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Abstract. The r-th order nonlinearity of a Boolean function is the
minimum number of elements that have to be changed in its truth table
to arrive at a Boolean function of degree at most r. It is shown that
the (suitably normalised) r-th order nonlinearity of a random Boolean
function converges strongly for all r ≥ 1. This extends results by Rodier
for r = 1 and by Dib for r = 2. The methods in the present paper
are mostly of elementary combinatorial nature and also lead to simpler
proofs in the cases that r = 1 or 2.

1. Introduction and Results

Let F2 be a field with two elements. A Boolean function f is a mapping
from Fn2 to F2 and its truth table is the list of values f(x) as x ranges over
Fn2 in some fixed order. Let Bn be the space of Boolean functions on Fn2 .
Every f ∈ Bn can be written uniquely in the form

f(x1, . . . , xn) =
∑

k1,...,kn∈{0,1}

ak1,...,kn x
k1
1 · · ·x

kn
n ,

where ak1,...,kn ∈ F2. The degree of f is defined to be the algebraic degree of
this polynomial.

The r-th order nonlinearity Nr(f) of a Boolean function f is the minimum
number of elements that have to be changed in its truth table to arrive at
the truth table of a Boolean function of degree at most r. We state this
definition more formally as follows. Let RM(r, n) be the set of Boolean
functions in Bn of degree at most r (which is known as the Reed-Muller
code of length 2n and order r; see [9, Chapters 13–15], for example) and
define the Hamming distance between f, g ∈ Bn to be

d(f, g) =
∣∣{x ∈ Fn2 : f(x) 6= g(x)}

∣∣.
Then the r-th order nonlinearity of f is

Nr(f) = min
g∈RM(r,n)

d(f, g).

The nonlinearity of Boolean functions is of significant relevance in cryptogra-
phy since it measures the resistance of a Boolean function against low-degree
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approximation attacks (see [7], for example, and [2] for more background on
the role of Boolean functions in cryptography and error-correcting codes).

Our interest is the distribution of the nonlinearity of Boolean functions.
To this end, let Ω be the set of infinite sequences of elements from F2 and
let B be the space of functions from Ω to F2. For f ∈ B, we denote the
function given by f(x1, . . . , xn, 0, 0, . . . ) by fn, which is in Bn. We endow
B with a probability measure defined by

(1) Pr
[
f ∈ B : fn = g

]
= 2−2

n
for all g ∈ Bn and all n ∈ N.

A basic probabilistic method can be used to show that, if f is drawn from B,
equipped with the probability measure defined by (1), then

(2) lim sup
n→∞

2n−1 −Nr(fn)√
2n−1

(
n
r

)
log 2

≤ 1 almost surely.

This was essentially proved by Carlet [1, Theorem 1]. The aim of this note is
to prove strong convergence of the normalised r-th order nonlinearity, which
shows that the bound (2) is best possible.

Theorem 1. Let f be drawn at random from B, equipped with the probability
measure defined by (1). Then for all fixed r ≥ 1, as n→∞,

(3)
2n−1 −Nr(fn)√

2n−1
(
n
r

)
log 2

→ 1 almost surely

and

(4)
2n−1 − E[Nr(fn)]√

2n−1
(
n
r

)
log 2

→ 1.

Using rather subtle Fourier analytic methods due to Halász [5], Rodier [13]
proved (3) for r = 1 (see also [11] and [12] for prior results). More precise
estimates on the rate of convergence in this case were given by Litsyn and
Shpunt [8], using different methods. Dib [3] used a more combinatorial
approach to essentially prove (3) for r = 2. The methods in this paper are
mostly of elementary combinatorial nature and also lead to simpler proofs
of (3) in the cases that r = 1 or 2.

A brief outline of the proof of Theorem 1 is given next. With the notation
as in Theorem 1, write Yn,g = 2n − 2d(fn, g) for g ∈ Bn and

Yn = max
g∈RM(r,n)

Yn,g,

so that Yn = 2n − 2Nr(fn). We make repeated use of the inequality

(5) Pr
[∣∣Yn − E[Yn]

∣∣ ≥ θ] ≤ 2 exp

(
− θ2

2n+1

)
for θ ≥ 0,

which follows from standard results on concentration of probability mea-
sures (see McDiarmid [10, Lemma 1.2], for example). This shows that Yn
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is concentrated around its expectation. Therefore, the main difficulty is to
prove (4). We do this by proving upper and lower bounds for E[Yn]. The
upper bound is easy, but for the lower bound we need to work harder. The
strategy is as follows. In Section 2, we use a theorem on the weight dis-
tribution of Reed-Muller codes due to Kaufman, Lovett, and Porat [6] to
show that most pairs of functions in RM(r, n) have Hamming distance close
to 2n−1. Combining this with some large deviation estimates in Section 3
then shows that the events

Yn,g ≥
√

2n+1
(
n
r

)
log 2

are pairwise nearly independent for all g from a large subset of RM(r, n).
This will be the key ingredient to obtain our lower bound for E[Yn]. We
shall complete the proof of Theorem 1 in Section 4.

2. Some results on Reed-Muller codes

In this section, we show that most pairs of functions in RM(r, n) have
Hamming distance close to 2n−1.

The weight of a Boolean function f , denoted by wt(f), is defined to be
its Hamming distance to the zero function. For real x, write

Ar,n(x) =
∣∣{g ∈ RM(r, n) : wt(g) ≤ 2nx}

∣∣.
Our starting point is the following asymptotic characterisation of Ar,n(x),
which is a special case of a result due to Kaufman, Lovett, and Porat [6].

Lemma 2 ([6, Theorem 3.1]). For all r ≥ 1, there exists a constant Kr such
that

Ar,n

(
1− δ

2

)
≤
(

1

δ

)Krnr−1

for all real δ satisfying 0 < δ ≤ 1/2.

It should be noted that the case r = 1 is not covered in [6, Theorem 3.1].
Lemma 2 however holds trivially in this case, since all but two functions in
RM(1, n) have weight 2n−1.

We now apply Lemma 2 to prove the main result of this section.

Lemma 3. Let ε > 0 be real and let r ≥ 1 be integral. Then, for all
sufficiently large n, there exists a subset S ⊂ RM(r, n) of cardinality at least

2(1−ε)(
n
r) such that

(6)
∣∣d(g, h)− 2n−1

∣∣ ≤ 2n−1/
(
n
r

)
for all g, h ∈ S with g 6= h.

Proof. Let Br,n be the number of functions g in RM(r, n) satisfying∣∣wt(g)− 2n−1
∣∣ ≥ 2n−1/

(
n
r

)
.

Since RM(r, n) contains the nonzero constant function, there is a bijection
between the functions in RM(r, n) of weight w and the functions in RM(r, n)
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of weight 2n − w. Therefore,

Br,n = 2Ar,n

(
1− 1/

(
n
r

)
2

)
and so by Lemma 2,

log2

(
Br,n

2

)
≤ Krn

r−1 log2

(
n

r

)
≤ Kr

(
n

r

)
rr

n
log2

(
n

r

)
,

where Kr is the same constant as in Lemma 2. Therefore,

(7) Br,n ≤ 2ε (
n
r)

for all sufficiently large n.
Next we construct the set S iteratively as follows. We take n large enough,

so that the bound (7) for Br,n holds. Choose a g ∈ RM(r, n) to be in S and
delete all u ∈ RM(r, n) satisfying∣∣d(g, u)− 2n−1

∣∣ ≥ 2n−1/
(
n
r

)
.

From (7) it is readily verified that the number of deleted functions is at most

2ε (
n
r). We can continue in this way to choose functions of RM(r, n) to be

in S, while maintaining the property (6), as long as the number of chosen

functions times 1 + 2ε (
n
r) is less than the cardinality of RM(r, n), namely

21+(n1)+···+(nr). We can therefore obtain a set S satisfying (6) and

|S| ≥ 21+(n1)+···+(nr)

1 + 2ε (
n
r)

≥ 2(nr)

2ε (
n
r)

for all sufficiently large n. �

3. Some large deviation estimates

In this section, we give some estimates for tail probabilities of sums of
independent identically distributed random variables. For a,b ∈ Rm, we
denote their scalar product by 〈a,b〉.

Lemma 4. Let g and h be elements of {−1, 1}N and let X be drawn at ran-
dom from {−1, 1}N , equipped with the uniform probability measure. Write
Yg = 〈X,g〉 and Yh = 〈X,h〉. Then, for all t1, t2 ∈ R,

E
[

exp(t1Yg + t2Yh)
]
≤ exp

(
1
2N
(
t21 + t22

)
+ t1t2〈g,h〉

)
.

Proof. Write X = (X1, . . . , XN ), g = (g1, . . . , gN ), and h = (h1, . . . , hN ).
Then

E
[

exp(t1Yg + t2Yh)
]

= E

[
N∏
j=1

exp
(
Xj(t1gj + t2hj)

)]

=
N∏
j=1

E
[

exp
(
Xj(t1gj + t2hj)

)]
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using that the Xj ’s are independent. Since the Xj ’s take on each of the
values 1 and −1 with probability 1/2, we see that

E
[

exp(t1Yg + t2Yh)
]

=

N∏
j=1

cosh(t1gj + t2hj).

By comparing the Maclaurin series of cosh(x) and exp(x2/2), we find that
cosh(x) ≤ exp(x2/2). Thus

E
[

exp(t1Yg + t2Yh)
]
≤

N∏
j=1

exp
(
1
2(t1gj + t2hj)

2
)

= exp

(
1

2

N∑
j=1

(t1gj + t2hj)
2

)
,

from which the desired bound easily follows. �

We next apply Lemma 4 to vectors g and h whose scalar product is
sufficiently small.

Lemma 5. Let r ≥ 0 be an integer and let g and h be elements of {−1, 1}2n

satisfying |〈g,h〉| ≤ 2n/
(
n
r

)
. Let X be drawn at random from {−1, 1}2n,

equipped with the uniform probability measure. Write Yg = 〈X,g〉, Yh =
〈X,h〉, and

λ =
√

2n+1
(
n
r

)
log 2.

Then

Pr
[
Yg ≥ λ ∩ Yh ≥ λ

]
≤ 4/4(nr).

Proof. Writing s = λ/2n, an application of Markov’s inequality gives

Pr
[
Yg ≥ λ ∩ Yh ≥ λ

]
= Pr

[
exp(sYg) ≥ exp(sλ) ∩ exp(sYh) ≥ exp(sλ)

]
≤

E
[

exp(sYg) exp(sYh))
]

[exp(sλ)]2

≤
exp(2ns2(1 + 1/

(
n
r

)
))

[exp(sλ)]2

by Lemma 4. This last expression equals 4/4(nr), as required. �

We also need the following estimate. (Here and in what follows, we
use o(1) to denote a suitable nonnegative function of n whose limit equals
zero.)

Lemma 6. Let X1, . . . , X2n be independent random variables taking on each
of −1 and 1 with probability 1/2. Then, for all r ≥ 1, we have, as n→∞,

Pr
[
X1 + · · ·+X2n ≥

√
2n+1

(
n
r

)
log 2

]
≥ 1− o(1)

2(nr)
√

4π
(
n
r

)
log 2

.
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Proof. This is a special case of a normal tail approximation of the distribu-
tion of X1 + · · ·+X2n (see Feller [4, Chapter VII, (6.7)], for example). �

4. Proof of Theorem 1

Recall from the introduction that Yn,g = 2n − 2d(fn, g) for g ∈ Bn and

Yn = max
g∈RM(r,n)

Yn,g,

so that Yn = 2n − 2Nr(fn). Notice that

(8) Yn,g =
∑
x∈Fn

2

(−1)fn(x)+g(x),

from which we see that Yn,g is a sum of 2n random variables, each taking
each of the values −1 and 1 with probability 1/2.

We shall first prove the second part (4) of the theorem by establishing
lower and upper bounds for E[Yn]. The first part (3) will then easily follow
from the second part and (5).

To obtain an upper bound for E[Yn], let s ∈ R and invoke Jensen’s in-
equality to find that

exp(sE[Yn]) ≤ E
[

exp(sYn)
]

= E
[

max
g∈RM(r,n)

exp(sYn,g)
]

≤
∑

g∈RM(r,n)

E
[

exp(sYn,g)
]

≤ 21+(n1)+···+(nr) exp(2n−1s2)

by Lemma 4 with t1 = s and t2 = 0 using (8). Hence

E[Yn] ≤ 1

s

(
1 +

(
n
1

)
+ · · ·+

(
n
r

))
log 2 + 2n−1s.

Now choose s such that both summands are equal. This gives

(9) E[Yn] ≤
√

2n+1
(
1 +

(
n
1

)
+ · · ·+

(
n
r

))
log 2.

Next we derive a lower bound for E[Yn]. From Lemma 3 we see that there
exists a subset Sn ⊂ RM(r, n) satisfying

(10) |Sn| = 2(1−o(1))(
n
r),

(where o(1) is a suitable nonnegative function of n tending to zero) such
that

(11)

∣∣∣∣∣ ∑
x∈Fn

2

(−1)g(x)+h(x)

∣∣∣∣∣ ≤ 2n/
(
n
r

)
for all g, h ∈ Sn with g 6= h.
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Writing

(12) λn =
√

2n+1
(
n
r

)
log 2,

we have

Pr
[
Yn ≥ λn

]
≥ Pr

[
max
g∈Sn

Yn,g ≥ λn
]

≥
∑
g∈Sn

Pr
[
Yn,g ≥ λn

]
− 1

2

∑
g,h∈Sn
g 6=h

Pr
[
Yn,g ≥ λn ∩ Yn,h ≥ λn

]
by the Bonferroni inequality. Lemma 6 gives a lower bound for the prob-
abilities in the first sum and, using (8) and (11), Lemma 5 gives an upper
bound for the probabilities in the second sum. Applying these bounds gives

Pr
[
Yn ≥ λn

]
≥ |Sn| ·

1− o(1)

2(nr)
√

4π
(
n
r

)
log 2

− |Sn|
2

2
· 4

4(nr)
.

Using (10) and observing that the first term dominates the second term, we
obtain

(13) Pr
[
Yn ≥ λn

]
≥ exp

(
− o(1)

(
n
r

))
.

On the other hand, we find from (5) with θ = λn − E[Yn] that

Pr
[
Yn ≥ λn

]
≤ 2 exp

(
− (λn − E[Yn])2

2n+1

)
whenever E[Yn] ≤ λn. Comparison with (13) gives E[Yn]/λn ≥ 1− o(1) and
combination with (9) gives

(14) lim
n→∞

E[Yn]/λn = 1,

which proves the second part (4) of the theorem.
To prove the first part (3), we let ε > 0 and invoke the triangle inequality

to obtain

Pr
[
|Yn/λn−1| > ε

]
≤ Pr

[
|Yn−E[Yn]|/λn > 1

2ε
]

+ Pr
[
|E[Yn]/λn−1| > 1

2ε
]
.

By (14), the second probability on the right hand side equals zero for all
sufficiently large n, and by (5), the first probability on the right hand side

is at most 2 · 2−(ε2/4) (
n
r). Hence,

∞∑
n=1

Pr
[
|Yn/λn − 1| > ε

]
<∞,

from which and the Borel-Cantelli Lemma we conclude that

lim
n→∞

Yn/λn = 1 almost surely.

This proves (3) and completes the proof of the theorem. �
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