅ being

the zero element in Par). We define the size of such a mapping to be

‖λ‖ “
ÿ

fPΦ

|λpfq| ¨ |f |

and put Λn “ tλ P Λ : ‖λ‖ “ nu. The companion matrix of f P Φ with f “

Xd ` fd´1X
d´1 ` ¨ ¨ ¨ ` f1X ` f0 is

Cpfq “

»

—

—

—

—

—

–

´f0

1 ´f1

1 ´f2

. . .
...

1 ´fd´1

fi

ffi

ffi

ffi

ffi

ffi

fl

P Fdˆdq



6 ALENA ERNST AND KAI-UWE SCHMIDT

(where blanks are filled with zeros). For f P Φ of degree d and a positive integer k,

we write

Cpf, kq “

»

—

—

—

—

—

—

–

Cpfq I

Cpfq I
. . .

. . .

. . . I

Cpfq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Fkdˆkdq ,

where I is an identity matrix of the appropriate size. For f P Φ and σ P Par,

we define Cpf, σq to be the block diagonal matrix of order |σ| ¨ |f | with blocks

Cpf, σ1q, Cpf, σ2q, . . . . Finally, with every σ P Λn we associate the block diagonal

matrix Rσ of order n whose blocks are Cpf, σpfqq, where f ranges through the sup-

port of σ. Then every element g of Gn is conjugate to exactly one matrix Rσ for

σ P Λn, which is called the Jordan canonical form of g. Hence Λn indexes the conju-

gacy classes of Gn; we denote by Cσ the conjugacy class containing Rσ. The following

result gives an explicit expression for the number of elements in Cσ.

Lemma 2.1 ([26, Thm. 1.10.7]). For each σ P Λn, we have

|Gn|
|Cσ|

“
ź

fPΦ

|σpfq|
ź

i“1

mipσpfqq
ź

j“1

q|f | sipσpfq
1qp1´ q´|f | jq,

where mipσq “ |tj ě 1: σj “ iu| and sipσq “
ři
j“1 σj for a partition σ.

2.3. Parabolic induction

Recall that, given a finite group G, a subgroup H of G, and a class function φ

on H, the induced class function IndGHpφq on G is given by

(2.1) IndGHpφqpgq “
1

|H|
ÿ

xPG
xgx´1PH

φpxgx´1q.

The character theory of Gn crucially relies on the induction of characters from para-

bolic subgroups of Gn.

A composition is much like a partition, except that the parts do not need to

be nonincreasing. Let λ “ pλ1, λ2, . . . , λkq be a composition of n. Let Pλ be the

parabolic subgroup of Gn consisting of block upper-triangular matrices with block

sizes λ1, λ2, . . . , λk, namely

(2.2) Pλ “

$

’

’

’

&

’

’

’

%

»

—

—

—

–

g1 ˚ ¨ ¨ ¨ ˚

g2 ¨ ¨ ¨ ˚

. . .
...

gk

fi

ffi

ffi

ffi

fl

: gi P Gλi

,

/

/

/

.

/

/

/

-

.
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Let πi : Pλ Ñ Gλi be the mapping that projects to the i-th diagonal block, so that

(2.3) πi :

»

—

—

—

–

g1 ˚ ¨ ¨ ¨ ˚

g2 ¨ ¨ ¨ ˚

. . .
...

gk

fi

ffi

ffi

ffi

fl

ÞÑ gi.

Let φi be a class function on Gλi . Then

k
ź

i“1

pφi ˝ πiq

is a class function on Pλ. We define the product φ1dφ2d¨ ¨ ¨dφk to be the induction

of this class function to Gn, that is

(2.4)
k
ä

i“1

φi “ IndGnPλ

˜

k
ź

i“1

pφi ˝ πiq

¸

.

2.4. Character theory of Gn

The complete set of complex irreducible characters has been obtained by Green [14].

A good treatment of this topic is also contained in [20, Ch. IV]. The complex irre-

ducible representations were obtained by Gelfand [11] and the irreducible represen-

tations over fields of nondefining characteristic were obtained by James [17]. The

approach of [17] is in fact very similar to the standard combinatorial approach to

obtain the complex irreducible representations of the symmetric group (see [24], for

example) and we mostly follow [17] to recall some relevant background on the complex

characters of Gn.

The irreducible characters of Gn are naturally indexed by Λn and, for λ P Λn, we

denote by χλ the corresponding irreducible character. We shall use the short-hand

notation χf ÞÑλ for χλ if λ is supported only on f P Φ and λpfq “ λ. These are

typically called the primary irreducible characters of Gn. It is well known (see [17,

§ 8], for example) that the irreducible characters of Gn satisfy

(2.5) χλ “
ä

fPΦ

χf ÞÑλpfq.

In order to construct the primary irreducible characters, James [17] constructs char-

acters of Gdm, denoted by ξf ÞÑµ, where f P Φ has degree d and µ is a partition of m.

Writing µ “ pµ1, µ2, . . . , µkq, these characters satisfy [17, (6.2)]

(2.6) ξf ÞÑµ “
k
ä

i“1

ξf ÞÑpµiq

and [17, (7.19)]

(2.7) ξf ÞÑµ “
ÿ

λ

Kλµ χ
f ÞÑλ,



8 ALENA ERNST AND KAI-UWE SCHMIDT

where λ ranges over the partitions of |µ| and Kλµ is a Kostka number, which equals

the number of semistandard Young tableaux of shape λ and content µ. It is well

known (see [24, § 2.11], for example) that the Kostka numbers satisfy

(2.8) Kµµ “ 1 and Kλµ ‰ 0 ñ λD µ.

Conversely it is readily verified that there are integers Hµλ satisfying

(2.9) χf ÞÑλ “
ÿ

µ

Hµλ ξ
f ÞÑµ

and

(2.10) Hλλ “ 1 and Hµλ ‰ 0 ñ µD λ

(see [20, p. 105], for example).

Now, for µ P Λn, we define the characters

(2.11) ξµ “
ä

fPΦ

ξf ÞÑµpfq.

We denote by χ
λ
σ and ξ

µ
σ the characters χλ and ξµ, respectively, evaluated on the

conjugacy class Cσ.

We now express ξµ and χλ in terms of each other. To do so, we define the shape of

λ P Λn to be the mapping s : Φ Ñ Z given by spfq “ |λpfq| for each f P Φ. We write

λ „ µ if λ, µ P Λn have the same shape. Then „ is an equivalence relation on Λn.

For λ, µ P Λn with λ „ µ, write

Kλµ “
ź

fPΦ

Kλpfqµpfq,

Hµλ “
ź

fPΦ

Hµpfqλpfq.

We then find that

ξµ “
ÿ

λ„µ

Kλµ χ
λ for each µ P Λn,(2.12)

χλ “
ÿ

µ„λ

Hµλ ξ
µ for each λ P Λn.(2.13)

An explicit expression for the degree χλp1q (where 1 is the identity of Gn) of χλ is

given by the so-called q-analog of the hook-length formula.

Lemma 2.2 ([14, Thm. 14]). We have

(2.14)
1

χλp1q

n
ź

i“1

pqi ´ 1q “
ź

fPΦ

1

q|f |bpλpfqq

ź

pi,jqPλpfq

pq|f |hi,jpλpfqq ´ 1q,
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where, for each partition λ “ pλ1, λ2, . . . q,

bpλq “
ÿ

iě1

pi´ 1qλi

and hi,jpλq is the hook length of λ at pi, jq, namely

hi,jpλq “ λi ` λ
1
j ´ i´ j ` 1

and the corresponding product over pi, jq is over all boxes of the Young diagram

of λpfq.

It can be readily verified from Lemma 2.2 that the linear (degree-one) irreducible

characters of Gn are precisely the primary characters χf ÞÑpnq, where |f | “ 1. These

are the only characters of Gn that we shall need explicitly. Let α be a generator of

the multiplicative group F˚q of Fq, let ω “ expp2π
?
´1{pq ´ 1qq be a complex root of

unity, and let θ : F˚q Ñ C be the linear character of F˚q given by θpαiq “ ωi. The

following result is essentially given in [14, pp. 415 and 444].

Lemma 2.3 ([14]). For all g P Gn, we have

χX´α
i ÞÑpnqpgq “ θpdetpgqiq.

In particular χX´1 ÞÑpnq is the trivial character.

In what follows we consider certain characters of Gn related to the permutation

character ofGn on the set of t-tuples of linearly independent elements of Fnq . For t ď n,

let Hn,t be the stabiliser of a fixed t-tuple of linearly independent elements of Fnq . We

define ζpt,iq to be the character obtained by inducing the linear character

(2.15)
Hn,t Ñ C

g ÞÑ θpdetpgqiq

to Gn. Then ζpt,0q is the permutation character of Gn on the set of t-tuples of

linearly independent elements of Fnq . These characters are related to each other in

the following way.

Lemma 2.4. For each g P Gn, we have

ζpt,iqpgq “ θpdetpgqiqζpt,0qpgq.

Proof. Since similar matrices have the same determinant, we find from (2.1) that

ζpt,iqpgq “
1

|Hn,t|
ÿ

xPGn
xgx´1PHn,t

θpdetpxgx´1qiq

“
1

|Hn,t|
ÿ

xPGn
xgx´1PHn,t

θpdetpgqiq

“ θpdetpgqiqζpt,0qpgq. �
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We shall also need the following information about the decomposition of ζpt,iq into

irreducible characters of Gn.

Lemma 2.5. We have

ζpt,iq “
ÿ

λPΛn

mi,λ χ
λ,

where mi,λ ‰ 0 if and only if λpαiq1 ě n´ t.

Proof. We may choose Hn,t to be

Hn,t “

"„

I ˚

g



: g P Gn´t

*

,

so that Hn,t is a subgroup of the parabolic subgroup Ppt,n´tq given in (2.2). Let π1

and π2 be the projections onto the diagonal blocks of orders t and n´ t, respectively,

as given in (2.3). Using Lemma 2.3, the character (2.15) can be written as

(2.16) p1 ˝ π1q pχ
X´αi ÞÑpn´tq ˝ π2q.

where 1 is the trivial character of the trivial subgroup of Gt. By Frobenius reci-

procity, 1 induces on Gt to the character
ÿ

κPΛt

χκp1qχκ.

Since Ppt,n´tq{Hn,t – Gt, it is then readily verified that (2.16) induces on Ppt,n´tq to

the character
ÿ

κPΛt

χκp1q pχκ ˝ π1q pχ
X´αi ÞÑpn´tq ˝ π2q.

Hence, by transitivity of induction, we have

ζpt,iq “
ÿ

κPΛt

χκp1q pχκ d χX´α
i ÞÑpn´tqq.

It is well known [20, Ch. IV, § 4] that, for each fixed f P Φ, characters χf ÞÑλ form an

algebra with multiplication d that is isomorphic to the algebra of symmetric functions

and the images of the characters χf ÞÑλ are the Schur functions. We then find from

Pieri’s rule (see [20, Ch. I, (5.16)], for example) that

χX´α
i ÞÑκ d χX´α

i ÞÑpn´tq “
ÿ

λ

χX´α
i ÞÑλ,

where λ runs through all partitions whose Young diagram is obtained from that of κ

by adding n´t boxes, no two of which in the same column. Using (2.5) the statement

of the lemma is then readily verified. �



INTERSECTION THEOREMS FOR FINITE GENERAL LINEAR GROUPS 11

3. The Hoffman bound

Henceforth we use the following notation. For a field K and finite sets X and Y , we

denote by KpX,Y q the set of |X|ˆ |Y | matrices A with entries in K, where rows and

columns are indexed by X and Y , respectively. For x P X and y P Y , the px, yq-entry

of A is written as Apx, yq. If |Y | “ 1, then we omit Y , so KpXq is the set of column

vectors a indexed by X and, for x P X, the x-entry of a is written as apxq.

The adjacency matrix of a graph Γ “ pX,Eq is the matrix A P RpX,Xq given by

Apx, yq “

#

1 for tx, yu P E

0 otherwise.

Then A is a real symmetric matrix, which of course has an orthonormal system of |X|
eigenvectors forming a basis of RpXq. All eigenvalues of A are real and referred to as

the eigenvalues of Γ. Note that, if Γ is d-regular, then d is an eigenvalue of Γ and the

all-ones vector is a corresponding eigenvector.

Our starting point arises from the following generalised versions of the Hoffman

bound [15], stated and proved by Ellis, Friedgut, and Pilpel [7, § 2.4] in the following

form.

Proposition 3.1. Let Γ “ pX,Eq be a graph on n vertices. Suppose that Γ0,Γ1, . . . ,Γr
are regular spanning subgraphs of Γ, all having tv0, v1, . . . , vn´1u as an orthonormal

system of eigenvectors with v0 being the all-ones vector. Let Pipkq be the eigenvalue

of vk in Γi. Let w0, w1, . . . , wr P R and write P pkq “
řr
i“0wiPipkq.

(i) If Y Ď X is an independent set in Γ, then

|Y |
|X|

ď
|Pmin|

P p0q ` |Pmin|
,

where Pmin “ mink‰0 P pkq. In case of equality we have

1Y P xtv0u Y tvk : P pkq “ Pminuy.

(ii) If Y, Z Ď X are such that there are no edges between Y and Z in Γ, then
d

|Y |
|X|

|Z|
|X|

ď
Pmax

P p0q ` Pmax
,

where Pmax “ maxk‰0|P pkq|. In case of equality we have

1Y , 1Z P xtv0u Y tvk : |P pkq| “ Pmaxuy.

In order to study graphs induced by Gn and their eigenvalues, we shall bring the

theory of association schemes into play. We refer to [4] and [13] for background on

association schemes. Every finite group gives rise to an association scheme (see [4,

Section 2.7] or [13, Section 3.3] for details). We shall recall relevant background about

this association scheme and its symmetrisation for Gn.
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For each σ P Λn, we define Bσ “ CpGn, Gnq by

Bσpx, yq “

#

1 for x´1y P Cσ

0 otherwise.

The vector space generated by tBσ : σ P Λnu over the complex numbers turns out

to be a commutative matrix algebra A, which contains the identity and the all-

ones matrix and is closed under conjugate transposition. The collection of zero-one

matrices Bσ therefore defines an association scheme. Since A is commutative, it

can be simultaneously diagonalised and therefore there exists a basis tFλ : λ P Λnu

of A consisting of primitive idempotent matrices. These matrices are given by [4,

Theorem II.7.2]

(3.1) Fλ “
χλp1q

|Gn|
ÿ

σPΛn

χλσ Bσ.

Using the orthogonality of characters of the second kind, it is readily verified that

(3.2) Bσ “
ÿ

λPΛn

|Cσ|
χλp1q

χλσ Fλ,

where χλ is the character of Gn whose values at g P Gn are the complex conjugates

of χλpgq.

For each f P Φ, let f˚ P Φ be its reciprocal polynomial, namely the monic polyno-

mial whose roots (in an algebraic closure of Fq) are precisely the inverses of the roots

of f . For each λ P Λn, define λ˚ to be the element of Λn given by λ˚pfq “ λpf˚q for

all f P Φ. We record the following lemma, in which we write C´1
σ “ tg´1 : g P Cσu

for σ P Λn.

Lemma 3.2. Let σ, λ P Λn. Then we have

(i) Cσ˚ “ C´1
σ ,

(ii) χλ
˚

“ χλ,

(iii) χ
λ˚

σ “ χ
λ
σ˚.

Proof. Statement (i) is a basic fact in linear algebra, (ii) is essentially [17, (7.32)],

and (iii) can be deduced from (i) and (ii). �

Let Ωn be the subset of Λn that contains all λ P Λn satisfying λ “ λ˚ and precisely

one of λ or λ˚ for all λ P Λn satisfying λ ‰ λ˚. For λ P Ωn, we define the character

ψλ “

#

χλ for λ “ λ˚

χλ ` χλ
˚

otherwise,
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and, for σ P Ωn, we define Dσ “ Cσ Y Cσ˚ . Lemma 3.2 implies that ψλ is constant

on Dσ. We write

(3.3) ψλσ “ ψλpgq, where g is an arbitrary element of Dσ.

For σ, λ P Ωn, write

(3.4) Aσ “

#

Bσ for σ “ σ˚

Bσ `Bσ˚ otherwise
and Eλ “

#

Fλ for λ “ λ˚

Fλ ` Fλ˚ otherwise.

Note that Aσ is symmetric, so all of its eigenvalues are real, and that Eλ has only

real entries. Let Vλ be the column span over the reals of Eλ and, for σ, λ P Ωn, write

(3.5) P pλ, σq “
|Dσ|
ψλp1q

ψλσ .

The following lemma, containing essentially standard results, will be crucial in the

following.

Lemma 3.3. We have the following orthogonal direct sum decomposition

RpGnq “
à

λPΩn

Vλ.

Moreover, for all σ, λ P Ωn, every element of Vλ is an eigenvector of Aσ and the

corresponding eigenvalue is P pλ, σq.

Proof. Since Fλ is a primitive idempotent in CpGn, Gnq for each λ P Λn, it is readily

verified that Eλ is a primitive idempotent in RpGn, Gnq for each λ P Ωn. Therefore

the Eλ are pairwise orthogonal, namely we have EλEµ “ δλµEλ for all λ, µ P Ωn.

Since Eλ is idempotent, rkpEλq is just the trace of Eλ. It follows from (3.1) that the

trace of Fλ equals χλp1q2. Hence we have
ÿ

λPΩn

dimVλ “
ÿ

λPΩn

rkpEλq “
ÿ

λPΛn

χλp1q2 “ |Gn|

by standard properties of the degrees of irreducible characters. This proves the first

statement. We have χλp1q “ χλ
˚

p1q by Lemma 2.2, from which together with (3.2)

and Lemma 3.2 it is readily verified that

Aσ “
ÿ

λPΩn

P pλ, σqEλ.

Since the Eλ are pairwise orthogonal, we obtain the second statement. �

In fact the proof of Lemma 3.3 shows that tAσ : σ P Ωnu is a symmetric association

scheme with primitive idempotents given by tEλ : λ P Ωnu. However we will not

exploit this further.

Note that Aσ is the adjacency matrix of a |Dσ|-regular graph for each σ P Ωn,

except for σ given by σp1q “ p1nq, and that P pλ, σq “ |Dσ| if λ P Ωn is given by

X ´ 1 ÞÑ pnq.
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The strategy to prove Theorems 1.1 and 1.2 is as follows (Theorems 1.5 and 1.6

will be proved using slight modifications). We call an element x P G a t-derangement

if there is no t-tuple of linearly independent elements of Fnq that is fixed by x. Equiv-

alently x P Gn is a t-derangement if rkpx ´ Iq ą n ´ t. It is readily verified that

either all elements of Dσ are t-derangements or none of them. We wish to identify

an appropriate subset Σ of Ωn such that Dσ consists of t-derangements for all σ P Σ

and then apply Proposition 3.1 to the graph Γ with adjacency matrix
ř

σPΣAσ and

|Dσ|-regular spanning subgraphs Γσ having adjacency matrix Aσ for σ P Σ. In view

of Lemma 3.3, we wish to construct some w P RpΣq such that both the minimum

value and the negative of the second-largest absolute value over all λ P Ωn of

(3.6)
ÿ

σPΣ

wpσqP pλ, σq

equals

(3.7) η “ ´
1

pqn ´ 1qpqn ´ qq ¨ ¨ ¨ pqn ´ qt´1q ´ 1

and such that w is normalised in the sense that (3.6) equals 1 if ψλ is the trivial

character (or equivalently λ P Ωn is given by X ´ 1 ÞÑ pnq). This will ensure that

Proposition 3.1 will give the bounds of Theorems 1.1 and 1.2.

4. An invertible matrix

This section contains some key preparations for our main proofs. We first identify

relevant conjugacy classes of Gn whose elements are either t-derangements or do not

fix a t-space. We then use these conjugacy classes to identify a matrix related to the

character table of Gn. A key step is to show that this matrix is invertible.

We call an element of Gn regular elliptic if its characteristic polynomial is irre-

ducible. The following lemma shows that regular elliptic elements in Gn play the role

of an n-cycle in the symmetric group Sn.

Lemma 4.1 ([19, Prop. 4.4]). Each regular elliptic element of Gn fixes no proper

nontrivial subspace of Fnq .

Note that, for each f P Φ of degree d, its companion matrix satisfies detpCf q “

p´1qdfp0q. It is well known [16] that, for each a P F˚q , there exists an irreducible

polynomial f P Fqrxs of degree d such that fp0q “ a. Hence we can always find a

polynomial in Φ with prescribed degree and prescribed nonzero determinant of its

companion matrix. Also note that, for each f P Φ, we have fp0qf˚p0q “ 1 and

therefore

detpCf qdetpCf˚q “ 1.

We now continue to use α to denote a fixed generator of F˚q . For all integers `, j

satisfying 0 ď ` ă n and 0 ď j ď q ´ 2, we fix an irreducible polynomial h`,j P Φ
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of degree n ´ ` such that its companion matrix has determinant αj and such that

h˚`,j “ h`,´j . We define

Σ`,j “ tσ P Λn : σph`,jq “ p1qu.

and

Σ` “

q´2
ď

j“0

Σ`,j and Σďt “
t
ď

`“0

Σ`.

Note that, for each σ P Σďt´1, the conjugacy class Cσ consists of elements that do

not fix a t-space of Fnq . In addition, for each σ P Σt with the q ´ 1 exceptions σ P Σt

satisfying σpX ´ 1q “ p1tq, the conjugacy class Cσ consists of elements that do not

fix a t-space pointwise. Next we define

Πk,i “ tλ P Λn : λpαiq1 “ n´ ku.

and

Πk “

q´2
ď

i“0

Πk,i and Πďt “
t
ď

k“0

Πk.

Note that, for k ă n{2, we have |Πk,i| “ |Σk,i| and |Ωn XΠk,i| “ |Ωn X Σk,i|.
We define Q P RpΩn,Ωnq by

Qpλ, σq “ ψλσ for each λ, σ P Ωn

and let Qt be the restriction of Q to RpΩn XΠďt,Ωn X Σďtq. We emphasise that Qt
is a square matrix. A key step in our proof is the following proposition.

Proposition 4.2. For n ą 2t, the matrix Qt has full rank and is independent of n.

In the remainder of this section we essentially only prove Proposition 4.2. The

reader who is interested in maintaining the flow of the proof of our main results may

wish to skip to the next section at first reading.

We define R P CpΛn,Λnq by

Rpλ, σq “ χλσ for each λ, σ P Λn

and let Rt be the restriction of R to CpΠďt,Σďtq. We shall prove a counterpart of

Proposition 4.2 for the matrix Rt.

Proposition 4.3. For n ą 2t, the matrix Rt has full rank and is independent of n.

Note that Qt is obtained from Rt by first applying elementary row operations, then

deleting some rows, and then (in view of (3.3)) deleting duplicate columns. Hence

Proposition 4.2 follows from Proposition 4.3.

We now prove Proposition 4.3. We let S P CpΛn,Λnq be the matrix defined by

(4.1) Spµ, σq “ ξ
µ
σ for each µ, σ P Λn
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and let St be the restriction of S to CpΠďt,Σďtq. Now recall the equivalence relation „

on Λn and the numbers Kλµ from Section 2.4. Define T P CpΛn,Λnq by

T pµ, λq “

#

Kλµ for λ „ µ

0 otherwise

and let Tt be the restriction of T to CpΠďt,Πďtq. We first prove the following.

Lemma 4.4.

(i) We have S “ TR and T has full rank.

(ii) For n ą 2t, we have St “ TtRt and Tt has full rank and is independent of n.

Proof. From (2.12) we have S “ TR and T is block diagonal, where the blocks are

induced by the equivalence classes under „. Each diagonal block corresponds to one

equivalence class. If s : Φ Ñ Z is the shape of such an equivalence class, then the

corresponding block can be written as a Kronecker product
â

fPΦ

Kpspfqq,

where Kpmq P CpParm,Parmq is a Kostka matrix given by Kpmqpµ, λq “ Kλµ with

the convention Kp0q “ p1q and Parm is the set of partitions of m. By (2.8) the

Kostka matrices are invertible. Hence T is a block-diagonal matrix whose blocks

are Kronecker products of matrices of full rank and so T itself has full rank. This

proves (i).

From (2.8) we find that St “ TtRt. Note that Tt is still block diagonal with one

diagonal block for each equivalence class of Λn under „ whose shape s : Φ Ñ Z
satisfies spαiq ě n´ t for some i. The corresponding block can be written as

(4.2) K̃pspαiqq b
â

fPΦztαiu

Kpspfqq,

where K̃pspαiqq is the matrix Kpspαiqq restricted to partitions λ of spαiq satisfying

λD pn´ t, 1spα
iq´pn´tqq.

From (2.8) we find that, after a suitable ordering of rows and columns, all matrices

occuring in the Kronecker product (4.2) are upper-triangular with ones on the diag-

onal. Again Tt is a block-diagonal matrix whose blocks are Kronecker products of

matrices of full rank and so Tt itself has full rank.

From the proof of [7, Thm. 20] we know that K̃pspαiqq is independent of n. Moreover

all other matrices occuring in the Kronecker product (4.2) are also independent of n.

Hence Tt itself is also independent of n. This proves (ii). �

Next we shall show that the matrix St has full rank. Recall that, for a composi-

tion λ, we denote by Pλ the parabolic subgroup of G|λ| given in (2.2). We start with

the following lemma.
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Lemma 4.5. Let m and n be positive integers satisfying m ă n and let φ and ψ be

class functions of Gm and Gn, respectively. Let π1 : Ppm,nq Ñ Gm and π2 : Ppm,nq Ñ

Gn be the natural projections onto the corresponding diagonal blocks. Let g P Ppm,nq
be such that π2pgq is regular elliptic. Then we have

pφd ψqpgq “ φpπ1pgqqψpπ2pgqq.

Proof. From (2.4) we have

(4.3) pφd ψqpgq “
1

|Ppm,nq|
ÿ

xPGm`n
xgx´1PPpm,nq

φpπ1pxgx
´1qqψpπ2pxgx

´1qq.

Since π2pgq is regular elliptic and m ă n, we find from Lemma 4.1 that g stabilises

a unique m-dimensional subspace U of Fm`nq . Hence the number of x P Gm`n such

that xgx´1 P Ppm,nq is the number of ordered bases tu1, . . . , um, w1, . . . , wnu of Fm`nq

such that tu1, . . . , umu spans U . This number equals |Ppm,nq|. Since xgx´1 P Ppm,nq
for each x P Ppm,nq, we conclude that

tx P Gm`n : xgx´1 P Ppm,nqu “ Ppm,nq.

Since πipxgx
´1q is conjugate to πipgq for each i P t1, 2u and each x P Ppm,nq, the

statement of the lemma follows from (4.3). �

We use Lemma 4.5 to prove the following lemma on the structure of the matrix S.

Lemma 4.6. Let k, ` be integers satisfying 0 ď k, ` ă n{2 and let µ P Πk,i and

σ P Σ`,j. If k ą `, then we have ξ
µ
σ “ 0. For k ď `, let ν be the partition obtained

from µpX ´ αiq by replacing the part n´ k by `´ k and define ν, τ P Λ` by

νpfq “

#

ν for f “ X ´ αi

µpfq otherwise
and τpfq “

#

∅ for f “ h`,j

σpfq otherwise.

If k ď `, then we have ξ
µ
σ “ ξ

ν
τ ωij.

Proof. Let g P Cσ. Define κ P Λk by

κpfq “

#

pµpαiq2, µpα
iq3, . . . q for f “ X ´ αi

µpfq otherwise,

so that by (2.6) and (2.11)

(4.4) ξµ “ ξκ d ξX´α
i ÞÑpn´kq,

For ξµpgq to be nonzero, g must be conjugate to an element of Ppk,n´kq. Each such

element fixes a k-dimensional subspace of Fnq . If k ą `, then by Lemma 4.1, g fixes

no k-dimensional subspace of Fnq and hence ξµpgq “ 0.



18 ALENA ERNST AND KAI-UWE SCHMIDT

Henceforth assume that k ď `. We shall frequently use ξf ÞÑpmq “ χf ÞÑpmq, which

follows from (2.7) and (2.8). Since k ď ` we have

(4.5) ξν “ ξκ d ξX´α
i ÞÑp`´kq.

Write

E “
ď

ρPΛn´k
ρph`,jq“p1q

Cρ.

We claim that

(4.6) ξX´α
i ÞÑpn´kqpeq “ pξX´α

i ÞÑp`´kq d ξX´α
i ÞÑpn´`qqpeq for each e P E.

Indeed, each e P E is conjugate to an element of Pp`´k,n´`q with blocks e1 P G`´k
and e2 P Gn´` on the main diagonal, where e2 is regular elliptic. Hence we find from

Lemma 2.3 that, for each e P E, the left hand side of (4.6) equals

θpdetpeqiq “ θpdetpe1q
iq ¨ θpdetpe2q

iq

“ ξX´α
i ÞÑp`´kqpe1q ¨ ξ

X´αi ÞÑpn´`qpe2q,

which by Lemma 4.5 equals the right hand side of (4.6). From (4.4) we have

ξµpgq “
1

|Ppk,n´kq|
ÿ

xPGn
xgx´1PPpk,n´kq

ξκpπ1pxgx
´1qqξX´α

i ÞÑpn´kqpπ2pxgx
´1qq,

where π1 : Ppk,n´kq Ñ Gk and π2 : Ppk,n´kq Ñ Gn´k are the natural projections

onto the diagonal blocks. Since k, ` ă n{2, Lemma 4.1 implies that each π2pxgx
´1q

occuring in the summation is forced to lie inside E. Hence by subsequent applications

of (4.4), (4.6), and (4.5) we then find that

ξµpgq “ pξκ d ξX´α
i ÞÑpn´kqqpgq

“ pξκ d ξX´α
i ÞÑp`´kq d ξX´α

i ÞÑpn´`qqpgq

“ pξν d ξX´α
i ÞÑpn´`qqpgq.

Without loss of generality, we may assume that g P Pp`,n´`q and that the diagonal

blocks of g are g1 and g2, where g1 P Cτ and g2 is the companion matrix of h`,j .

Since g2 is regular elliptic, we may apply Lemma 4.5 once more to obtain

ξµpgq “ ξνpg1q ξ
X´αi ÞÑpn´`qpg2q.

Since g1 P Cτ , we have ξνpg1q “ ξ
ν
τ , and since g2 is the companion matrix of h`,j , we

find from Lemma 2.3 that

ξX´α
i ÞÑpn´`qpg2q “ θpdetpg2q

iq “ ωij .

Hence we obtain ξµpgq “ ξ
ν
τ ωij , as required. �

We can now prove the required property of the matrix St.
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Lemma 4.7. For n ą 2t, the matrix St has full rank and is independent of n.

Proof. To indicate dependence on n, write Spnq for the matrix S given in (4.1) and S
pnq
t

for the corresponding restricted matrix St. Let n ą 2t. From Lemma 4.6 we find

that all entries in S
pnq
t are independent of n, which proves the second statement of

the lemma.

To show that S
pnq
t is invertible, we view S

pnq
t as a block matrix, where the blocks are

indexed by Πk and Σ` for k, ` P t0, 1, . . . , tu. Let Bk,` be the block corresponding to Πk

and Σ`. Lemma 4.6 implies that Bk,` is zero for k ą ` and, for 0 ď k ď t, the block

Bkk is the Kronecker product of Spkq and the Vandermonde matrix pωijq0ďi,jďq´2.

Since the character table of irreducible characters of every finite group is invertible,

Lemma 4.4 implies that Spkq is invertible and so Bkk is invertible. Hence S
pnq
t is

block upper-triangular and all diagonal blocks are invertible. Therefore S
pnq
t itself is

invertible. �

Finally, by combining Lemmas 4.4 and 4.7, we obtain a proof of Proposition 4.3.

5. Proof of Theorems 1.1 and 1.2

Now recall the definition (3.5) of the eigenvalues P pλ, σq and the definition (3.7)

of the prescribed extremal eigenvalue η. As a first step in constructing the required

weight function w occuring in (3.6), we prove the following result.

Proposition 5.1. Let n and t be positive integers satisfying n ą 2t. Then there

exists w P RpΩn X Σďtq such that wpσq “ 0 for σp1q “ p1tq and

(5.1)

ÿ

σPΩnXΣďt

wpσqP pλ, σq “

$

’

’

&

’

’

%

1 for λ P Ωn XΠ0,0

η for λ P Ωn XΠk,0 and 1 ď k ď t

0 for λ P Ωn XΠk,i and 0 ď k ď t and 1 ď i ď q ´ 2

and

(5.2) |wpσq| ď γt
|Dσ|

for all σ P Ωn X Σďt

for some constant γt depending only on t.

Proof. From Proposition 4.2 we know that Qt has full rank. In view of (3.5) there

exists a unique w P RpΩn X Σďtq satisfying (5.1).

We now show that wpσq “ 0 for the tq{2u ` 1 elements σ P Ωn X Σďt satisfying

σp1q “ p1tq. Without loss of generality we may assume that Ωn contains X ´ αi and

ht,j for all i, j “ 0, 1, . . . , tq{2u. Accordingly we define σj P Σt,j by σjp1q “ p1
tq for

j “ 0, 1, . . . , tq{2u. Recall the definition of the character ζpt,iq from Section 2.4 and

write ζ
pt,iq
σ for this character evaluated on the conjugacy class Cσ. We evaluate the
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sum

(5.3) Si “
ÿ

σPΩnXΣďt

wpσq|Dσ| pζpt,iqσ ` ζpt,´iqσ q

in two ways. Since ζpt,0q is the permutation character on the set of t-tuples of linearly

independent elements of Fnq , we find by Lemma 2.4 that the summand in (5.3) is

nonzero only when the elements of Cσ fix a t-tuple of linearly independent elements

of Fnq , hence only when σ “ σj for some j. By the definition of σj , each element

in Cσj has determinant αj . Hence by applying Lemma 2.4 twice we obtain

ζpt,iqσj
“ ωijζpt,0qσj

“ ωijζpt,0qσ0

and therefore

(5.4) Si “ 2ζpt,0qσ0

tq{2u
ÿ

j“0

wpσjq |Dσj | cos

ˆ

2πij

q ´ 1

˙

.

On the other hand, since ζpt,iq ` ζpt,´iq is a real-valued class function, we find from

Lemma 3.2 that it is a linear combination of ψλ for λ P Ωn. Hence by Lemma 2.5

there exists numbers ni,λ such that

ζpt,iqσ ` ζpt,´iqσ “
ÿ

λPΩn
λpαiq1ěn´t

ni,λ ψ
λ
σ

and hence

(5.5) Si “
ÿ

λPΩn
λpαiq1ěn´t

ni,λ
ÿ

σPΩnXΣďt

wpσq|Dσ|ψλσ .

Since (5.1) holds, we conclude that Si “ 0 for each i satisfying 1 ď i ď tq{2u.

Since ζpt,0q is a permutation character, it contains the trivial character with multi-

plicity 1 (this can be seen by Frobenius reciprocity, for example). Hence we have

n0,λ “ 2 for λ P Ωn satisfying λp1q “ pnq. We therefore find from (5.5) and (5.1) that

S0 “ 2` η
ÿ

λPΩn
n´tďλp1q1ăn

n0,λ ψ
λp1q “ 2` 2ηpζpt,0qp1q ´ 1q.

Since ζpt,0qp1q equals the number of t-tuples of linearly independent elements of Fnq ,

we have

(5.6) ζpt,0qp1q “ pqn ´ 1qpqn ´ qq ¨ ¨ ¨ pqn ´ qt´1q.

Therefore S0 “ 0 and so Si “ 0 for each i satisfying 0 ď i ď tq{2u. Since each element

of Cσ0
fixes a t-tuple of linearly independent elements of Fnq , we have ζ

pt,0q
σ0

‰ 0.
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Thus (5.4) implies

tq{2u
ÿ

j“0

wpσjq |Dσj | cos

ˆ

2πij

q ´ 1

˙

“ 0 for each i satisfying 0 ď i ď tq{2u

and it is readily verified, using that pωijq0ďi,jăq´1 is a Vandermonde matrix, that this

in turn implies that wpσjq “ 0 for all j satisfying 0 ď j ď tq{2u, as required.

Now, for each λ P Ωn satisfying n´ t ď λp1q1 ă n, we find from Lemma 2.5 that

|η|ψλp1q ď |η| pζpt,0qp1q ´ 1q “ 1,

using (5.6). Since ψλp1q “ χλp1q “ 1 for λ P Π0,0, we conclude from (5.1) that∣∣∣∣∣ ÿ

σPΩnXΣďt

wpσq|Dσ|ψλσ

∣∣∣∣∣ ď 1 for each λ P Ωn XΠďt.

By Lemma 4.2 all entries of Qt (which are precisely the values of ψ
λ
σ occuring in

the sum) are independent of n and so are uniformly bounded by some value only

depending on t. The same also holds for the inverse of Qt, which establishes (5.2). �

In what follows we treat the remaining eigenvalues.

Lemma 5.2. Let n and t be positive integers satisfying n ą 2t and let w P RpΩnXΣďtq

be such that

|wpσq| ď γt
|Dσ|

for all σ P Ωn X Σďt

for some constant γt depending only on t. Then∣∣∣∣∣ ÿ

σPΩnXΣďt

wpσqP pλ, σq

∣∣∣∣∣ ă |η| for all λ P ΩnzΠďt,

provided that n is sufficiently large compared to t.

In the proof of the lemma we use the usual scalar product on class functions of Gn,

which is given by

(5.7) xχ, ψy “
1

|Gn|
ÿ

gPGn

χpgqψpgq,

where χ, ψ are class functions of Gn.

Proof of Lemma 5.2. By the definition (3.5) of P pλ, σq and (3.3) we have

(5.8) P pλ, σq “
|Gn|
ψλp1q

xψλ, 1Dσy.

Since χλ is irreducible, we have xψλ, ψλy “ 1 or 2 and therefore we obtain, by an

application of the Cauchy-Schwarz inequality,

|xψλ, 1Dσy| ď
b

2 x1Dσ , 1Dσy “

d

2|Dσ|
|Gn|

.
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From (5.8) and our hypothesis on w we then find that∣∣∣∣∣ ÿ

σPΩnXΣďt

wpσqP pλ, σq

∣∣∣∣∣ ď ÿ

σPΩnXΣďt

|wpσq| |P pλ, σq|

ď
ÿ

σPΩnXΣďt

γt
|Dσ|

|Gn|
ψλp1q

d

2|Dσ|
|Gn|

ď
γt |Σďt|
ψλp1q

max
σPΩnXΣďt

d

2|Gn|
|Dσ|

ď
γt |Σďt|
χλp1q

max
σPΣďt

d

2|Gn|
|Cσ|

.

Note that |Σďt| is independent of n. Using Lemmas 7.1 and 7.2, to be stated and

proved in Section 7, we find that there is a constant γ1t, depending only on t, such

that ∣∣∣∣∣ ÿ

σPΩnXΣďt

wpσqP pλ, σq

∣∣∣∣∣ ď γ1t
qn{2

1

qnt

for all λ P ΩnzΠďt and all sufficiently large n. The right hand side is certainly strictly

smaller than 1{qnt for all sufficiently large n and the proof is completed by noting

that |η| ą 1{qnt. �

Recall that Vλ is the column span of Eλ. Define

Ut “
ÿ

λPΩn
λp1q1ěn´t

Vλ.

Now we obtain the following.

Theorem 5.3. Let t be a positive integer. Then, for all sufficiently large n, the

following holds.

(i) Every t-intersecting set Y in Gn satisfies

|Y | ď
n´1
ź

i“t

pqn ´ qiq

and, in case of equality, we have 1Y P Ut.

(ii) Every pair of t-cross-intersecting sets Y, Z in Gn satisfies

a

|Y | ¨ |Z| ď
n´1
ź

i“t

pqn ´ qiq

and, in case of equality, we have 1Y , 1Z P Ut.
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Proof. As explained at the end of Section 3, we apply Proposition 3.1 to the graph

with adjacency matrix
ÿ

σPΩnXΣďt
σp1q‰p1tq

Aσ

and the |Dσ|-regular spanning subgraphs with adjacency matrix Aσ for those σ oc-

curing in the above set union. Since none of the elements in Dσ for such σ fix a

t-space pointwise, every t-intersecting set in Gn is an independent set in this graph.

Recall from Lemma 3.3 that every element of Vλ is an eigenvector of Aσ with eigen-

value P pλ, σq. Let w P RpΩn X Σďtq be the vector given by Proposition 5.1 and

write

P pλq “
ÿ

σPΩnXΣďt
σp1q‰p1tq

wpσqP pλ, σq.

Proposition 5.1 and Lemma 5.2 imply that, for all sufficiently large n, we have

P pλq “

#

1 for λp1q1 “ n

η for n´ t ď λp1q1 ă n

and |P pλq| ă |η| for λp1q1 ă n ´ t. Hence, writing λ0 for X ´ 1 ÞÑ pnq, we have

P pλ0q “ 1 and

η “ min
λ‰λ0

P pλq and |η| “ max
λ‰λ0

|P pλq|.

Then the required result follows from Proposition 3.1 and the decomposition of RpGnq
given in Lemma 3.3. �

Our proof of Theorems 1.1 and 1.2 is completed by the following result.

Theorem 5.4. Ut is spanned by the characteristic vectors of t-cosets.

Proof. Let At be the set of t-tuples of linearly independent elements of Fnq . Define

the incidence matrix Mt P CpGn,At ˆAtq of elements of Gn versus t-cosets by

Mtpx, pu, vqq “

#

1 for xu “ v

0 otherwise,

so that the columns of Mt are precisely the characteristic vectors of the t-cosets. Let

ζt “ ζpt,0q be the permutation character of the set of t-tuples of linearly independent

elements of Fnq and define Ct P CpGn, Gnq by

Ctpx, yq “ ζtpx´1yq.
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Denoting by 1xu“v the indicator of the event that x P Gn maps u to v, we have

pMtM
T
t qpx, yq “

ÿ

u,v

Mtpx, pu, vqqMtpy, pu, vqq

“
ÿ

u,v

1xu“v1yu“v

“
ÿ

u

1xu“yu

“
ÿ

u

1x´1yu“u

“ ζtpx´1yq “ Ctpx, yq.

Hence we have Ct “ MtM
T
t and so the column span of Ct equals the column span

of Mt or equivalently the span of the characteristic vectors of the t-cosets.

From Lemma 2.5 we have

ζt “
ÿ

λPΛn
λp1q1ěn´t

mλ χ
λ

for some integers mλ satisfying mλ ‰ 0 for each λ occuring in the summation. Since ζt

is real-valued, we find by Lemma 3.2 that mλ˚ “ mλ and therefore have

(5.9) ζt “
ÿ

λPΩn
λp1q1ěn´t

mλ ψ
λ.

Lemma 2.2 implies that χλp1q “ χλ
˚

p1q. We therefore obtain from (3.4) and (3.1)

that

Eλpx, yq “
χλp1q

|Gn|
ψλpx´1yq

and thus find from (5.9) that

(5.10) Ct “ |Gn|
ÿ

λPΛn
λp1q1ěn´t

mλ

χλp1q
Eλ.

Hence the column span of Ct is contained in Ut. Conversely, let v be a column of Eκ
for some κ P Ωn satisfying κp1q1 ě n ´ t. Since Eλ is idempotent, we have Eλv “ v

for κ “ λ and Lemma 3.3 implies Eλv “ 0 for κ ‰ λ. Hence from (5.10) we find that

Ctv “ |Gn|
mκ

χκp1q
v,

and, since mκ ‰ 0, we conclude that v is in the column span of Ct. This completes

the proof. �
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6. Proof of Theorems 1.5 and 1.6

Our proofs of Theorems 1.5 and 1.6 follow along similar lines as those in the

previous section and therefore our proofs will be less detailed.

Since the parabolic subgroup Ppt,n´tq is the stabiliser of a t-space of Fnq , the charac-

ter ξX´1 ÞÑpn´t,tq is the permutation character of the set of t-spaces of Fnq . From (2.7)

we obtain its decomposition

(6.1) ξX´1ÞÑpn´t,tq “

t
ÿ

s“0

χX´1ÞÑpn´s,sq.

Let
“

n
k

‰

q
denote the q-binomial coefficient, which counts the number of k-spaces of Fnq .

Then we have

(6.2) ξX´1ÞÑpn´t,tqp1q “

„

n

t



q

,

and so (6.1) implies that

(6.3) χX´1ÞÑpn´s,sqp1q “

„

n

s



q

´

„

n

s´ 1



q

.

Also note that ψX´1ÞÑλ “ χX´1ÞÑλ for all partitions λ. Throughout this section, we

define

ε “ ´
1

“

n
t

‰

q
´ 1

,

which will be our prescribed extremal eigenvalue.

We begin with the following counterpart of Proposition 6.1.

Proposition 6.1. Let n and t be positive integers satisfying n ą 2t. Then there

exists w P RpΩn X Σďt´1q such that

(6.4)
ÿ

σPΩnXΣďt´1

wpσqP pλ, σq “

$

’

’

’

’

&

’

’

’

’

%

1 for λp1q “ pnq,

ε for λp1q “ pn´ s, sq with 1 ď s ď t,

0 for λ P Ωn XΠďt´1, where

λp1q ‰ pn´ s, sq with 0 ď s ď t´ 1

and

(6.5) |wpσq| ď γt
|Dσ|

for all σ P Ωn X Σďt´1.

for some constant γt depending only on t.

Proof. From Lemma 4.2 we know that Qt´1 has full rank. In view of (3.5) there exists

a unique w P RpΩnXΣďt´1q satisfying (6.4) except for λ of the form λp1q “ pn´ t, tq.
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Next we show that (6.4) also holds when λp1q “ pn´ t, tq. By Lemma 4.6 we have

ξ
X´1ÞÑpn´t,tq
σ “ 0 for each σ P Σďt´1. Hence we have

0 “
ÿ

σPΩnXΣďt´1

wpσq|Dσ|ξX´1 ÞÑpn´t,tq
σ

“

t
ÿ

s“0

ÿ

σPΩnXΣďt´1

wpσq|Dσ|χX´1ÞÑpn´s,sq
σ ,(6.6)

using (6.1). Since (6.4) holds with the only exception λp1q “ pn´ t, tq, the inner sum

equals 1 for s “ 0 and ε χX´1ÞÑpn´s,sqp1q for each s satisfying 1 ď s ď t´1. Assuming

that this is true also for s “ t and using (6.3), the right hand side of (6.6) is indeed

1` ε
t
ÿ

s“1

ˆ„

n

s



q

´

„

n

s´ 1



q

˙

“ 1` ε

ˆ„

n

t



q

´ 1

˙

“ 0.

Hence (6.4) also holds when λp1q “ pn´ t, tq.

It remains to prove (6.5). For each s satisfying 1 ď s ď t, we find from (6.1) that

|ε|χX´1ÞÑpn´s,sqp1q ď |ε| pξX´1 ÞÑpn´t,tqp1q ´ 1q “ 1,

using (6.2). Since χX´1ÞÑpnqp1q “ 1, we conclude from (6.4) that∣∣∣∣∣ ÿ

σPΩnXΣďt´1

wpσq|Dσ|ψλσ

∣∣∣∣∣ ď 1 for each λ P Ωn XΠďt´1.

By Lemma 4.2 all entries of Qt´1 are independent of n and so are uniformly bounded

by some value only depending on t. The same also holds for the inverse of Qt, which

establishes (6.5). �

The bound (6.5) and Lemma 5.2 ensure that the right hand side of (6.4) is small

in modulus for each λ P ΩnzΠt. It therefore remains to deal with the case that

λ P Ωn X Πt except for λ P Ωn given by λp1q “ pn´ t, tq, which is the subject of the

following lemma.

Lemma 6.2. Let w P RpΩn X Σďt´1q be given in Proposition 6.1 (so that n ą 2t).

Then, for all λ P Ωn XΠt with λp1q ‰ pn´ t, tq, we have∣∣∣∣ ÿ

σPΩnXΣďt´1

wpσqP pλ, σq

∣∣∣∣ ă |ε|,

provided that n is sufficiently large compared to t.

Proof. By slight abuse of notation, we view w as an element of RpGnq by setting

wpxq “ 0 if x R Ωn X Σďt´1 and wpxq “ wpσq if x P Ωn X Σďt´1 and x P Dσ.

Recalling the scalar product on class functions of Gn from (5.7), the statement of the

lemma is equivalent to

(6.7)
|Gn|
ψλp1q

|xw,ψλy| ă |ε|
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for all λ P ΩnXΠt with λp1q ‰ pn´t, tq, provided that n is sufficiently large compared

to t.

Pick λ P ΩnXΠt such that λp1q ‰ pn´ t, tq. Then λpαiq1 “ n´ t for some i. First

assume that |λp1q| ‰ n. Denoting by Rex the real part of a complex number x, we

find from Lemma 3.2 and (2.13) that

1
2 |xw,ψ

λy| ď |Re xw,χλy| “
∣∣∣∣ ÿ
µ„λ

Hµλ Re xw, ξµy

∣∣∣∣.
Lemma 4.6 implies that ξ

µ
σ “ 0 for each µ R Πďt´1 and each σ P Σďt´1. For µ P Λn,

we have

Re xw, ξµy “
ÿ

κ„µ

Kκµ Re xw,χκy.

By (2.8), the summation can be taken over all κ such that κpαiq D µpαiq. Hence if

µ P Πďt´1, then κ P Πďt´1. By the assumed properties of w given in Proposition 6.1,

we have xw,ψκy “ 0 for each κ P Ωn X Πďt´1 satisfying |κp1q| ‰ n. Since |λp1q| ‰ n

we conclude that xw,ψλy “ 0.

Now assume that |λp1q| “ n and write λp1q “ λ. From (2.9) and (2.10) we have

xw,ψX´1ÞÑλy “
ÿ

µDλ
µ1ąn´t

Hµλ xw, ξ
X´1 ÞÑµy,

since by Lemma 4.6 in the case µ1 “ n´ t we have ξX´1 ÞÑµ
σ “ 0 for each σ P Σďt´1.

From (2.7) and (2.8) we then find that

xw,ψX´1ÞÑλy “
ÿ

µDλ
µ1ąn´t

Hµλ

ÿ

κDµ

Kκµ xw,ψ
X´1ÞÑκy

“
1

|Gn|
ÿ

µDλ
µ1ąn´t

Hµλ `
ÿ

µDλ
µ1ąn´t

Hµλ

ÿ

pnqBκDµ

Kκµ xw,ψ
X´1ÞÑκy,(6.8)

using that |Gn| xw,ψX´1ÞÑpnqy “ 1 by the assumed properties of w given in Proposi-

tion 6.1 and Kpnqµ “ 1 for each partition µ of n. We first show that the first sum is

zero. We have

(6.9)
ÿ

µDλ
µ1ąn´t

Hµλ “
ÿ

µDλ

KpnqµHµλ ´
ÿ

µDλ

Kpn´t,tqµHµλ,

using that λ1 “ n´ t and that, for each partition µ of n, we have

Kpn´t,tqµ “

#

1 for µ1 “ n´ t

0 for µ1 ą n´ t.
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It is readily verified that

(6.10)
ÿ

µDλ

KκµHµλ “ δκλ.

Since λ is neither pnq nor pn ´ t, tq, we conclude that (6.9) equals zero. Hence (6.8)

becomes

(6.11) xw,ψX´1ÞÑλy “
ÿ

µDλ
µ1ąn´t

Hµλ

ÿ

pnqBκDµ

Kκµ xw,ψ
X´1ÞÑκy.

By the assumed properties of w given in Proposition 6.1, the inner summand is

nonzero only when κ “ pn ´ s, sq for some s satisfying 1 ď s ď t ´ 1. In particular,

for κ of this form, Proposition 6.1 and (6.3) give

|Gn| |xw,ψX´1ÞÑκy| “

“

n
s

‰

q
´
“

n
s´1

‰

q
“

n
t

‰

q
´ 1

ď

“

n
t´1

‰

q
“

n
t

‰

q

“
qt ´ 1

qn´t`1 ´ 1
ď
q2t´1

qn
.

By Lemma 4.4 the Kostka numbers Kκµ occuring in (6.11) are independent of n and

it is readily verified from (6.10) that the numbers Hµλ occuring in (6.11) are also

independent of n. Moreover the number of summands in (6.11) is also independent

of n. From Lemma 7.2, to be stated and proved in Section 7, we have ψX´1ÞÑλp1q ě

δt´1 q
nt for some constant δt´1 only depending on t. Hence there is a constant ct,

depending only on t, such that

|Gn|
ψX´1ÞÑλp1q

|xw,ψX´1 ÞÑλy| ď ct

qnpt`1q
.

Since |ε| ą 1{qnt, this shows that (6.7) holds provided that n is sufficiently large

compared to t. �

Recall that Vλ is the column span of Eλ. Define

Wt “
ÿ

λPΩn
λp1qDpn´t,tq

Vλ.

Now we obtain the following.

Theorem 6.3. Let t be a positive integer. Then, for all sufficiently large n, the

following holds.

(i) Every t-space-intersecting set Y in Gn satisfies

|Y | ď

«

t´1
ź

i“0

pqt ´ qiq

ff«

n´1
ź

i“t

pqn ´ qiq

ff

and, in case of equality, we have 1Y PWt.
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(ii) Every pair of t-space-cross-intersecting sets Y, Z in Gn satisfies

a

|Y | ¨ |Z| ď

«

t´1
ź

i“0

pqt ´ qiq

ff«

n´1
ź

i“t

pqn ´ qiq

ff

and, in case of equality, we have 1Y , 1Z PWt.

Proof. We apply Proposition 3.1 to the graph with adjacency matrix
ÿ

σPΩnXΣďt´1

Aσ

and the |Dσ|-regular spanning subgraphs with adjacency matrix Aσ for those σ oc-

curing in the above set union. Every t-space-intersecting set in Gn is an independent

set in this graph. Let w P RpΩn X Σďt´1q be given by Proposition 6.1 and write

P pλq “
ÿ

σPΩnXΣďt´1

wpσqP pλ, σq.

Proposition 6.1 and Lemmas 5.2 and 6.2 imply that, for all sufficiently large n, we

have

P pλq “

#

1 for λp1q “ pnq

ε for λp1q “ pn´ s, sq with 1 ď s ď t

and |P pλq| ă |ε| for λp1q ‰ pn ´ s, sq with some s satisfying 0 ď s ď t. Hence,

writing λ0 for X ´ 1 ÞÑ pnq, we have P pλ0q “ 1 and

ε “ min
λ‰λ0

P pλq and |ε| “ max
λ‰λ0

|P pλq|.

Then the required result follows from Proposition 3.1 and the decomposition of RpGnq
given in Lemma 3.3. �

Our proof of Theorems 1.5 and 1.6 is completed by the following result.

Theorem 6.4. Wt is spanned by the characteristic vectors of cosets of stabilisers of

t-spaces.

Proof. The proof is almost identical to that of Theorem 5.4 with At replaced by the

set of t-spaces and ζt replaced by the permutation character ξX´1ÞÑpn´t,tq of t-spaces

and the decomposition of ζt replaced by the decomposition given in (6.1). �

7. Estimates on conjugacy class sizes and character degrees

In this section we provide bounds on the size of certain conjugacy classes and de-

grees of certain irreducible characters of Gn, which are used in the proof of Lemma 5.2.

Lemma 7.1. Let n and t be positive integers satisfying n ą 2t and let σ P Σďt. Then

we have
|Gn|
|Cσ|

ď qt
5
qn.
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Proof. From Lemma 2.1 we find that (with the same notation as in Lemma 2.1)

(7.1)
|Gn|
|Cσ|

ď
ź

fPΦ

|σpfq|
ź

i“1

q|f | sipσpfq
1qmipσpfqq.

Since σ P Σďt and t ă n{2, there is exactly one polynomial h P Φ of degree at

least n ´ t in the support of σ. This polynomial must satisfy σphq “ p1q and the

corresponding factor in (7.1) is at most qn. There are at most t other polynomials in

the support of σ. Each such polynomial f has degree at most t and satisfies |σpfq| ď t

and hence the corresponding factor in (7.1) has a crude upper bound of qt
4
. As there

are at most t such factors, the proof is completed. �

Lemma 7.2. Let t be a positive integer. Then there is a constant δt such that, for

all sufficiently large n and for all λ P ΛnzΠďt, we have

χλp1q ě δt q
npt`1q.

Proof. Let λ P ΛnzΠďt. Using elementary calculus we find that

1´ x ě 4´x for 0 ď x ď 1{2

and therefore
śn
i“1pq

i ´ 1q

q
1
2
npn`1q

“

n
ź

i“1

ˆ

1´
1

qi

˙

ě

n
ź

i“1

ˆ

1´
1

2i

˙

ě

n
ź

i“1

4´1{2i ě

8
ź

i“1

4´1{2i “
1

4
.

Substitute into (2.14) of Lemma 2.2 to give

(7.2)
1

χλp1q
ď 4qNpλq´Mpλq´

1
2
npn`1q,

where

Npλq “
ÿ

fPΦ

|f |
ÿ

pi,jqPλpfq

hi,jpλpfqq,

Mpλq “
ÿ

fPΦ

|f | bpλpfqq

and b and hi,j are as in Lemma 2.2. Note that for each partition λ, we have

(7.3)
ÿ

pi,jqPλ

hi,jpλq ď

|λ|
ÿ

k“1

k “
1

2
|λ|p|λ|` 1q.

First assume that there exists a polynomial h P Φ such that |h| “ 1 and λphq11 ě n´t.

In this case we have

Mpλq ě bpλphqq ě
n´t´1
ÿ

k“1

k “
1

2
pn´ tqpn´ t´ 1q
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and by (7.3)

Npλq ď
1

2

ÿ

fPΦ

|f ||λpfq|p|λpfq|` 1q

ď
n` 1

2

ÿ

fPΦ

|f ||λpfq|

“
npn` 1q

2
.

Therefore (7.2) implies that

1

χλp1q
ď 4q´

1
2
pn´tqpn´t´1q,

so that we have χλp1q ě qnpt`1q for all sufficiently large n by very crude estimates.

Hence we can assume that λpfq11 ď n ´ t ´ 1 and λpfq1 ď n ´ t ´ 1 for all f P Φ

satisfying |f | “ 1. Note that the second assumption is implied by the hypothesis

λ R Πďt. In what follows we use the trivial bound Mpλq ě 0. We distinguish two

cases.

In the first case we assume that |λpfq| ď n´ t´ 1 for all f P Φ satisfying |f | “ 1.

Let ` be the maximum of |λpfq| over all f P Φ satisfying |f | “ 1, hence ` ď n´ t´ 1.

By (7.3) we have

Npλq ď
1

2

ÿ

fPΦ

|f ||λpfq|p|λpfq|` 1q

“
n

2
`

1

2

ÿ

fPΦ

|f ||λpfq|2.

If ` ď n{2, then we have |λpfq| ď n{2 for all f P Φ and so Npλq ď n2{4 ` n{2.

From (7.2) we then find that χλp1q ě qnpt`1q for all sufficiently large n, again by very

crude estimates. If ` ą n{2, then

Npλq ď
1

2
pn` `2 ` pn´ `q2q

ď
1

2
pn` pn´ t´ 1q2 ` pt` 1q2q

“
n2 ` n

2
´ npt` 1q ` pt` 1q2,

where we have used that x2 ` pn ´ xq2 is increasing for x ě n{2. Hence in this case

we obtain 1{χλp1q ď 4q´npt`1q`pt`1q2 by (7.2).

In the remaining case we assume that there exists h P Φ such that |h| “ 1 and

|λphq| ě n´t. Recall that we also assume that λphq1 ď n´t´1 and λphq11 ď n´t´1.

Since Npλq depends only on the hook lengths of λpfq for f P Φ, we may replace λphq

by its conjugate λphq1. Assuming that n is sufficiently large, namely n ě pt` 2q2, we

have λphq1 ě t ` 2 or λphq11 ě t ` 2 and we assume without loss of generality that
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λphq1 ě t`2. Write λphq1 “ n´r, so that our assumptions imply t`1 ď r ď n´t´2.

Then, writing s “ |λphq|, there exist nonnegative integers cj satisfying

n´r
ÿ

j“1

h1jpλphqq “
n´r
ÿ

j“1

pj ` cjq, where
n´r
ÿ

j“1

cj “ s´ pn´ rq.

Hence
n´r
ÿ

j“1

h1jpλphqq “

ˆ

n´ r ` 1

2

˙

` ps´ n` rq.

Application of (7.3) with λ “ pλphq2, λphq3, . . . q gives

ÿ

pi,jqPλphq

hi,jpλphqq ď

ˆ

s´ n` r ` 1

2

˙

`

ˆ

n´ r ` 1

2

˙

` ps´ n` rq

“
s2

2
`

3s

2
` n2 ´ sn´ n` rpr ´ p2n´ s´ 1qq

ď
s2

2
`

3s

2
` n2 ´ sn´ n` pt` 1qppt` 1q ´ p2n´ s´ 1qq,

since the term depending on r is maximised for r “ t` 1 over the interval rt` 1, n´

t´ 2s. This last expression equals

s

2
`

1

2
sps´ 2pn´ t´ 2qq ` n2 ´ n` pt` 1qppt` 1q ´ p2n´ 1qq.

The second summand is increasing for s ě n´t and so is at most 1
2npn´2pn´t´2qq.

Hence we obtain
ÿ

pi,jqPλphq

hi,jpλphqq ď
s

2
`
n2

2
´ npt` 1q ` pt` 1qpt` 2q.

Invoking (7.3) once more, we obtain

Npλq ď
ÿ

pi,jqPλphq

hij `
1

2

ÿ

fPΦ
f‰h

|f ||λpfq|p|λpfq|` 1q.

We have
s

2
`

1

2

ÿ

fPΦ
f‰h

|f ||λpfq| “ 1

2

ÿ

fPΦ

|f ||λpfq| “ n

2

and
1

2

ÿ

fPΦ
f‰h

|f ||λpfq|2 ď 1

2

ˆ

ÿ

fPΦ
f‰h

|f ||λpfq|
˙2

ď
t2

2
.

Collecting all terms, we find that

Npλq ď
npn` 1q

2
´ npt` 1q ` pt` 1qpt` 2q `

t2

2
.
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From (7.2) we then obtain

1

χλp1q
ď 4q´npt`1q`pt`1qpt`2q` 1

2
t2 ,

which completes the proof. �
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[9] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math.

Oxford Ser. (2) 12 (1961), 313–320.

[10] P. Frankl and M. Deza, On the maximum number of permutations with given maximal or minimal

distance, J. Combin. Theory Ser. A 22 (1977), no. 3, 352–360.

[11] S. I. Gelfand, Representations of the full linear group over a finite field, Mat. Sb. (N.S.) 83

(125) (1970), 15–41.

[12] Ch. Godsil and K. Meagher, A new proof of the Erdős-Ko-Rado theorem for intersecting families
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