
EXISTENCE OF SMALL ORDERED ORTHOGONAL ARRAYS

KAI-UWE SCHMIDT AND CHARLENEWEIß

Abstract. We show that there exist ordered orthogonal arrays, whose
sizes deviate from the Rao bound by a factor that is polynomial in the
parameters of the ordered orthogonal array. The proof is nonconstructive
and based on a probabilistic method due to Kuperberg, Lovett and Peled.

1. Introduction

A t-(q, n, λ) orthogonal array is an M × n array on q symbols such that
every M × t subarray contains each t-tuple on q symbols exactly λ times
as a row. The parameter t is called the strength of the orthogonal array.
These combinatorial objectswere introduced in the 1940s and nowhave var-
ious applications, for example in statistics, coding theory, cryptography, and
software testing. We refer to [3] for background on orthogonal arrays and
their applications. The complete set of n-tuples on q symbols is a t-(q, n, λ)

orthogonal array for every strength t. Therefore one is interested in the ex-
istence of orthogonal arrays with a fixed strength t having as few rows as
possible.

Ordered orthogonal arrays generalise orthogonal arrays and were inde-
pendently introduced by Lawrence [5] andMullen and Schmid [8] in 1996.
A t-(q, n, r, λ) ordered orthogonal array is an M× nr array on q symbols, where
the nr columns are divided into n blocks containing r ordered columns
such that for every n-tuple (t1, t2, . . . , tn) of integers summing up to t with
0 ≤ ti ≤ r, the rows of the M× t subarray consisting of the first t1 columns
of the first block, the first t2 columns of the second block and so on, contain
every t-tuple exactly λ times as a row. Note that M = λqt. We often say that
M is the size of the array. An example for a 2-(2, 2, 2, 1) ordered orthogonal
array is

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 1

.
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Observe that this is not an orthogonal array of strength 2 since in the sub-
array consisting of the second and fourth column, the tuples 01 and 10 do
not occur as rows.

Again, ordered orthogonal arrays have numerous applications, in partic-
ular in coding theory and cryptography. Most notably, ordered orthogonal
arrays are closely related to (t, m, s)-nets, which are of great significance in
numerical integration, in the sense that a (t, m, s)-net in base q exists if and
only if an (m− t)-(q, s, m− t, qt) ordered orthogonal array exists [5], [8].

Similarly to orthogonal arrays, one is interested in having as few rows
as possible. Apart from using (t, m, s)-nets (which produce t-(q, n, t, λ) or-
dered orthogonal arrays), only a few constructions for ordered orthogonal
arrays are known, see [11], [12], [1], [9], for example. These constructions
produce MDS-like codes, namely optimal t-(q, n, r, 1) ordered orthogonal
arrays of size qt in the case that q is a prime power satisfying q ≥ n− 1. For
r = 1, they are MDS codes, hence optimal t-(q, n, 1) orthogonal arrays.

Let N(q, n, t) be the minimum number M such that a t-(q, n, λ) orthogo-
nal array of size M exists for some λ. Define N(q, n, r, t) accordingly for or-
dered orthogonal arrays. Every t-(q, n, r, λ) ordered orthogonal array gives
a t-(q, n, λ) orthogonal array by only choosing the first column in every
block of the ordered orthogonal array. On the other hand, every t-(q, nr, λ)

orthogonal array gives a t-(q, n, r, λ) ordered orthogonal array by dividing
the nr columns into r blocks each of size n. Hence we have

N(q, n, t) ≤ N(q, n, r, t) ≤ N(q, nr, t). (1)

Ourmain result is that, roughly speaking, the lower bound is more accurate
than the upper bound if n is large compared to t. A famous lower bound
for N(q, n, t) is given by the Rao bound [10], which implies

( cqn
t

)t/2
≤ N(q, n, t) and

( cqnr
t

)t/2
≤ N(q, nr, t),

where c > 0 is a universal constant independent of all other parameters.
This shows in particular that

N(q, n, r, t) ≥
( cqn

t

)t/2
. (2)

We now state our main result.
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Theorem 1. For all integers q, n, r, t satisfying q ≥ 2 and 1 ≤ t ≤ nr, there exists
a t-(q, n, r, λ) ordered orthogonal array Y such that

|Y| ≤
(

cq(n + t)
t

)ct

(3)

for some universal constant c > 0 independent of all other parameters.

We note that the lower bound (2) has been strengthened by Martin and
Stinson [7], [6]. However this strengthened version involves quite compli-
cated expressions and it is unclear as to whether this strengthened version
is good enough to match the upper bound (3) more accurately in the case
that t is large compared to n.

We shall deduce Theorem 1 from a landmark result byKuperberg, Lovett,
and Peled [4], which can be used to establish the existence of regular com-
binatorial structures. Their proof is based on probabilistic arguments and
is therefore nonconstructive. The theorem was applied in [4] to show that
nontrivial t-designs, orthogonal arrays of strength t, and t-wise permuta-
tions exist for all t. The so-called KLP theorem has been proved to be pow-
erful in various other contexts. For example, Fazeli, Lovett, and Vardy [2]
used this result to prove the existence of nontrivial q-analogs of t-designs
for all t.

In fact it follows from (1) and [4] that

N(q, n, r, t) ≤
( cqnr

t

)ct

for some universal constant c > 0. We shall strengthen this result in order
to prove Theorem 1. To do so, we first recall the KLP theorem in the next
section and then give a proof of Theorem 1 in Section 3.

2. The KLP theorem

In this section we recall the main theorem of [4]. Let X be a finite set and
let V be a Q-linear subspace of functions f : X → Q. We are interested in
subsets Y of X satisfying

1
|Y| ∑

x∈Y
f (x) =

1
|X| ∑

x∈X
f (x) for all f ∈ V. (4)

An integer basis of V is a basis of V in which all elements are integer-valued
functions. Let {φa : a ∈ F} be an integer basis of V, where F is an index
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set. Then a subset Y of X satisfies (4) if and only if
1
|Y| ∑

x∈Y
φa(x) =

1
|X| ∑

x∈X
φa(x) for all a ∈ F . (5)

The KLP theorem guarantees the existence of small subsets Y of X with this
property, once the vector space satisfies five conditions. These conditions
are recalled first.

Conditions.
(C1) Constant Function. All constant functions belong toV, whichmeans

that every such function can be written as a rational linear combina-
tion of the basis functions φa with a ∈ F .

(C2) Symmetry. Apermutation π : X → X is called a symmetry ofV if φa ◦
π lies in V for all a ∈ F . The set of symmetries of V forms a group
called the symmetry group of V. The symmetry condition requires
that the symmetry group acts transitively on X, which means that
for all x1, x2 ∈ X, there exists a symmetry π such that x1 = π(x2).

(C3) Divisibility. There exists a positive integer c1 such that, for all a ∈ F ,
there exists n ∈ ZX (with n = (nx)x∈X) satisfying

c1

|X| ∑
x∈X

φa(x) = ∑
x∈X

nxφa(x) for every a ∈ F .

The smallest positive integer c1 for which this identity holds is called
the divisibility constant of V.

(C4) Boundedness of V. The `∞-norm of a function g : X → Q is given
by

‖g‖∞ = max
x∈X
|g(x)|.

The vector space V has to be bounded in the sense that there exists a
positive integer c2 such that V has a c2-bounded integer basis in `∞.

(C5) Boundedness of V⊥. The `1-norm of a function g : X → Q is given
by

‖g‖1 = ∑
x∈X
|g(x)|.

The orthogonal complement

V⊥ =

{
g : X → Q : ∑

x∈X
f (x)g(x) = 0 for all f ∈ V

}
of V has to be bounded in the sense that V⊥ has a c3-bounded integer
basis in `1.



EXISTENCE OF SMALL ORDERED ORTHOGONAL ARRAYS 5

We can now state the KLP theorem.

KLP theorem ([4, Theorem 2.4]). Let X be a finite set and let V be a Q-
linear subspace of functions f : X → Q satisfying the conditions (C1)–(C5)
with the corresponding constants c1, c2, c3. Let N be an integral multiple
of c1 with

min(N, |X| − N) ≥ C c2c2
3(dim V)6 log(2c3 dim V)6,

where C > 0 is a constant. Then there exists a subset Y of X of size |Y| = N
such that

1
|Y| ∑

x∈Y
f (x) =

1
|X| ∑

x∈X
f (x) for all f ∈ V.

We close this section with recalling a useful criterion for the verification
of (C5) from [4]. An integer basis {φa : a ∈ F} of V is locally decodable if
there exist functions γa : X → Z such that

∑
x∈X

γa(x)φa′(x) = mδa,a′ for all a, a′ ∈ F (6)

for some m ∈ Z, where δa,a′ denotes the Kronecker δ-function. Note that
{γa : a ∈ F} is necessarily an integer basis of V. If this basis is c4-bounded
in `1, then we say that {φa : a ∈ F} is locally decodable with bound c4.

Lemma 2 ([4, Claim 3.2]). Suppose that {φa : a ∈ F} is a c2-bounded integer
basis in `∞ of V that is locally decodable with bound c4. Then V⊥ has a c3-bounded
integer basis in `1 with c3 = 2c2c4|F |.

3. Proof of Theorem 1

In this section we prove Theorem 1 using the KLP theorem. Not sur-
prisingly, our proof proceeds along similar lines as the proof given in [4]
for orthogonal arrays. We start by defining an ordered orthogonal array in
the framework of the KLP theorem and specifying the underlying vector
space V. We then show that V satisfies the conditions (C1)–(C5) with suit-
able constants, which establishes the existence of sufficiently small ordered
orthogonal arrays.

Henceforth we denote by [m] the set {1, 2, . . . , m}. Next we define the
set X, the index set F , and the vector space V. Let q, n, r, t be integers sat-
isfying n, r ≥ 1, q ≥ 2, and 1 ≤ t ≤ nr. Let X be the set of all functions
[nr] → [q]. We partition [nr] into n blocks of size r containing subsequent
numbers and let S be the family of t-subsets of [nr] containing ti subsequent
numbers from the i-th block, where t1, t2, . . . , tr ∈ {0, 1, . . . , r} are integers
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summing up to t. Let F be the set of functions S→ [q] with S ∈ S and, for
a ∈ F with a : S→ [q], define φa : X → Q by

φa(x) =

1 if a(i) = x(i) for all i ∈ S,
0 otherwise.

Finally, let V be the Q-span of {φa : a ∈ F}. Now a subset Y of X is a
t-(q, n, r, λ) ordered orthogonal array if and only if (5) holds. Note that

|Y|
|X| ∑

x∈X
φa(x) =

|Y|
qt = λ.

In what follows we shall show that V satisfies the conditions (C1)–(C5)
with suitable constants and then deduce Theorem 1 from the KLP theorem.

(C1) Constant Function. For each x ∈ X, the sum

∑
a∈F

φa(x) = |{a ∈ F : a(i) = x(i) for all i ∈ S}| (7)

is the cardinality of S since the image of a is fixed by the image of x. This
implies

1
|S| ∑

a∈F
φa(x) = 1

for each x ∈ X and hence V contains the constant function.

(C2) Symmetry. For each x ∈ X, define the permutation πx : X → X by

πx(b) = x + b,

where x + b is the mapping in X that satisfies (x + b)(i) ≡ x(i) + b(i)
(mod q) for all i ∈ [nr]. Then {πx : x ∈ X} is a group that acts transi-
tively on X. We now show that this group is a subgroup of the symmetry
group of V, which shows that the symmetry condition is satisfied. For each
b ∈ X and each a ∈ F with a : S→ [q], we have

(φa ◦ πx) (b) = φa(x + b) = φa′(b),

where a′ ∈ F is the mapping S → [q] that satisfies a′(i) ≡ a(i) − x(i)
(mod q) for all i ∈ S. Therefore the function φa ◦ πx lies in V, as required.

(C4) Boundedness of V. The set {φa : a ∈ F} spans V and consists of
integer-valued functions that are 1-bounded in `∞. Hence there exists a c2-
bounded integer basis of V with c2 = 1.
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(C5) Boundedness of V⊥. We shall show that V has a locally decodable in-
teger basis with bound 2t. Lemma 2 then implies that V⊥ has a c3-bounded
integer basis in `1 for c3 = 2t+1|F |.

Recall that a ∈ F is a function S → [q] for some t-set S ∈ S . Instead
of taking the whole set S as the domain of a, we now allow subsets of S.
Moreover these subsets are now only mapped to [q− 1] instead of [q]. More
formally, define

S ′ =
⋃

S∈S

⋃
T⊆S

T and F ′ = {T → [q− 1] : T ∈ S ′}.

Note that, for each b ∈ F ′, there exists a ∈ F that coincides with b if the
domain of a is restricted to that of b.

First we will show that V is spanned by {φb : b ∈ F ′}.

Lemma 3. The set {φb : b ∈ F ′} spans V.

Proof. We first show that every function φb with b ∈ F ′ lies in V. To do so,
let b ∈ F ′ with b : T → [q− 1] for some T ∈ S ′ and choose some S ∈ S such
that T ⊆ S. Consider the set M of all mappings a : S → [q] that coincide
with b when their domains are restricted to T. Then, for every x ∈ X with
φb(x) = 1, there is exactly one element a ∈ M with φa(x) = 1. Moreover, if
φb(x) = 0, then φa(x) = 0 for all a ∈ M. Hence we have

φb = ∑
a∈M

φa,

which belongs to V, as required.
Now choose T ∈ S ′ and a : T → [q] and note that a ∈ F if |T| = t. We

show that φa is in the span of {φb : b ∈ F ′}. We proceed with an induction
on the number c of elements in [nr]mapped to q under a, with the base case
being c = 0. Suppose now that c is nonzero. Then there exists i0 ∈ T with
a(i0) = q. For each k ∈ [q− 1], define ak : T → [q] by

ak(i) =

a(i) for i 6= i0
k for i = i0

and let a′ be the mapping a restricted to T \ {i0}. Then we have

φa = φa′ −
q−1

∑
k=1

φak .

By the induction hypothesis, the right-hand side is in the span of {φb : b ∈
F ′}, which completes the proof. �
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For the boundedness of V⊥, it remains to prove that {φb : b ∈ F ′} is
locally decodable, from which we can also deduce that this set is linearly
independent. For x ∈ X, let φ(x) be the element of ZF

′ with entries φb(x).
We will also show that the lattice spanned by the vectors {φ(x) : x ∈ X}
equals ZF

′ . This property will be helpful later to determine the divisibility
constant of V.

Lemma 4. The set {φb : b ∈ F ′} is a locally decodable basis for V with bound 2t.
Moreover we have

ZF
′
=

{
∑

x∈X
nxφ(x) : nx ∈ Z

}
. (8)

Proof. For a : R→ [q− 1] and b : T → [q− 1] in F ′ write a � b if R ⊆ T and
a(i) = b(i) for all i ∈ R. This defines a partial order on F ′.

We extend eachmapping b : T → [q− 1] inF ′ to amapping xb : [nr]→ [q]
in X via

xb(i) =

b(i) for i ∈ T,

q otherwise.

For a, b ∈ F ′, we then have φa(xb) = 1a�b, where 1A is the indicator of an
event A. For each b : T → [q− 1] in F ′, we define γb : X → Z by

γb(x) =

(−1)|T|−|S| if x = xc for some c : S→ [q− 1] in F ′ with c � b,

0 otherwise.

Next we show that the mappings γb satisfy (6) with m = 1. Note that
each x ∈ X with γb(x) 6= 0 corresponds to exactly one c ∈ F ′ with c � b.
Hence, for all a, b ∈ F , we have

∑
x∈X

γb(x)φa(x) = ∑
c�b

γb(xc)φa(xc)

= ∑
c�b

γb(xc)1a�c

= 1a�b ∑
a�c�b

γb(xc).

Let a, c, b have domains R, S, T. Then the summand in the latter sum equals
(−1)|T|−|S| and the condition a � c � b means that R ⊆ S ⊆ T and the
image of S under c is fixed by the image of S under b. Hence the mappings
c ∈ F ′ satisfying a � c � b are in one-to-one correspondence with sets S
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satisfying R ⊆ S ⊆ T. There are exactly (|T|−|R|k ) ways to choose such a
subset S with |T| − k elements and therefore we have

∑
x∈X

γb(x)φa(x) = 1a�b

|T|−|R|

∑
k=0

(−1)k
(
|T| − |R|

k

)
= 1a�b · 1|T|=|R|
= δa,b. (9)

This establishes (6) for m = 1. Let φ and γ be the X × F ′ matrices with
φx,b = φb(x) and γx,b = γb(x), respectively. Then (9) implies that γTφ is
the identity matrix and therefore φ has full rank. Together with Lemma 3
it follows that {φb : b ∈ F ′} is a basis for V. Since (6) holds, this basis is
locally decodable.

To obtain a bound for the local decodability, note that for each b ∈ F ′, we
have

‖γb‖1 = ∑
x∈X

∣∣γb(x)
∣∣ = |{x ∈ X : x = xc for some c � b}|.

If T is the domain of b, then this number is just the number of subsets of T,
namely 2|T|. Since |T| ≤ t, this shows that {φb : b ∈ F ′} is a locally decod-
able basis for V with bound 2t.

To prove the second statement of the lemma, note that ZF
′ is equipped

with the standard basis {eb : b ∈ F ′}, where eb
a = δa,b for all a, b ∈ F ′.

From (9) we have

∑
x∈X

γb(x)φ(x) = eb,

which establishes the second statement of the lemma. �

Now note that V has a c2-bounded integer basis in `∞ with c2 = 1 and
|F ′| ≤ |F|, which follows since V has a basis of size F ′ and a spanning set
of size F . Hence Lemmas 2 and 4 imply that V⊥ has a c3-bounded integer
basis in `1 with c3 = 2t+1|F |.

(C3) Divisibility. For every b : T → [q− 1] in F ′, we have

1
|X| ∑

x∈X
φb(x) =

1
|X| |{x ∈ X : x(i) = b(i) for all i ∈ T}|

=
qnr−|T|

|X| =
1

q|T|
.
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Since |T| ≤ t, the number qt/|X|∑x∈X φb(x) is an integer. From (8) we
conclude that V satisfies the divisibility condition and that the divisibility
constant of V is c1 = qt.

Proof of Theorem 1. We have verified the conditions of the KLP theorem
with the parameters

c1 = qt, c2 = 1, c3 = 2t+1|F |.

Moreover we have dim(V) ≤ |F| and |F | = qt|S|, where

|S| = |{(t1, . . . , tn) : ti ∈ {0, 1, . . . , r},
n

∑
i=1

ti = t}|.

This is the number of r-restricted partitions of t with at most n parts, which
is upper bounded by the number of non-restricted partitions of t with at
most n parts. It is well known and readily verified that this number equals
(n+t−1

t ) and hence, by using the standard bound (m
k ) ≤

( em
k

)k, we obtain

|S| ≤
(

n + t− 1
t

)
≤
(

e(n + t)
t

)t

.

The KLP theorem now implies the existence of an ordered orthogonal ar-
ray Y of strength t satisfying |Y| ≤

( cq(n+t)
t

)ct for some universal constant
c > 0. This proves Theorem 1. �
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