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Abstract. The Desarguesian ovoids in the orthogonal polar space Q+(7, q) with q
even have first been introduced by Kantor by examining the 8-dimensional absolutely
irreducible modular representations of PGL(2, q3). We investigate this module for all
prime power values of q. The shortest PGL(2, q3)-orbit O gives the Desarguesian ovoid
in Q+(7, q) for even q and it is known to give a complete partial ovoid of the symplectic
polar space W (7, q) for odd q. We determine the hyperplane sections of O. As a
corollary, we obtain the parameters [q3 + 1, 8, q3 − q2 − q]q and the weight distribution
of the associated Fq-linear code CO and the parameters [q3 + 1, q3 − 7, 5]q of the dual
code C⊥O for q ≥ 4. We also show that both codes CO and C⊥O are length-optimal for
all prime power values of q.

1. Introduction

Let q be a prime power and Fq be the finite field with q elements. An [n, k]q code is a k-
dimensional subspace of Fn

q and an [n, k, d]q code is an [n, k]q code in which the Hamming
weight of every nonzero element of the code is at least d. The weight distribution of such a
code is the tuple (A0, A1, . . . , An), where Ai is the number of codewords in the code with
Hamming weight i. The weight distribution of a linear code contains information that
is important for error detection and correction [15]. Linear codes with few weights have
important applications in cryptography [4, 20], authentication codes [8], and strongly
regular graphs [3]. Determining the weight distribution of a linear code is difficult in
general and often related to interesting challenging problems in number theory [13].

An ovoid in the orthogonal polar space Q+(2n− 1, q) is a subset of qn−1 + 1 pairwise
nonperpendicular points. In the case of Q+(7, q), Kantor [14] constructed two infinite
families ovoids: the unitary ovoid for q ≡ 0, 2 (mod 3) with stabilizer PGU(3, q) and
the Desarguesian ovoid for even q with stabilizer PGL(2, q3). In both cases, the ovoids
correspond to the shortest orbit of the respective group action on PG(7, q). When q is
odd, it is shown in [18] that the shortest PGL(2, q3)-orbit is a complete partial ovoid of
the symplectic polar space W (7, q), that is no two of its points are perpendicular and
the remaining singular points are perpendicular to at least one of its points.

For a set O = {〈v1〉, . . . , 〈vn〉} of n points in PG(7, q), its associated linear code C has
generator matrix whose columns are the vectors v1, . . . , vn. Then C is an [n, k]q code,
where k ≤ 8. It is well known that the weight distribution of C is closely related to the
hyperplane sections of O. In [6], the hyperplane sections of the unitary ovoid have been
studied, giving the weight distributions of the corresponding linear codes. In this paper,
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we study the shortest PGL(2, q3)-orbit and the associated linear code. We determine the
hyperplane sections of the orbit and thus obtain the weight distribution of the associated
linear code, which is an [q3 + 1, 8, q3− q2− q]q code. Moreover we show that this code is
length-optimal, namely no [q3, 8, q3 − q2 − q]q code can exist. We note that, in contrast,
the codes obtained in [6] have parameters [q3+1, 8, q3−q2−2q]q and q has the restriction
q ≡ −1 (mod 6). Also our methods are quite different compared to those in [6].

This paper is organized as follows. In Section 2, we describe the 8-dimensional Fq-
module of PGL(2, q3). In Section 3, we show that the group PGL(2, q3) has four orbits
when acting on PG(7, q) and determine the hyperplane sections with the shortest orbit O.
In Section 4, we apply our results to the linear code associated with O and establish
length-optimality of this code using linear programming.

2. The 8-dimensional PGL(2, q3)-module V

Put V = Fq × Fq3 × Fq3 × Fq. We regard V as an 8-dimensional vector space over Fq

and write its elements in the form (x, y, z, w), where x,w ∈ Fq and y, z ∈ Fq3 . For a
nonzero vector v of V , we write 〈v〉 for the projective point that corresponds to v.

Let Tr and N be the trace and norm function from Fq3 to Fq, respectively. We define
an alternating form A : V × V → Fq by

A ((x, y, z, w), (x′, y′, z′, w′)) = xw′ − wx′ + Tr(zy′ − yz′).
This form is nondegenerate and confers on PG(V ) the structure of a symplectic polar
space W (7, q). We also define a quadratic form Q : V → Fq by

Q ((x, y, z, w)) = xw + Tr(yz).

This form is also nondegenerate and polarizes to A, that is A(u, v) = Q(u+ v)−Q(u)−
Q(v). Hence Q confers on PG(V ) the structure of an orthogonal polar space Q+(7, q).

Define a subset O of PG(V ) by

(2.1) O = {〈(1, x, xq+q2 ,N(x))〉 : x ∈ Fq3} ∪ {〈(0, 0, 0, 1)〉}.
Then O is a Desarguesian ovoid of Q+(7, q) if q is even [14] and is a complete partial

ovoid of W (7, q) if q is odd [18]. Write P (x) = 〈(1, x, xq+q2 ,N(x))〉 for x ∈ Fq3 and
P (∞) = 〈(0, 0, 0, 1)〉. This gives a bijection between the points of O and the points of
the projective line PG(1, q3). It turns out that there is an action of PGL(2, q3) on V
given by

(2.2) g : 〈(x, y, z, w)〉 7→ 〈(x′, y′, z′, w′)〉,
where, writing g = ( a b

c d ),

x′ = N(d)x+ N(c)w + Tr(cdq
2+qy + dcq

2+qz),

y′ = bdq
2+qx+ acq

2+qw + adq
2+qy + bdq

2

cqyq + bdqcq
2

yq
2

+ bcq
2+qz + dqacq

2

zq + dq
2

acqzq
2

,

z′ = dbq
2+qx+ caq

2+qw + cbq
2+qy + dbq

2

aqyq + dbqaq
2

yq
2

+ daq
2+qz + bqcaq

2

zq + bq
2

caqzq
2

,

w′ = N(b)x+ N(a)w + Tr(abq
2+qy + baq

2+qz).

It is routine to check that this action gives an embedding of PGL(2, q3) into GL(V ), which
preserves the form A and, when q is even, also Q, namely we have A(g(u), g(v)) = A(u, v)
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for all u, v ∈ V and, when q is even, Q(g(v)) = Q(v) for all v ∈ V . Moreover, the action
is transitive on O and maps P (x) to P

(
ax+b
cx+d

)
for each x ∈ Fq3 ∪ {∞}.

3. The hyperplane sections of O

Throughout this section, we use the same notation as in Section 2 and denote PGL(2, q3)
by G. We frequently use without reference that

|G| = q3(q3 − 1)(q3 + 1).

In this section, we determine the hyperplane sections of O. Each hyperplane of V can
be written as v⊥ for some nonzero vector v ∈ V , where

v⊥ = {〈x〉 ∈ PG(V ) : A(x, v) = 0}.

Since O is G-invariant, g(v)⊥ ∩ O and v⊥ ∩ O have the same size. Hence, it suffices to
determine all G-orbits of PG(V ) and then compute |v⊥ ∩O| for one representative v of
each orbit.

Throughout this section, we let α be an element of Fq such that x2 − x− α ∈ Fq[x] is
irreducible. The main result of this section is the following.

Theorem 3.1. There are exactly four G-orbits of PG(V ) having the following properties
(where O denotes O1)

orbit size representative v |v⊥ ∩O|
O1 q3 + 1 〈(1, 0, 0, 0)〉 1

O2 q(q2 + q + 1)(q3 + 1) 〈(0, 0, 1, 0)〉 q2 + 1

O3
1
2
q3(q3 + 1)(q − 1) 〈(1, 0, 0, 1)〉 q2 + q + 1

O4
1
2
q3(q3 − 1)(q + 1) 〈(1, 0, α, α)〉 q2 − q + 1

Here is an outline of our strategy to prove Theorem 3.1. First it is routine to check
that

|〈(1, 0, 0, 0)〉⊥ ∩O| = |{x ∈ Fq3 : N(x) = 0}| = 1,(3.1)

|〈(0, 0, 1, 0)〉⊥ ∩O| = 1 + |{x ∈ Fq3 : Tr(x) = 0}| = q2 + 1,(3.2)

|〈(1, 0, 0, 1)〉⊥ ∩O| = |{x ∈ Fq3 : N(x) = 1}| = q2 + q + 1.(3.3)

The fact that O1 is a G-orbit has been mentioned in Section 2. We first calculate the sizes
of O2 and O3 by determining the orders of the stabilizers of chosen orbit representatives.
This allows us to compute |v⊥∩O| for v ∈ O2∪O3. Then, taking O4 to be the complement
of O1∪O2∪O3 in PG(V ), we compute |v⊥∩O| for 〈v〉 ∈ O4 using a counting argument.
For properly chosen elements 〈v〉 ∈ O4, we interpret |v⊥ ∩O| as the number of solutions
to some equations over Fq3 . This latter information is then used to determine the number
of solutions over Fq3 of two equations, which is then used to show that O4 is indeed a
G-orbit.

The remaining part of this section is devoted to the proof of Theorem 3.1.

Lemma 3.2. The orbit O2 that contains 〈(0, 0, 1, 0)〉 has size q(q2 + q + 1)(q3 + 1).
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Proof. Suppose that g ∈ GL(2, q3) stabilizes 〈(0, 0, 1, 0)〉. Writing g = ( a b
c d ), in view

of (2.2) this is the case if and only if there exists λ ∈ F∗q such that

0 = Tr(dcq
2+q),(3.4)

0 = bcq
2+q + dqacq

2

+ dq
2

acq,(3.5)

λ = daq
2+q + bqaq

2

c+ bq
2

aqc,(3.6)

0 = Tr(baq
2+q).

We now distinguish three cases.
Case 1: c = 0. Then the above conditions reduce to Tr(baq

2+q) = 0 and daq
2+q = λ.

Since det(g) 6= 0 we have ad 6= 0. For each pair (a, λ) ∈ F∗q3 × F∗q, there is exactly one

d ∈ Fq3 and q2 elements b ∈ Fq3 such that the two conditions are satisfied. Therefore,
there are q2(q3 − 1)(q − 1) such g ∈ GL(2, q3) and correspondingly q2(q − 1) elements
in G that stabilize 〈(0, 0, 1, 0)〉.

Case 2: cd 6= 0. Since GL(2, q3) is acting on projective points, we may assume that

d = 1. Write u = 1/c. Then (3.4) and (3.5) reduce to Tr(u) = 0 and b = −auq − auq2 .
We deduce that

aq
2+q + bqaq

2

c+ bq
2

aqc =aq
2+q + (−aquq2 − aqu)aq

2

u−1 + (−aq2u− aq2uq)aqu−1

=aq
2+qu−1(u− uq2 − u− u− uq)

=− aq2+qu−1Tr(u) = 0,

which contradicts (3.6).
Case 3: c 6= 0 and d = 0. In this case we deduce that b = 0 from (3.5). It follows that

the left hand side of (3.6) equals zero, a contradiction.
In summary the stabilizer of 〈(0, 0, 1, 0)〉 in G has order q2(q − 1). The claim now

follows from the orbit stabilizer theorem. �

Lemma 3.3. The orbit O3 that contains 〈(1, 0, 0, 1)〉 has size 1
2
q3(q3 + 1)(q − 1).

Proof. Suppose that g ∈ GL(2, q3) stabilizes 〈(0, 0, 1, 0)〉. Writing g = ( a b
c d ), we find

from (2.2) that this is the case if and only if there exists an element λ ∈ F∗q such that

λ = N(c) + N(d),(3.7)

0 = acq
2+q + bdq

2+q,(3.8)

0 = caq
2+q + dbq

2+q,(3.9)

λ = N(a) + N(b).(3.10)

We distinguish three cases.
Case 1: c = 0. In this case we get b = 0 from (3.8) and the fact ad − bc 6= 0.

Then (3.9) holds trivially, and (3.7) and (3.10) reduce to N(d) = N(a) = λ. There are
(q3−1)(q2 +q+1) possible choices for g and hence q2 +q+1 elements of G that stabilize
〈(1, 0, 0, 1)〉.

Case 2: d = 0. This case is similar to the first case. We have a = 0 and find again
that there are q2 + q + 1 elements of G that stabilize 〈(1, 0, 0, 1)〉.
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Case 3: cd 6= 0. Then (3.8) and ad − bc 6= 0 imply that ab 6= 0. Write u = d/c and

m = a/b. Then (3.8) and (3.9) reduce to m = −uq2+q and mq2+q = −u. It follows that

−m = uq
2+q = m(q2+q)(q2+q) = m · N(m)

and therefore N(m) = −1. We thus have

N(a) + N(b) = N(b)(N(m) + 1) = 0,

which contradicts (3.10).
In summary the stabilizer of 〈(1, 0, 0, 1)〉 in G has order 2(q2 + q + 1) and the claim

now follows from the orbit stabiliser theorem �

In what follows we put

O4 = PG(V )\(O1 ∪O2 ∪O3).

We shall now show in a series of lemmas thatO4 is indeed aG-orbit containing 〈(1, 0, α, α)〉.
We begin with determining the hyperplane sections of O corresponding to points of O4.

Lemma 3.4. For each v ∈ O4, we have |v⊥ ∩O| = q2 − q + 1.

Proof. We double count the triples (〈v〉, 〈x〉, 〈y〉), where 〈v〉 ∈ PG(V ) and 〈x〉, 〈y〉 are
distinct points of v⊥ ∩O. On one hand, the number of such triples is∑

v∈PG(V )

|v⊥ ∩O|(|v⊥ ∩O| − 1).

On the other hand, for distinct points 〈x〉, 〈y〉 in O, the size of 〈x, y〉⊥ equals (q6−1)/(q−
1) and thus we thus have∑

v∈PG(V )

|v⊥ ∩O|(|v⊥ ∩O| − 1) = q3(q3 + 1)
q6 − 1

q − 1
.(3.11)

Similarly, by double counting the pairs (〈v〉, 〈x〉), where 〈v〉 ∈ PG(V ) and 〈x〉 ∈ v⊥ ∩O,
we obtain ∑

v∈PG(V )

|v⊥ ∩O| = (q3 + 1)
q7 − 1

q − 1
.(3.12)

By combining (3.11) and (3.12) with (3.1), (3.2), (3.3) and Lemmas 3.2 and 3.3, we find
that ∑

v∈O4

|v⊥ ∩O| = 1

2
q3(q3 − 1)(q3 + 1),

∑
v∈O4

|v⊥ ∩O|2 =
1

2
q3(q3 − 1)(q3 + 1)(q2 − q + 1).

Since O4 has size 1
2
q3(q3 − 1)(q + 1), we deduce that∑

v∈O4

(
|v⊥ ∩O| − (q2 − q + 1)

)2
= 0,

which completes the proof. �
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The next step will be to determine the number of solutions of certain equations, for
which we need the following lemma.

Lemma 3.5. We have 〈(0, 1,−1, 1 + α)〉, 〈(1, α, 0, α2)〉 ∈ O4.

Proof. By (2.1) it is clear that the two points are not in O1. It thus suffices to show that
the two points are not in O2 ∪ O3. We show that this holds for P = 〈(0, 1,−1, 1 + α)〉.
The other point can be treated similarly.

First suppose for a contradiction that P ∈ O2. Then there exists g = ( a b
c d ) in GL(2, q3)

that maps 〈(0, 0, 1, 0)〉 to 〈(0, 1,−1, 1 + α)〉. By (2.2), there exists λ ∈ F∗q such that

0 = Tr(dcq
2+q),(3.13)

λ = bcq
2+q + dqacq

2

+ dq
2

acq,(3.14)

−λ = daq
2+q + bqcaq

2

+ bq
2

caq,(3.15)

λ(1 + α) = Tr(baq
2+q).(3.16)

From (3.14) and (3.15) we deduce that ac 6= 0. Since GL(2, q3) is acting on projective
points, we may assume that c = 1. Then (3.13) takes the form Tr(d) = 0, hence

d+ dq + dq
2

= 0. Then (3.14) reduces to b− ad = λ.
Substitute b = λ+ ad into the left hand side of (3.15) to obtain

daq
2+q + bqaq

2

+ bq
2

aq = daq
2+q + (λ+ aqdq)aq

2

+ (λ+ aq
2

dq
2

)aq

= Tr(d)aq
2+q + λ(aq + aq

2

)

= λ(aq + aq
2

).

Hence (3.15) reduces to λ(aq + aq
2
) = −λ, and so a = 1 + Tr(a). Therefore a ∈ Fq and

a = 1 + 3a. This implies that q is odd and a = −1/2. Using b = λ + ad and Tr(d) = 0,
(3.16) then reduces to

3
4
λ = λ(1 + α).

Hence α = −1/4. But then x2 − x − α = (x − 1/2)2, contradicting the assumed irre-
ducibility of this polynomial. This proves that P 6∈ O2.

Now suppose for a contradiction that P ∈ O3. Then there exists g = ( a b
c d ) in GL(2, q3)

that maps 〈(1, 0, 0, 1)〉 to 〈(0, 1,−1, 1+α)〉. By (2.2), this implies that there exists λ ∈ Fq

such that

0 = N(c) + N(d),(3.17)

λ = acq
2+q + bdq

2+q,(3.18)

−λ = caq
2+q + dbq

2+q,(3.19)

λ(1 + α) = N(a) + N(b).(3.20)

From (3.17) and ad− bc 6= 0 we deduce that cd 6= 0. Again we may assume that c = 1.
Since λq = λ, the same holds for the left hand sides of (3.18) and (3.19).

a+ bdq
2+q = aq + bqdq

2+1,

aq
2+q + dbq

2+q = aq
2+1 + dqbq

2+1.
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After rearranging terms, we have

a− aq = dq
2

(dbq − bdq),(3.21)

aq
2

(a− aq) = bq
2

(dbq − bdq).

from which we find that

(b− ad)q
2

(a− aq)(dbq − bdq) = 0.

From bc− ad 6= 0 and c = 1 and (3.21), we then conclude a− aq = 0 and so a ∈ Fq.
From c = 1 and (3.13) we have N(d) = −1. From (3.18) we have λ = a− b/d and thus

b/d = a− λ is in Fq. Hence

N(b) = N(d) N(b/d) = −(b/d)3.

By adding up both sides of (3.18) and (3.19), we obtain

a+ a2 − (b/d)− (b/d)2 = 0,

or equivalently (a−b/d)(a+b/d+1) = 0. Since a−b/d = λ 6= 0, we have a+b/d+1 = 0.
From (3.20) we then deduce that

α =
N(a)− N(b/d)

a− b/d
− 1

=
a3 − (b/d)3

a− b/d
− 1

= a2 + ab/d+ (b/d)2 − 1

= a(a+ 1),

using a = −b/d− 1. But then x2 − x− α = (x− a)(x+ a+ 1), which again contradicts
the irreducibility of this polynomial. This proves that P 6∈ O3. �

Corollary 3.6. We have

|{x ∈ Fq3 : Tr(x) + Tr(xq
2+q) + 1 + α = 0}| = q2 − q,

|{x ∈ Fq3 : N(x)− Tr(xq
2+q)α− α2 = 0}| = q2 − q + 1.

Proof. For each point P = 〈(v1, v2, v3, v4)〉 in PG(V ), the set P⊥ ∩ (O\{〈(0, 0, 0, 1)〉})
equals

{〈(1, x, xq+q2 ,N(x))〉 : v4 − v1N(x) + Tr(v2x
q2+q − v3x) = 0, x ∈ Fq3}.

By taking P as 〈(0, 1,−1, 1 + α)〉 and 〈(1, α, 0, α2)〉, the result follows from Lemmas 3.4
and 3.5 and the fact that P⊥ contains 〈(0, 0, 0, 1)〉 if and only if v1 = 0. �

Now we show that O4 is indeed a G-orbit.

Lemma 3.7. The set O4 is a G-orbit of size
1
2
(q3(q3−1)(q+1)) and contains 〈(1, 0, α, α)〉.
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Proof. Suppose that g = ( a b
c d ) in GL(2, q3) stabilizes P = 〈(1, 0, α, α)〉. By (2.2), this is

the case if and only if there exists λ ∈ F∗q such that

λ = N(d) + N(c)α + Tr(dcq
2+q)α,(3.22)

0 = acq
2+qα + bdq

2+q + (bcq
2+q + dqacq

2

+ dq
2

acq)α,(3.23)

λα = caq
2+qα + dbq

2+q + (daq
2+q + bqcaq

2

+ bq
2

caq)α,(3.24)

λα = N(b) + N(a)α + Tr(baq
2+q)α.(3.25)

First observe that α 6= −1/4, since otherwise x2−x+1/4 = (x−1/2)2 is not irreducible.
Next we distinguish four cases.

Case 1: c = 0. In this case we have b = 0 from (3.23) and ad − bc 6= 0. Then (3.24)
and (3.25) reduce to (d/a) N(a) = N(a) and so a = d. Hence g is a scalar matrix and
corresponds to the identity in G.

Case 2: d = 0. Then c 6= 0 and we may assume that c = 1. Then (3.23) implies b = −a.
From (3.22) we have λ = α and so α ∈ Fq. From (3.24) we find that N(a) = −aα, which
implies a ∈ Fq. From (3.25) we then find that a = α/(2α + 1) and α = −1 upon taking
norms. To sum up, we obtain a unique element in G for α = −1 and a contradiction
otherwise.

Case 3: cd 6= 0 and dq
2+q + α = 0. Again we may assume that c = 1. Since

N(d) = −αd, we deduce that d ∈ F∗q and so d2 = −α. As remarked earlier this implies
d 6= ±1/2. Now (3.23) reduces to aα(1 + 2d) = 0, so a = 0. The other three equations
then reduce to d = b and (2d−1)(d+ 1) = 0. It follows that d = −1 and α = −1. Hence
we again obtain a unique element in G for α = −1 and a contradiction otherwise.
Case 4: cd(dq

2+q + α) 6= 0. As usual, we may assume that c = 1. Now the conditions
are equivalent to

N(d) + α + Tr(d)α 6= 0,(3.26)

aα + bdq
2+q + (b+ dqa+ dq

2

a)α = 0,(3.27)

aq
2+qα + dbq

2+q + (daq
2+q + bqaq

2

+ bq
2

aq)α = N(b) + N(a)α + Tr(baq
2+q)α,(3.28)

aq
2+qα + dbq

2+q + (daq
2+q + bqaq

2

+ bq
2

aq)α = N(d)α + α2 + Tr(d)α2.(3.29)

Put

u =
1 + dq + dq

2

dq2+q + α
.

Then (3.27) implies that b = −uaα, hence ab 6= 0. Substitute into (3.28) and divide

both sides by aq
2+qα to obtain

1 + d+ (duq
2+q − uq − uq2)α = (1− N(u)α2 − Tr(u)α)a.

We plug in the expression of u to see that the left hand side equals

(3.30)
(d+ d2 − α)(N(d) + α + Tr(d)α)

(dq2+1 + α)(dq+1 + α)

and the right hand side equals

(N(d)− 2αTr(dq
2+q)− αTr(d)− 2α2 − α)(N(d) + α + Tr(d)α)

N(dq2+q + α)
a.
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Hence we have

a =
(dq

2+q + α)(d2 + d− α)

N(d)− 2αTr(dq2+q)− αTr(d)− 2α2 − α
.

We now have expressed a and b in terms of d. From (3.30) we find that (3.29) reduces
to

α(N(d) + α + Tr(d)α)

(
N(d+ d2 − α)

(N(d)− 2αTr(dq2+q)− αTr(d)− 2α2 − α)2
− 1

)
= 0.

Next we deduce that

det(g) = a(d+ uα) =
(d2 + d− α)(N(d) + α + Tr(d)α)

N(d)− 2αTr(dq2+q)− αTr(d)− 2α2 − α
.

Hence det(g) 6= 0 is equivalent to (3.26). Therefore the conditions on g reduce to the

following: d(dq
2+q + α) 6= 0, N(d) + α + Tr(d)α 6= 0, and

N(d+ d2 − α)− (N(d)− 2αTr(dq
2+q)− αTr(d)− 2α2 − α)2 = 0.(3.31)

Put

x = Tr(d) + Tr(dq
2+q) + 1 + α,

y = N(d)− Tr(dq
2+q)α− α2,

so that

y − αx = N(d)− 2αTr(dq
2+q)− αTr(d)− 2α2 − α,

y + αx = N(d) + Tr(d)α + α.

It is tedious but not difficult to check that N(d+d2−α) = (y+αx)2 +xy, so that (3.31)
reduces to (4α + 1)xy = 0, which in turn reduces to xy = 0 using α 6= −1/4. Therefore
the conditions on g reduce to

(3.32) xy = 0, d(dq
2+q + α) 6= 0, N(d) + Tr(d)α + α 6= 0.

First suppose that x = 0. By Corollary 3.6 there q2 − q choices for d such that x = 0.
We now show that the second and third condition in (3.32) are satisfied for these choices
of d unless α = −1 and d = 0 or −1.

It is routine to check that dq
2+q + α = −(1 + d+ dq)(1 + d) and N(d) + Tr(d)α+ α =

−N(1 + d + dq). The condition 1 + d + dq = 0 is equivalent to d = 1 + Tr(d) and
thus to 2d = −1. Hence the second and third conditions in (3.32) are equivalent to
d(1 + d)(2d + 1) 6= 0. If 2d + 1 = 0, then q is odd and d = −1/2 and x = 0 forces
α = −1/4, a contradiction. If d = 0 or d = −1, then α = −1. Hence, for x = 0, we
obtain q2 − q suitable elements of G, unless α = −1, in which case we obtain q2 − q − 2
such elements.

Note that the third condition in (3.32) is equivalent to y+αx 6= 0. Thus x = 0 forces
y 6= 0 (this also holds for α = −1 and d = 0 or −1). Suppose now that y = 0. By
contraposition this forces x 6= 0. By Corollary 3.6 there q2 − q + 1 choices for d such
that y = 0. We now show that the second and third condition in (3.32) are satisfied for
these choices of d.

It is clear that d 6= 0, and so dq
2+q + α 6= 0 by the fact N(d) = (Tr(dq

2+q) + α)α.
Hence the second condition in (3.32) holds. Since x 6= 0, we have y + αx 6= 0 and so the
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third condition in (3.32) is also satisfied. Hence, for y = 0, we obtain q2− q+ 1 suitable
elements of G

In summary the four cases give exactly 2(q2 − q + 1) elements in G that stabilize 〈v〉,
from which the claim follows. �

Theorem 3.1 now follows by combining Lemmas 3.2, 3.3, 3.4, and 3.7.

4. The linear code of the set O

It is well known that up to linear equivalence, spanning multisets of points in PG(Fk
q) ∼=

PG(k − 1, q) correspond to linear codes over Fq of dimension k in which no coordinate
is identically zero. Thereby, the hyperplanes correspond to the projective equivalence
classes of the nonzero codewords and the hyperplane sections correspond to the Hamming
weights. An early publication of this observation is [2, Thm. 1.11] and a good overview
is given in [9].

To make this correspondence precise, let P be a multiset of n points 〈v1〉, . . . , 〈vn〉
spanning PG(Fk

q). With P we associate the [n, k]q code C generated by the matrix G
with the columns v1, . . . , vn. While this code depends on the chosen point representatives
and the order of the points, it is unique up to linear equivalence. Conversely every
equivalence class of [n, k]q codes in which no coordinate is identically zero corresponds
to a multiset of n points spanning PG(Fk

q). A hyperplane H = v⊥ of PG(Fk
q) corresponds

to the set of q − 1 nonzero scalar multiples of v>G, which are all codewords of C. The
(common) Hamming weight of these q − 1 codewords is given by the number of points
in P that are not contained in H.

Now based on the notation of Section 2, we are going to describe and investigate the
code CO associated with the point set P = O in PG(F8

q). Explicitly, the code CO is
generated by

GO =
[
g(x1) g(x2) · · · g(xq3) e8

]
,

where e8 = (0, 0, 0, 0, 0, 0, 0, 1)> and

g(x) = (1,Tr(x),Tr(θx),Tr(θ2x),Tr(xq+q2),Tr(θxq+q2),Tr(θ2xq+q2),N(x))>

with θ being a primitive element of Fq3 . Then C has length q3 + 1 and dimension 8,
using the fact that O spans PG(F8

q). The weight distribution (and therefore the minimum
distance) of CO follows from the above discussion and the hyperplane sections given in
Theorem 3.1.

Theorem 4.1. The code CO has parameters [q3 + 1, 8, q3 − q2 − q]q and the following
weight distribution

weight multiplicity

0 1

q(q2 − q − 1) 1
2
q3(q3 + 1)(q − 1)2

q2(q − 1) q(q6 − 1)

q(q2 − q + 1) 1
2
q3(q3 − 1)(q2 − 1)

q3 (q3 + 1)(q − 1)
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Table 1. THE CODES CO FOR SMALL q

q parameters weight distribution

2 [9, 8, 2]2 (01236412668489)

3 [28, 8, 15]3 (011515121821842128082756)

4 [65, 8, 44]4 (0144187204816380523024064195)

5 [126, 8, 95]5 (019512600010078120105186000125504)

7 [344, 8, 287]7 (01287212385629482353630128153443432064)

8 [513, 8, 440]8 (014406435072448209714445682414085123591)

9 [730, 8, 639]9 (01639170294406484782960657212284807295840)

For small q, the parameters and the weight distribution of the code CO are given
explicitly in Table 1.

Next we discuss optimality properties of CO with respect to the theory in [10]. For a
linear code C with parameters [n, k, d]q, the following notions of optimality are defined
in [10]:

• C is length-optimal (n-optimal) if no linear [n− 1, k, d]q code exists;
• C is dimension-optimal (k-optimal) if no linear [n, k + 1, d]q code exists;
• C is distance-optimal (d-optimal) if no linear [n, k, d+ 1]q code exists;
• C is shortening-optimal (S-optimal) if no linear [n+ 1, k + 1, d]q code exists;
• C is puncturing-optimal (P -optimal) if no linear [n+ 1, k, d+ 1]q code exists.

There are the following implications:

C is n-optimal =⇒ C is k-optimal and d-optimal;

C is P -optimal =⇒ C is d-optimal;

C is S-optimal =⇒ C is k-optimal.

Suitable examples show that there are no other implications among the five optimality
notions. If a code is optimal with respect to all five of the above optimality concepts,
then it is called strongly optimal. By the stated implications, strong optimality already
follows from n-, S- and P -optimality.

For q = 2, CO is the binary parity check code with the parameters [9, 8, 2]2, which is
an MDS-code and in particular n-optimal. Moreover, it is P -optimal, but not S-optimal
as there exists the [10, 9, 2]2 binary parity check code.

We now consider the case q ≥ 3. The ith Krawtchouk polynomial (with parameters q
and n) is the polynomial

Ki =
i∑

j=0

(−1)j(q − 1)(i−j)
(
x

j

)(
n− x
i− j

)
of degree i in R[x]. For each polynomial f ∈ R[x] of degree at most n there are unique
f0, f1, . . . , fn ∈ R such that

f =
n∑

i=0

fiKi,
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which is known as the Krawtchouk expansion of f . Next we quote the well known linear
programming bound (see [17], for example).

Theorem 4.2. Let C be a code of length n and minimum distance d over an alphabet
of size q. Let f ∈ R[x] be a polynomial with Krawtchouk expansion f =

∑n
i=0 fiKi such

that fi ≥ 0 for all i ∈ {0, 1, . . . , n} and f(i) ≤ 0 for all i ∈ {d, d + 1, . . . , n}. Then we
have

|C| ≤ f(0)/f0.

We now apply Theorem 4.2 to show that CO is n-optimal for all q.

Theorem 4.3. Let C be a code of length q3 and minimum distance at least q3 − q2 − q
over a q-ary alphabet for q ≥ 3. Then

|C| ≤ 1

2

q5(q2 − q − 1)(q3 − q2 + q − 2)(q2 + 1)

q4 − 2q3 − q2 + 3
.

In particular |C| < q8 and so no [q3, 8, q3 − q2 − q]q code exists.

Proof. Write

z1 = q3 − q2 − q, z2 = q3 − q2 + q − 2, z3 = q3 − q2 + q − 1, and n = q3.

We have 0 < z1 < z2 < z3 < n, so the polynomial f(x) = (x− z1)(x− z2)(x− z3)(x− n)
has no repeated roots. Note that C has minimum distance at least z1 and length n.
Since f(0) > 0, we therefore have f(i) ≤ 0 for all i ∈ {d, d+ 1, . . . , n}. The Krawtchouk
expansion of f is

f = f0K0 + f1K1 + f2K2 + f3K3 + f4K4,

where

f0 =
2

q
(q − 1)(q4 − 2q3 − q2 + 3),

f1 =
2

q4
(q − 1)(q6 + q5 − 10q3 + 3q + 12),

f2 =
2

q4
(q5 + 5q4 − 9q3 − 6q2 − 18q + 36),

f3 =
6

q4
(q3 + q2 + 3q − 12),

f4 =
24

q4
.

Since q ≥ 3, all these coefficients are nonnegative. Then Theorem 4.2 gives the desired
bound for |C|. �

Theorem 4.3 gives the following corollary.

Corollary 4.4. The code CO is n-optimal for all q.

For q ∈ {3, 4, 5}, we can say a bit more.

Theorem 4.5. The code CO is strongly optimal for q ∈ {3, 4} and S-optimal for q = 5.
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Proof. The nonexistence of the corresponding codes can be looked up at the online
tables [5]. We illustrate the typical reasoning behind the entries in the case q = 3.

Assume that CO is not P -optimal. Then there exists a [29, 8, 16]3 code C. Its residual
(obtained by shortening C in the support of a codeword of weight 16) is a [13, 7,≥ 6]3
code [12, Thm. 2.7.1]. Puncturing in a single position yields a [12, 7,≥ 5]3 code. However
according to the sphere packing bound, a ternary code of length 12 and minimum distance
at least 5 contains at most 1838 codewords, which is a contradiction.

Now assume that CO is not S-optimal. Then there exists a [29, 9, 15]3 code C. Its
dual C⊥ is a [29, 20, d⊥]3 code with minimum distance d⊥ ≤ 6 by the sphere packing
bound. Let c ∈ C⊥ be a codeword of minimum nonzero weight. Shortening C in
a set of 6 positions containing the support of c gives a [23,≥ 4,≥ 15]3 code. After
puncturing in two positions we get a [21,≥ 4,≥ 13]3 code, which implies the existence
of a [21, 4, 13]3-code. This code does not exist by [11, Thm. 3.2]. �

We remark that for q = 5, the code CO might also be P -optimal (and hence strongly
optimal), since according to [5] the existence of a linear [127, 8, 45]5 code is open.

Based on the above investigation, we dare to state the following conjecture.

Conjecture 1. The code CO is strongly optimal for all q ≥ 3.

We close this section with some remarks on codes obtained by puncturing CO. Let T
be a set of t coordinate positions of CO. Deleting all coordinates in T in each codeword
of CO, we obtain a linear code CT

O of length q3 + 1− t. If t is strictly less than q3− q2− q
(the minimum distance of CO), then the dimension of CT

O is still 8 and the minimum
distance of CT

O is at least q3 − q2 − q − t.
One can show that, for t ≤ b(q − 3)/2c and q ≥ 5, the code CT

O has minimum
distance exactly q3− q2− q− t and is still n-optimal. To prove this, it is enough to take
t = b(q − 3)/2c and to use the same approach as that in the proof of Theorem 4.2 with

z1 = q3−q2−q− t, z2 = q3−q2 +q−2− t, z3 = q3−q2 +q−1− t, and n = q3− t
to show that no linear code with parameters [q3 − t, 8,≥ q3 − q2 − q − t]q can exist.

5. The dual code C⊥O

We now investigate the dual code C⊥O of CO of length q3 + 1 and dimension q3 − 7.

Theorem 5.1. The code C⊥O has parameters [q3 + 1, q3 − 7, d]q, where

d =


9 for q = 2;

6 for q = 3;

5 for q ≥ 4.

Moreover the number of codewords in C⊥O of weight 5 is

1

120
(q − 3)(q − 2)(q − 1)q3(q6 − 1).

Proof. Let (Ai)i and (A′i)i be the weight distributions of CO and C⊥O , respectively. By
the MacWilliams identity we have

A′j =
1

|C|

n∑
i=0

Kj(i)Ai for each j.
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Now (Ai)i is given in Theorem 4.1 and a computation reveals that A′1 = A′2 = A′3 = A′4 =
0 and that A′5 equals the corresponding expression in the statement of the theorem. This
shows that A′5 6= 0 for q ≥ 4. For q = 3 we have A′5 = 0 and we compute A′6 = 6552. For
q = 2, the code CO is the binary parity check code of length 9 whose dual is the binary
repetition code of length 9 and minimum distance 9. �

Theorem 5.2. The code C⊥O is n-optimal for all q.

Proof. The claim is clear for q = 2. For q = 3, shortening a [27, 20, 6]3 code in 12
positions would result in a [17,≥ 8,≥ 6]3 code, which does not exist by [19].

Now let q ≥ 4 and suppose that C is a code of length q3 and minimum distance 5 over
Fq. A Hamming sphere of radius 2 in Fq3

q is of size

2∑
i=0

(
q3

i

)
(q − 1)i = 1

2
q8 − q7 + 1

2
q6 − 1

2
q5 + 2q4 − 3

2
q3 + 1.

Since q ≥ 4, one checks that this is strictly larger than q7. Hence by the sphere packing
bound we have |C| < qq

3−7. Hence no [q3, q3 − 7, 5]q code can exist. This implies
n-optimality of C⊥O . �

For q = 2, the code C⊥O is S-optimal, but not P -optimal. Moreover from the tables [5]
we find the following. For q = 3, the code C⊥O is P -optimal, but S-optimality is open.
For q = 4, the code C⊥O is not S-optimal and P -optimality is open. For q = 5, both S-
and P -optimality is open.
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