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Abstract. A binary sequence of length n is an n-tuple with elements in

{−1, 1} and its peak sidelobe level is the largest absolute value of its ape-

riodic autocorrelations at nonzero shifts. A classical problem is to find binary
sequences whose peak sidelobe level is small compared to the length of the

sequence. Using known techniques from probabilistic combinatorics, this pa-

per gives a construction for a binary sequence of length n with peak sidelobe

level at most
√

2n log(2n) for every n > 1. This improves the best known

bound for the peak sidelobe level of a family of explicitly constructed binary

sequences, which arises for the family of m-sequences. By numerical analysis
it is argued that the peak sidelobe level of the constructed sequences grows in

fact like order
√
n log logn, and therefore grows strictly more slowly than the

peak sidelobe level of a typical binary sequence.

1. Introduction

Let A = (a0, a1, . . . , an−1) be a binary sequence of length n > 1, namely an
element of {−1, 1}n. The aperiodic autocorrelation at shift u of A is given by

Cu(A) =

n−u−1∑
j=0

ajaj+u for u ∈ {0, 1, . . . , n− 1}.

A classical problem in digital sequence design is to find binary sequences whose
aperiodic autocorrelations (at nonzero shifts) are small in magnitude (see [3], [21],
[4], [5], [18], [11], [6], [15], for example, and [10] for a survey). Accordingly, we
define the peak sidelobe level of A to be

M(A) = max
0<u<n

|Cu(A)|.

By a parity argument, M(A) ≥ 1 for all binary sequences A of length greater
than 1. A Barker sequence is a binary sequence B that satisfies M(B) = 1. Such
sequences exist for lengths 2, 3, 4, 5, 7, 11, and 13. It has been conjectured since at
least 1960 [19] that there is no Barker sequence of length greater than 13. This
conjecture has been proved for odd lengths by Turyn and Storer [20] and for all
even lengths up to 2 · 1030 (see Leung and B. Schmidt [12] for most recent results).

Let µ(n) be the minimum of M(A) taken over all binary sequences A of length n.
Then µ(n) = 1 if and only if there is a Barker sequence of length n. The value µ(n)
can be computed with an apparent time complexity of O(1.4n) [4]. Currently, µ(n)
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is known for all n ≤ 61 and for n = 64 (see Coxson and Russo [5] for most recent
results). Many authors have put considerable computational effort in finding binary
sequences with small peak sidelobe level (see Nunn and Coxson [15], for example),
showing that

µ(n) ≤ 2 for each n ≤ 21,

µ(n) ≤ 3 for each n ≤ 48,

µ(n) ≤ 4 for each n ≤ 82,

µ(n) ≤ 5 for each n ≤ 105.

Turyn conjectured [21, p. 198] that the infimum limit of µ(n) is infinite. It has
also been conjectured by several authors (see Jedwab [9] for historical background)
that there exists a positive constant c such that, for all n > 1 and all binary
sequences A of length n,

n−1∑
u=1

[Cu(A)]2 ≥ cn2.

This is known as the Merit Factor Conjecture and implies that µ(n)/
√
n is bounded

away from 0 as n→∞. More specifically, based on a heuristic argument, Ein-Dor,
Kanter, and Kinzel [7] conjectured that, as n→∞,

µ(n)√
n
→ d, where d = 0.435 . . . .

Mercer [13] proved that the peak sidelobe level of a random binary sequence of
length n is typically not significantly larger than

√
2n log n, thereby improving a

result by Moon and Moser [14]. The author proved that the peak sidelobe level of a
random binary sequence of length n is also typically not significantly smaller than√

2n log n, which improves a result by Alon, Litsyn, and Shpunt [1].

Theorem 1 (Schmidt [17]). Let An be drawn uniformly from {−1, 1}n. Then, as
n→∞,

M(An)√
n log n

→
√

2 in probability.

In view of Theorem 1, it is rather surprising that the currently strongest proven
result for the peak sidelobe level of a specific family of binary sequences grows like
order

√
n log n as n→∞. This result occurs for the family of m-sequences, which

are binary sequences that exist for all lengths of the form 2m − 1 (see Golomb and
Gong [8], for example, for background on m-sequences).

Theorem 2 (Sarwate [16]). Let Y be an m-sequence of length n = 2m − 1. Then

M(Y ) ≤ 1 +
2

π

√
n+ 1 log

(4n

π

)
.

Using known techniques from probabilistic combinatorics, we give a construction
for a binary sequence of length n with peak sidelobe level at most

√
2n log(2n) for

every n > 1. The construction is based on a derandomisation approach (see Alon
and Spencer [2], for example) and can be implemented with O(n2) additions and
O(n2) multiplications. By numerical analysis we argue that the peak sidelobe level
of the constructed sequences grows like order

√
n log log n as n→∞, and therefore

grows strictly more slowly than the peak sidelobe level of a typical binary sequence.



BINARY SEQUENCES WITH SMALL PEAK SIDELOBE LEVEL 3

2. Main Result

We begin with stating the promised construction.

Construction 3. Let n be a positive integer and write θ =
√

(2/n) log(2n). Con-
struct a binary sequence Bn = (b0, b1, . . . , bn−1) of length n recursively by

br = − sign

[
r−1∑
u=1

br−u sinh

(
θ

r−u−1∑
j=0

bjbj+u

)]
,

where, by convention, sign(0) = −1.

Notice that we always have b0 = b1 = 1. The first few nontrivial binary sequences
obtained under Construction 3 are

B3 = (1, 1,−1),

B4 = (1, 1,−1, 1),

B5 = (1, 1,−1, 1, 1),

B6 = (1, 1,−1, 1, 1, 1),

B7 = (1, 1,−1, 1, 1, 1,−1).

The pattern may suggest that Bn is an initial segment of Bn+1, which is however
not the case in general.

The following theorem gives an upper bound on the peak sidelobe level of Bn.

Theorem 4. The binary sequence Bn of length n > 1 obtained under Construc-
tion 3 satisfies

M(Bn) ≤
√

2n log(2n).

Proof. Fix an integer n > 1 and define, for r ∈ {0, 1, . . . , n} and u ∈ {1, 2, . . . , n−1},
the function fu,r : {−1, 1}r → R by

fu,r(x0, x1, . . . , xr−1)

=

2e−θ
2n(cosh θ)n−r cosh

(
θ
r−u−1∑
j=0

xjxj+u

)
for 0 < u ≤ r − 1

2e−θ
2n(cosh θ)n−u for r − 1 ≤ u < n.

Notice that fr−1,r is well defined. Let I[E] be the indicator of an event E (which
equals 1 if E occurs and equals 0 otherwise), and let A = (a0, a1, . . . , an−1) be an
arbitrary binary sequence of length n. Straightforward manipulation gives, for each
u ∈ {1, 2, . . . , n− 1},

I
[
|Cu(A)| >

√
2n log(2n)

]
= I
[
Cu(A) > θn

]
+ I
[
− Cu(A) > θn

]
= I
[
eθCu(A) > eθ

2n
]

+ I
[
e−θCu(A) > eθ

2n
]

< e−θ
2n
(
eθCu(A) + e−θCu(A)

)
= fu,n(a0, a1, . . . , an−1).(1)

Write Bn = (b0, b1, . . . , bn−1). We claim that

(2)

n−1∑
u=1

fu,n(b0, b1, . . . , bn−1) < 1,
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so that by (1),
n−1∑
u=1

I
[
|Cu(Bn)| >

√
2n log(2n)

]
< 1.

Hence, all of the indicators are zero and therefore

|Cu(Bn)| ≤
√

2n log(2n) for each u ∈ {1, 2, . . . , n− 1},
proving the theorem.

It remains to prove the claim (2). We first show that, for u ∈ {1, 2, . . . , n − 1}
and r ∈ {0, 1, . . . , n− 1}, we have

(3) fu,r(x0, x1, . . . , xr−1) = 1
2 fu,r+1(x0, . . . , xr−1, 1) + 1

2 fu,r+1(x0, . . . , xr−1,−1).

This holds trivially for u ≥ r. For u < r, we use

cosh(y + z) + cosh(y − z) = 2 cosh(z) cosh(y)

to conclude

1
2 fu,r+1(x0, . . . , xr−1, 1) + 1

2 fu,r+1(x0, . . . , xr−1,−1)

= 2e−θ
2n(cosh θ)n−r−1 cosh(θ xr−u) cosh

(
θ

r−u−1∑
j=0

xjxj+u

)
= fu,r(x0, x1, . . . , xr−1)

since xr−u ∈ {−1, 1} and cosh is an even function.
Now, since sinh is an odd function, we can rewrite br as

br = − sign

[
r−1∑
u=1

2 sinh(θbr−u) sinh

(
θ

r−u−1∑
j=0

bjbj+u

)]
.

Use

2 sinh(z) sinh(y) = cosh(y + z)− cosh(y − z)
to conclude that br is an x ∈ {−1, 1} that minimises

r−1∑
u=1

cosh

(
θ

r−u−1∑
j=0

bjbj+u + θbr−ux

)
.

We therefore find from (3) that

(4)

n−1∑
u=1

fu,r+1(b0, b1, . . . , br) ≤
n−1∑
u=1

fu,r(b0, b1, . . . , br−1)

for each r ∈ {0, 1, . . . , n− 1}. Using coshx ≤ ex2/2, we have

n−1∑
u=1

fu,0 ≤
n−1∑
u=1

2e−θ
2(n+u)/2

≤ 2(n− 1)e−θ
2n/2

= 1− 1

n

since θ2n = 2 log(2n). The claim (2) then follows by combination with (4) and
induction on r. �
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3. Efficient Implementation

Fix an integer n > 1 and assume the notation used in Construction 3. Define,
for r ∈ {1, 2, . . . , n} and u ∈ {1, 2, . . . , r}, the functions cu,r, su,r : {−1, 1}r → R by

cu,r(x0, x1, . . . , xr−1) = cosh

(
θ

r−u−1∑
j=0

xjxj+u

)

su,r(x0, x1, . . . , xr−1) = sinh

(
θ

r−u−1∑
j=0

xjxj+u

)
.

Assume that b0, . . . , br−1 have been already determined. Since b0 = b1 = 1, we
may also assume that r > 1. We wish to calculate su,r(b0, . . . , br−1) for u ∈
{1, 2, . . . , r − 1}. This can be done recursively as follows. We clearly have

cr−1,r−1(x0, x1, . . . , xr−2) = 1

sr−1,r−1(x0, x1, . . . , xr−2) = 0

for all x0, . . . , xr−2 ∈ {−1, 1}. Suppose cu,r−1(b0, . . . , br−2) and su,r−1(b0, . . . , br−2)
have been already computed for u ∈ {1, 2, . . . , r − 1}. Then, using

cosh(y + z) = cosh(z) cosh(y) + sinh(z) sinh(y)

sinh(y + z) = cosh(z) sinh(y) + sinh(z) cosh(y)

and the fact that cosh is an even function and sinh is an odd function, we have for
u ∈ {1, 2, . . . , r − 1},
cu,r(b0, . . . , br−1) = α cu,r−1(b0, . . . , br−2) + β br−u−1br−1 su,r−1(b0, . . . , br−2)

su,r(b0, . . . , br−1) = α su,r−1(b0, . . . , br−2) + β br−u−1br−1 cu,r−1(b0, . . . , br−2),

where α = cosh θ and β = sinh θ. Hence, except for determining α and β, no values
of cosh or sinh have to be computed, and Construction 3 can be implemented with
O(n2) additions and O(n2) multiplications.

4. A Conjecture

For the binary sequence Bn of length n obtained under Construction 3, we have
computed M(Bn) for n ∈ {1000, 2000, . . . , 106}. The data suggest that M(Bn) is
much smaller than the upper bound given in Theorem 4. Figure 1 compares M(Bn)
with the function

√
n log log n and lends evidence to the following conjecture.

Conjecture 5. Let Bn be the binary sequence of length n obtained under Con-
struction 3. Then there exist positive constants c1 and c2 such that, for all n > 1,

c1
√
n log log n ≤M(Bn) ≤ c2

√
n log log n.

Some examples for small n reveal that, if c2 in Conjecture 5 exists, then c2 must
be strictly greater than 1. It is however conceivable that

lim sup
n→∞

M(Bn)√
n log log n

≤ 1.

The correctness of Conjecture 5 implies that the sequences Bn are exceptional in
the sense that their peak sidelobe level grows strictly more slowly than that of most
binary sequences, as given in Theorem 1. Although we cannot prove Conjecture 5,
in the light of Figure 1, we believe that Construction 3 meets the challenge of
finding binary sequences of arbitrary lengths with small peak sidelobe level.
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Figure 1. The peak sidelobe level of Bn compared to
√
n log log n.
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