NONLINEARITY MEASURES OF RANDOM
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ABSTRACT. The r-th order nonlinearity of a Boolean function is the
minimum number of elements that have to be changed in its truth table
to arrive at a Boolean function of degree at most r. It is shown that
the (suitably normalised) r-th order nonlinearity of a random Boolean
function converges strongly for all 7 > 1. This extends results by Rodier
for r = 1 and by Dib for » = 2. The methods in the present paper
are mostly of elementary combinatorial nature and also lead to simpler
proofs in the cases that r =1 or 2.

1. INTRODUCTION AND RESULTS

Let F5 be a field with two elements. A Boolean function f is a mapping

from F% to Fo and its truth table is the list of values f(x) as x ranges over

5 in some fixed order. Let ‘B,, be the space of Boolean functions on F3.
Every f € B,, can be written uniquely in the form

z : k k
f(w17“"$n) = akhv..,k’n xll ...xnn’
klv"'vk’ﬂe{OJ‘}

where ay, ..k, € Fa. The degree of f is defined to be the algebraic degree of
this polynomial.

The r-th order nonlinearity N,(f) of a Boolean function f is the minimum
number of elements that have to be changed in its truth table to arrive at
the truth table of a Boolean function of degree at most r. We state this
definition more formally as follows. Let RM(r,n) be the set of Boolean
functions in B, of degree at most r (which is known as the Reed-Muller
code of length 2" and order r; see [9, Chapters 13-15], for example) and
define the Hamming distance between f, g € B,, to be

d(f,9) = |{z € Fy : f(z) # g(2)}].

Then the r-th order nonlinearity of f is

N.(f) = gef?ﬁ&m d(f,g).

The nonlinearity of Boolean functions is of significant relevance in cryptogra-
phy since it measures the resistance of a Boolean function against low-degree
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approximation attacks (see [7], for example, and [2] for more background on
the role of Boolean functions in cryptography and error-correcting codes).

Our interest is the distribution of the nonlinearity of Boolean functions.
To this end, let €2 be the set of infinite sequences of elements from Fo and
let B be the space of functions from 2 to Fy. For f € B, we denote the
function given by f(x1,...,2,,0,0,...) by f,, which is in %B,. We endow
B with a probability measure defined by

(1) Pr[fe%:fn:g}:2*2n for all g € %8,, and all n € N.
A basic probabilistic method can be used to show that, if f is drawn from B,
equipped with the probability measure defined by (1), then

2n—1 - Nr n
(2) lim sup 27 = Nelfn)

<1 almost surely.
n—o00 [on—1 (:') log 2

This was essentially proved by Carlet [1, Theorem 1]. The aim of this note is
to prove strong convergence of the normalised r-th order nonlinearity, which
shows that the bound (2) is best possible.

Theorem 1. Let f be drawn at random from B, equipped with the probability
measure defined by (1). Then for all fired r > 1, as n — oo,

Qn_l - Nr‘(fn)
2n=1(") log 2

— 1 almost surely

21 — E[N;(fn)]
27=1(") log 2

— 1.

Using rather subtle Fourier analytic methods due to Haldsz [5], Rodier [13]
proved (3) for r = 1 (see also [11] and [12] for prior results). More precise
estimates on the rate of convergence in this case were given by Litsyn and
Shpunt [8], using different methods. Dib [3] used a more combinatorial
approach to essentially prove (3) for »r = 2. The methods in this paper are
mostly of elementary combinatorial nature and also lead to simpler proofs
of (3) in the cases that r =1 or 2.

A brief outline of the proof of Theorem 1 is given next. With the notation
as in Theorem 1, write Y}, , = 2" — 2d(f,, g) for g € B,, and

Yo = gGlI:{nl\/?(}i,n) Yn’g’
so that Y;, = 2™ — 2N,(f,). We make repeated use of the inequality
2

(5) Pr[|Y, —E[Y,]| > 6] < 2exp (— 7T

) for 6 > 0,

which follows from standard results on concentration of probability mea-
sures (see McDiarmid [10, Lemma 1.2], for example). This shows that Y,
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is concentrated around its expectation. Therefore, the main difficulty is to
prove (4). We do this by proving upper and lower bounds for E[Y,]. The
upper bound is easy, but for the lower bound we need to work harder. The
strategy is as follows. In Section 2, we use a theorem on the weight dis-
tribution of Reed-Muller codes due to Kaufman, Lovett, and Porat [6] to
show that most pairs of functions in RM(r, n) have Hamming distance close
to 271, Combining this with some large deviation estimates in Section 3
then shows that the events

Yog > 1/27H1 (") log 2

are pairwise nearly independent for all g from a large subset of RM(r, n).
This will be the key ingredient to obtain our lower bound for E[Y,]. We
shall complete the proof of Theorem 1 in Section 4.

2. SOME RESULTS ON REED-MULLER CODES

In this section, we show that most pairs of functions in RM(r,n) have
Hamming distance close to 271

The weight of a Boolean function f, denoted by wt(f), is defined to be
its Hamming distance to the zero function. For real x, write

Apn(z) = [{g € RM(r,n) : wi(g) < 2"z}|.

Our starting point is the following asymptotic characterisation of A, ,(z),
which is a special case of a result due to Kaufman, Lovett, and Porat [6].

Lemma 2 ([6, Theorem 3.1]). For allr > 1, there exists a constant K, such

that )
1-6 1\ Krn”
)< (Z
1ea(57) < (5)

for all real & satisfying 0 < § < 1/2.

It should be noted that the case r = 1 is not covered in [6, Theorem 3.1].
Lemma 2 however holds trivially in this case, since all but two functions in
RM(1,7n) have weight 271

We now apply Lemma 2 to prove the main result of this section.

Lemma 3. Let € > 0 be real and let r > 1 be integral. Then, for all
sufficiently large n, there ezists a subset S C RM(r,n) of cardinality at least

21=9() such that

(6) |d(g,h) — 2"_1‘ < 2"_1/(2) for all g,h € S with g # h.

Proof. Let B,,, be the number of functions g in RM(r, n) satisfying
[ wt(g) — 2" = 271/ (7).

Since RM(r,n) contains the nonzero constant function, there is a bijection
between the functions in RM(r, n) of weight w and the functions in RM(r, n)
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of weight 2" — w. Therefore,

2

and so by Lemma 2,

BT‘TL — "
log, ( 2’ > < K,n"!log, <:> <K, (7:) % log, <Z>,

where K, is the same constant as in Lemma 2. Therefore,

n
T

(7) B <2¢(0)
for all sufficiently large n.

Next we construct the set .S iteratively as follows. We take n large enough,
so that the bound (7) for B, , holds. Choose a g € RM(r,n) to be in S and
delete all u € RM(r, n) satisfying

|d(g,u) =277 = 2771/ ().
From (7) it is readily verified that the number of deleted functions is at most

2¢(7). We can continue in this way to choose functions of RM(r,n) to be
in S, while maintaining the property (6), as long as the number of chosen

functions times 1 + 2¢(7) is less than the cardinality of RM(r,n), namely
9l+(1)+-+(7), We can therefore obtain a set S satisfying (6) and
gl+(1)+-+(7) N 2(7)

1+ 92¢ () 7 ee(?)
for all sufficiently large n. O

S| >

3. SOME LARGE DEVIATION ESTIMATES

In this section, we give some estimates for tail probabilities of sums of
independent identically distributed random variables. For a,b € R™, we
denote their scalar product by (a,b).

Lemma 4. Let g and h be elements of {—1,1} and let X be drawn at ran-
dom from {—1,1}", equipped with the uniform probability measure. Write
Y, =(X,g) and Y, = (X, h). Then, for all t;,ts € R,

E [exp(t1Yy + t2Y5)] < exp (3N (8] +13) + tata(g, h)).
Proof. Write X = (X1,...,Xn), & = (91,.--,9~), and h = (hy,...,hy).
Then

N
E [eXp(tlyvg + tQYh)] =E H exp (Xj(tlgj + tghj))
j=1

N
[TE [exp (X;(tig; + tahy))]
j=1
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using that the X;’s are independent. Since the Xj’s take on each of the
values 1 and —1 with probability 1/2, we see that

N

E [exp(t1Yy + t2Y3)] = H cosh(tig; + tah;).
j=1

By comparing the Maclaurin series of cosh(z) and exp(x?/2), we find that
cosh(z) < exp(2?/2). Thus

N
E [exp(t1Yy + t2Y3)] < [ [ exp (3(tag; + t2h)?)
Jj=1

N
1
= exp (2 Z(hgj + tghj)2> ,

j=1
from which the desired bound easily follows. O

We next apply Lemma 4 to vectors g and h whose scalar product is
sufficiently small.

Lemma 5. Let r > 0 be an integer and let g and h be elements of {—1,1}2"
satisfying (g, h)| < 2"/("). Let X be drawn at random from {—1,1}*",
equipped with the uniform probability measure. Write Yy = (X,g), Y}, =

(X,h), and
A =4/271(") log 2.

Pr(Y, > AN Y, > A <4740,

Then

Proof. Writing s = A/2™, an application of Markov’s inequality gives
Pr[Yy > ANY, > A] = Pr [exp(sY,) > exp(sA) Nexp(sY},) > exp(sA)]
E [exp(sYy) exp(sY3))]
[exp(sA)]?

exp(2"s*(L +1/(7)))
[exp(sA)]?

by Lemma 4. This last expression equals 4/ 4(:), as required. ([

We also need the following estimate. (Here and in what follows, we
use o(1) to denote a suitable nonnegative function of n whose limit equals
zero.)

Lemma 6. Let X;,..., Xon be independent random variables taking on each
of =1 and 1 with probability 1/2. Then, for all r > 1, we have, as n — o,

1—-o0(1)

o), 4 (") log 2

Pr [Xl + oo Xon > 4 /20t (:f) log 2} >
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Proof. This is a special case of a normal tail approximation of the distribu-
tion of X 4 -+ 4+ Xon (see Feller [4, Chapter VII, (6.7)], for example). O

4. PROOF OF THEOREM 1

Recall from the introduction that Y, ;, = 2" — 2d(f,, g) for g € B, and

Y, = max Y,
gERM(r,n)
so that Y,, = 2™ — 2N,.(f,). Notice that
(®) Vog = ) (~1)PEH0),
z€Fy

from which we see that Y, ; is a sum of 2" random variables, each taking
each of the values —1 and 1 with probability 1/2.

We shall first prove the second part (4) of the theorem by establishing
lower and upper bounds for E[Y;,]. The first part (3) will then easily follow
from the second part and (5).

To obtain an upper bound for E[Y,], let s € R and invoke Jensen’s in-
equality to find that

< 21+<711)++(:~L) exp(2n7132)
by Lemma 4 with ¢; = s and t3 = 0 using (8). Hence
1 _
BN ] < -1+ () -+ (7)) log2+2" Ls.
Now choose s such that both summands are equal. This gives
(9) E[Y,] < /20 (14 (1) + - + (7)) log2.

Next we derive a lower bound for E[Y;]. From Lemma 3 we see that there
exists a subset S,, C RM(r,n) satisfying

(10) S| = 20720,

(where o(1) is a suitable nonnegative function of n tending to zero) such
that

(11) < 2”/(:}) for all g, h € S,, with g # h.

Z (—1)9@)+h)

z€lfy
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Writing
(12) An = 1/271(7) log 2,
we have

Pr Y, > Ay] > Pr[max Y, 4 > \,]

gE€Sn

1
Z Z Pr [Yn,g 2 )\n] - 5 Z Pr [Yn,g Z )\n N Yn,h Z )\n]
gESn g,hi}fn
g

by the Bonferroni inequality. Lemma 6 gives a lower bound for the prob-
abilities in the first sum and, using (8) and (11), Lemma 5 gives an upper
bound for the probabilities in the second sum. Applying these bounds gives

1—o(1) _1Su? 4

Pr (Y, > A\y] > [Su| - — —.
o) Jar(M10g2 2 4l)

Using (10) and observing that the first term dominates the second term, we
obtain

(13) Pr[Y, > A\, >exp(—o(1) (7).

T

On the other hand, we find from (5) with § = \,, — E[Y;,] that

_ 2
Pr[Y, > \,] <2exp <— W)

whenever E[Y,] < A,,. Comparison with (13) gives E[Y;,]/An, > 1 —0(1) and
combination with (9) gives

(14) lim E[Y,]/An = 1,

n—o0

which proves the second part (4) of the theorem.
To prove the first part (3), we let € > 0 and invoke the triangle inequality
to obtain

Pr[|Y, /A, — 1] > €] < Pr[|Y, —E[Y,]|/An > 3€| +Pr [[E[Y,]/An — 1] > Le].
By (14), the second probability on the right hand side equals zero for all

sufficiently large n, and by (5), the first probability on the right hand side
is at most 227 (/4 (), Hence,

> Pr(|Ya/An— 1] > €] < o0,

n=1
from which and the Borel-Cantelli Lemma we conclude that

lim Y,,/A, =1 almost surely.

n—o0

This proves (3) and completes the proof of the theorem. O
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