
LEXICOGRAPHIC DERIVATIVES

Paul I. Barton

Process Systems Engineering Laboratory
Massachusetts Institute of Technology

Cambridge MA 02139

2

Lexicographic Derivatives

◆  is L-smooth at if it is loc. Lip. continuous
and directionally differentiable, and if, for any
the following functions exist:

◆  If the columns of span , is linear
◆  If the columns of span , the L-derivative is
◆  Lexicographic subdifferential:

!!!f : X ⊂Rn →Rm x ∈ X

M = m(1) ! m(k)

⎡
⎣

⎤
⎦ ∈Rn×k

fx,M
(0) :d! f '(x;d)

fx,M
(1) :d! [fx,M

(0)]'(m(1);d)

 "

fx,M
(k) :d! [fx,M

(k−1)]'(m(k);d)

M Rn

!!!fx ,M
(k)

JLf (x;M) := Jfx,M

(k) (0)

 ∂L f (x) :={JLf (x;M) : M ∈Rn×n , det M ≠ 0}

Nesterov (2005)

This is the directional derivative mapping, viewed as a
function of direction d

These are higher-order directional derivative mappings;
directional derivatives of directional derivatives

M Rn

3

Lexicographic Differentiation

◆  Ex.: Probes local derivative information

JL f (0;I) = Jf0,I

(2)(0) = [0 1]

Y. Nesterov (2005)

4

◆  The following functions are L-smooth:
Ø  Continuously differentiable (C1) functions
Ø  Piecewise differentiable (PCr) functions
Ø  Convex functions (e.g. abs, 2-norm)
Ø  Compositions of L-smooth functions:
Ø  Integrals of L-smooth functions:

Ø  Solutions of parametric nonsmooth ordinary differential equations (ODEs) and differential-
algebraic equations (DAEs) w.r.t. parameter value

Ø  Solutions of optimization problems (e.g. nonlinear programs) w.r.t. parameter value
Ø  The list continues to grow….

L-smooth Functions

x! h(g(x))

x! g(t,x) dt

a

b
∫

Nesterov (2005), Khan and Barton (2015), Barton et al., Opt. Meth. & Soft. (In Press), Stechlinski and Barton (2018)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

0

2

t
=

0

x̃1(t, c1, 0)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-5

0

5

t
=

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

0

2

t
=

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
c1

-10

0

10

t
=

3

Solution of parametric DAE at snapshots in time

5

◆  If is an L-smooth, scalar-valued function (e.g.
objective function of an optimization problem):

◆  If is PC1:

◆  If is C1:
◆  If is L-smooth:

Generalized Derivatives Landscape

 f : X ⊂ Rn → R

 ∂ f (x)
 ∂L f (x)

B ()∂ f x

L ()∂ f x ()∂f x

L B() () () { ()}∂ = ∂ = ∂ =f x f x f x Jf x

 {Ad : A ∈∂L f (x)}⊂{Ad : A ∈∂f (x)} for each d ∈Rn

 f : X ⊂ Rn → Rm

 f : X ⊂ Rn → Rm

 f : X ⊂ Rn → Rm

Nesterov (2005), Khan and Barton (2015), Khan and Barton (2014)

6

◆  Story so far:
Ø  A broad class of functions (PCr, C1, convex, all compositions, …) are L-smooth
Ø  Clarke Jacobian elements are computationally relevant in dedicated nonsmooth

numerical methods (e.g. semismooth Newton method) but are difficult to compute
automatically

Ø  L-derivatives are Clarke Jacobian elements (or indistinguishable from Clarke Jacobian
matrix-vector products) and are therefore computationally relevant

◆  Question: Are L-derivatives “easy” to compute in an automated way?
◆  Answer: Yes! L-derivatives satisfy sharp calculus rules, expressed

naturally using LD-derivatives.

L-smooth Functions &
Lexicographic Derivatives

7

◆  Extension of classical directional derivative
◆  LD-derivative of L-smooth function at in

the directions

◆  If M is square and nonsingular:

◆  If f is differentiable at x:

◆  Sharp LD-derivative chain rule:

Lexicographic Directional (LD-)Derivative

 M = [m(1) ! m(k)]∈Rn×k :
 f : X ⊂ Rn → Rm x ∈X

f '(x;M) = [fx,M

(0) (m(1)) ! fx,M
(k−1)(m(k))]

 f '(x;M) = JLf (x;M)M

 f '(x;M) = Jf (x)M

[f !g]'(x;M) = f '(g(x);g '(x;M))

Khan and Barton (2015)

8

◆  Procedure to compute an L-derivative from an LD-derivative:
1.  Choose a nonsingular directions matrix

2.  Calculate an LD-derivative via sharp calculus rules

(e.g.)

3.  Obtain L-derivative via solving the linear equation system

for (which is unique solution since is nonsingular)

Computing L-Derivative from
(LD-)Derivative

 f '(x;M) = JLf (x;M)M

[f !g]'(x;M) = f '(g(x);g '(x;M))

 M

 JLf (x;M) M

9

◆  LD-derivative calculus rules for min, max, abs, 2-norm, etc. are
based on lexicographical ordering

◆  Procedure is similar to putting words in alphabetical order. In fact,
lexicographical ordering is also known as alphabetical ordering:

◆  Ex.

◆  Putting two words in alphabetical order:

0
1
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≺

1
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x1

x2

!
xn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

≺

y1

y2

!
yn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

if x1 < y1 or (x1 = y1 and x2 < y2 (or x2 = y2 and x3 < y3 (or ...))).

x1

x2

!
xn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

!

y1

y1

!
yn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 otherwise.

Lexicographic Directional Derivative
Calculus Rules

 "about"≺ "above"

0<1

0
1
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≻

0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

tie
1>0

0
0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≺

0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

tie
tie

irrelevant irrelevant 0<1

generalized
inequality using
lexicographical
ordering

10

◆  Ex.

min′ x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;

m11 m12

m21 m22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

[m11 m12], if
x
m11

m12

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≺

y
m21

m22

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

[m21 m22], if
x
m11

m12

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
!

y
m21

m22

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

min′ 0

0
⎡

⎣
⎢

⎤

⎦
⎥; 1 0

1 1
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟ = 1 0⎡⎣ ⎤⎦ , = 0 1⎡⎣ ⎤⎦ ,

min′ 0

0
⎡

⎣
⎢

⎤

⎦
⎥; 1 0

0 1
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

 = SLmin((x,m11,m12),(y,m12,m22))

min′ 0

0
⎡

⎣
⎢

⎤

⎦
⎥; 1 1

1 1
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟ = [1 1]

Lexicographic Directional Derivative
Calculus Rules

 f (x) = min(x1,x2) :

Barton, Khan, Stechlinski and Watson, Opt. Meth. & Soft. (In Press)

11

◆  LD-Derivative calculus rules for elemental nonsmooth functions:
Ø 

Ø  , where

Ø 

Ø 

Lexicographic Directional Derivative
Calculus Rules

f ' x;[m1 ! mk]() = [m1 ! mk]T, if [x m1 ! mk]T ! 0,

−[m1 ! mk]T, if [x m1 ! mk]T ≺ 0,

⎧
⎨
⎪

⎩⎪

 = fsign(x,m1,…,mk)[m1 ! mk]T

 f (x) =| x |= abs(x) :

 f (x) =‖x‖= x1
2 +!+ xn

2 : f ' x;M() = (fdir([x M]))T

fdir(A) = fdir([a(1) ! a(q)]) =

0, if A = 0,
a(j*)

‖a(j*)‖
, j* = min{ j :a(j) ≠ 0}, if A ≠ 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

 f (x) = max(x1,x2) :

 f (x) = mid(x1,x2,x3) :

f ' x, y;

M1

M2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜

⎞

⎠
⎟ = SLmax((x,M1

T),(y,M2
T))

 f '(x, y, z;M) = SLmid((x,M1
T),(y,M2

T),(z,M3
T))

Barton, Khan, Stechlinski and Watson, Opt. Meth. & Soft. (In Press)

12

◆  LD-Derivative calculus rules for function operations:

Ø  Vector-valued functions:

Ø  Sums of functions:

Ø  Products of functions:

Ø  Chain rule:

»  If v and u are L-smooth,

»  If is C1 and u is L-smooth,

»  If v is L-smooth and is C1,

Lexicographic Directional Derivative
Calculus Rules

 u '(x;M) = (u '1(x;M),u '2(x;M),…, ′um(x;M))

 [u+ v]'(x;M) = u '(x;M)+ v '(x;M)

 [uv]'(x;M) = u '(x;M)v(x)+ u(x)v '(x;M)

 [v !u]'(x;M) = v '(u(x);u '(x;M))

ψ

ψ

 [ψ !u]'(x;M) = Jψ (u(x))u '(x;M)

 [v !ψ]'(x;M) = v '(ψ (x);Jψ (x)M)

13

◆  Nonsmooth AD:
Ø  Same underlying idea as classical AD
Ø  Nonsmooth AD is achieved by simply adding “nonsmooth” derivative rules (i.e. LD-

derivative rules) to classical AD packages
Ø  …and applying the sharp chain rule

◆  Other remarks:

Ø  LD-derivative rules can be added to symbolic differentiation packages, but they still suffer
from the same underlying issues outlined earlier

Ø  LD-derivative rules cannot be added to numerical differentiation packages in the same
way; finite differencing is unsuitable for nonsmooth functions (“stepping” over nonsmooth
points)

Nonsmooth Automatic Differentiation

Khan and Barton (2015)

14

Nonsmooth AD
◆  Technique for calculating exact numerical derivatives

Ø  Not finite differences (no truncation error)
Ø  Not symbolic differentiation (no expression manipulation)
Ø  Applies the LD-derivative chain rule systematically to numerical values

◆  Ex.

v−1 = x1

v0 = x2

v1 = min(v−1,v0)

v2 = max(0,v1)

y = v2

v−1 = 0
v0 = 0
v1 = 0
v2 = 0
y = 0

!V−1 = [1 0]
!V0 = [0 1]
!V1 = [0 1]
!V2 = [0 1]
!Y = [0 1]

!V−1 = !X1

!V0 = !X2

!V1 = SLmin((v−1,(!V−1)T),(v0 ,(!V0)T))
!V2 = SLmax((0,0,0),(v1,(!V1)T))
!Y = !V2

LD-derivative
along
directions M=I

 y = f (x) = max(0,min(x1,x2)), at x1 = 0,x2 = 0 in directions M = I

 f '(0,0;I) f (0,0)

15

Nonsmooth AD
◆  Technique for calculating exact numerical derivatives

Ø  Not finite differences (no truncation error)
Ø  Not symbolic differentiation (no expression manipulation)
Ø  Applies the LD-derivative chain rule systematically to numerical values

◆  Ex. y = f (x) = max(0,min(x1,x2)), at x1 = 0,x2 = 0 in directions M = −I

v−1 = x1

v0 = x2

v1 = min(v−1,v0)

v2 = max(0,v1)

y = v2

v−1 = 0
v0 = 0
v1 = 0
v2 = 0
y = 0

!V−1 = !X1

!V0 = !X2

!V1 = SLmin((v−1,(!V−1)T),(v0 ,(!V0)T))
!V2 = SLmax((0,0,0),(v1,(!V1)T))
!Y = !V2

!V−1 = [−1 0]
!V0 = [0 −1]
!V1 = [−1 0]
!V2 = [0 0]
!Y = [0 0]

LD-derivative
along directions
M=-I

 f '(0,0;−I) f (0,0)

16

u  The Clarke Jacobian is a computationally relevant generalized
derivative, but is generally difficult to compute in an automated way

u  L-derivatives are attractive for several reasons:

u The class of L-smooth functions is broad (includes C1, PC1, convex functions and all
compositions)

u L-derivatives are computationally relevant (i.e. can be supplied to dedicated nonsmooth
methods)

u L-derivatives can be computed in an automated way thanks to sharp calculus rules and
nonsmooth automatic differentiation

u  LD-derivatives can be computed for singular (or even nonsquare)
directions matrices. This is crucial for compositions of problems; e.g.
dynamic systems with optimization problems embedded or vice versa

Summary

17

SENSITIVITY ANALYSIS OF
NONSMOOTH IMPLICIT FUNCTIONS

18

u  If is a loc. Lip. cts. function s.t.
and for all

 then there exists a Lip. cts. (implicit) function such that
 near

u  Ex.

 g : P × X ⊂ R p × Rn → Rn
 g(p0,x0) = 0

 det X ≠ 0
 r

 g(p,r(p)) = 0

 X ∈πx ∂g(p0,x0) ={X ∈Rn×n : [Q X]∈∂g(p0,x0)}

 p = p0

 x = r(p) = 1− | p |
 | p |+ | x |= 1

 p

 x

 0∈π x ∂g(p0 ,x0)

No derivative (sensitivity) information

Clarke Jacobian
Implicit Function Theorem Revisited

 x = r(p) =| p |−1

F. H. Clarke, 1990. Optimization and Nonsmooth Analysis. Philadelphia, PA: SIAM.

19

u  If is an L-smooth function s.t.
 and for all
 then there exists an L-smooth (implicit) function such that

 near and for any , is the solution of

◆  Remarks:

Ø  The matrix is the directions matrix
Ø  Sensitivity system provides generalized derivative information for implicit function
Ø  Sensitivity system is nonsmooth (and thus nonlinear), but has a unique solution for any
Ø  Computing solution of sensitivity system is practically implementable (more in a bit)

 g : P × X ⊂ R p × Rn → Rn
 g(p0,x0) = 0

 det X ≠ 0
 r

 g(p,r(p)) = 0

 X ∈πx ∂g(p0,x0) ={X ∈Rn×n : [Q X]∈∂g(p0,x0)}

 p = p0

L-Smooth Implicit Function Theorem

 ′g (p0,x0;(P,X)) = 0

 ′r (p0;P) ≡ X

Nonsmooth sensitivity system

 P

 P

 P
 r

Khan and Barton, IEEE TAC. 62 (2017)

20

u  Nonsmooth sensitivity system:

Ø  Nonsmooth equation system

Ø  Unique solution given that

for all

Ø  If g is PC1, above condition can be
replaced by for all

Ø  Practically implementable methods for

numerical computation (up next)

u  Smooth sensitivity system:

Ø  Linear equation system

Ø  Unique solution given that

Ø  Efficient methods for numerical

computation

∂g
∂p

(p0,x0)+ ∂g
∂x

(p0,x0)X = 0

s.t. X ≡ Jr(p0)

Implicit Function Sensitivities:
Smooth vs. Nonsmooth

′g (p0,x0;(P,X)) = 0

s.t. X ≡ r '(p0;P)

det ∂g

∂x
(p0,x0) ≠ 0

 det X ≠ 0
 X ∈{X ∈Rn×n : [P X]∈∂g(p0,x0)}

 sign(det X) = ±1

X ∈{X ∈Rn×n : X j =

∂g(δ i), j

∂x
(p0,x0),δ ∈{1,…,ness}

|ness |}

21

u  Compute solution of two ways
1.  Classical linear equation system:

Ø  Cycle through essentially active selection functions satisfying
Ø  Verify solution: check if , otherwise choose new selection fn.
Ø  Can apply efficient solvers and use techniques such as iterative refinement
Ø  Only possible if g is PC1

Ø  Worst-case computational cost: solving linear equation systems

2.  Nonsmooth equation system:
Ø  Can apply dedicated nonsmooth equation-solving methods (e.g. nonsmooth

Newton’s method or LP-Newton method)
Ø  Can apply recently developed branch-locking techniques (Khan, OM&S, 2017) when

solving the system columnwise
Ø  Computational cost unclear at present

Numerical Solution of
Nonsmooth Sensitivity System

∂g(i)

∂p
(p0,x0)P +

∂g(i)

∂x
(p0,x0)X = 0

 ′g (p0,x0;(P,X)) = 0

 ′g (p0,x0;(P,X)) = 0

 ′g (p0,x0;(P,X)) = 0 X ≡ r '(p0;P)

det

∂g(i)

∂x
(p0,x0) ≠ 0

 ness

Khan and Barton, IEEE TAC. 62 (2017); Khan, OM&S (In Press)

22

u  The L-smooth Implicit Function Theorem augments the Clarke
Jacobian Implicit Function Theorem with generalized derivative
information

u  The nonsmooth sensitivity system is nonlinear but has a unique
solution from which an L-derivative can be computed (given a
nonsingular directions matrix)

u  Practically implementable methods are available to compute the
solution of the nonsmooth sensitivity system

Summary

23

NONSMOOTH DIFFERENTIAL

EQUATIONS

24

Differential-Algebraic Equations
◆  Consider the semi-explicit differential-algebraic equations (DAEs):

Ø  Consistent initialization:

Ø  Consistency set:

Ø  Regularity set (index-1):

Ø  Underlying ODE:

◆  Note: ODEs are a special case of DAEs

!x(t) = f (x(t),y(t))
0 = g(x(t),y(t))
x(t0) = x0

 x

 y

!x(t) = f (x(t),y(t))

!y(t) = − ∂g
∂y

(x(t),y(t))⎛
⎝⎜

⎞
⎠⎟

−1
∂g
∂x

(x(t),y(t)) f (x(t),y(t))

nonsingular equivalent to differentiation index 1

Kunkel and Mehrmann, 2006. EMS; Brenan, Campbell and Petzold, 1996. SIAM; Scott and Barton, Numerische Mathematik, 125 (2013)

 0 = g(x0 ,y0)

det ∂g

∂y
(x, y) = 0

 g(x, y) = x2 + y2 −1= 0

 (x(t),y(t))∈G C ={(x,y) :g(x,y) = 0}

(x(t),y(t))∈G R ={(x,y) :det ∂g

∂y
(x,y) ≠ 0}

25

Nonsmooth DAEs
◆  Consider the following nonsmooth DAEs:

Ø  Consistent initialization:
Ø  Consistency set:
Ø  Regularity set (index-1):
Ø  Underlying ODE:

◆  Classical index-1 DAE theory is established via implicit function
theorem and classical ODE theory

◆  Idea: apply nonsmooth implicit function theorem and nonsmooth
ODE theory (well established) to nonsmooth DAE

!x(t) = 1
1=| x(t) |+ | y(t) |
x(t0) = x0

 ??

 1=| x0 |+ | y0 |

 (x(t), y(t))∈G C ={(x, y) :| x |+ | y |= 1}

 (x(t), y(t))∈G R = ??

 x

 y

 g(x, y) = | x |+ | y |−1= 0

26

Well-Posedness of Nonsmooth DAEs
◆  Nonsmooth semi-explicit DAEs:

Ø  f is discontinuous w.r.t. t, continuous w.r.t. , and g is locally Lipschitz
Ø  Consistency set:
Ø  Regularity set (generalized differentiation index-1):

◆  Well-posedness results:
Ø  Existence of (local) solutions:
Ø  Uniqueness of a solution: and f locally Lipschitz
Ø  Continuation of solutions: a regular solution (i.e. generalized diff. index-1) can be

extended

 (t,x(t),y(t))∈G C ={(t,x,y) :g(t,x,y) = 0}

(t,x(t),y(t))∈G R ={(t,x,y) :detY ≠ 0, for all Y ∈π y ∂g(t,x,y)}

!x(t) = f (t,x(t),y(t))
0 = g(t,x(t),y(t))
x(t0) = x0

 {(x(t),y(t)) : t ∈T}⊂ G C ∩G R

 (x0 ,y0)∈G C ∩G R

nonsmooth implicit
function theorem can
be applied

 x,y

Stechlinski and Barton, Journal Diff. Eqns. 262 (2017)

27

◆  Ex. continued:

Ø  f is PC1 and g is PC1

Ø  Consistency set:
Ø  Regularity set:

◆  Existence and uniqueness of a “regular” solution:

◆  Indeed, unique regular solution is

 G C ={(x, y) :| x |+ | y |= 1}

 x

 y

0∈π y ∂g(x, y) = [−1,1]

π y ∂g(x, y) ={−1}

π y ∂g(x, y) ={1}

(x(t), y(t)) =
t + x0 ,1− t + x0(), if y0 > 0,

t + x0 ,−1+ t + x0(), if y0 < 0,

⎧
⎨
⎪

⎩⎪

 (x0 , y0)∈G C ∩G R ={(x, y) :| x0 |+ | y0 |= 1, y0 ≠ 0}

Well-Posedness of Nonsmooth DAEs

!x(t) = 1
1=| x(t) |+ | y(t) |
x(t0) = x0

 G R ={(x, y) : y ≠ 0}

π y ∂g(x, y) =
{−1}, if y < 0
[−1,1], if y = 0
{1}, if y > 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

Stechlinski and Barton, Journal Diff. Eqns. 262 (2017)

28

◆  Nonsmooth semi-explicit DAEs:

Ø  Consistency set:
Ø  Regularity set (generalized differentiation index-1):

◆  A regular solution is:
Ø  Continuous w.r.t. p if f is cts. and g is locally Lipschitz
Ø  Lipschitz w.r.t. p if f is locally Lipschitz and g is locally Lipschitz
Ø  L-smooth w.r.t. p if f is L-smooth and g is L-smooth

 (t,p,x(t,p),y(t,p))∈G C ={(t,p,x,y) :g(t,p,x,y) = 0}

(t,p,x(t,p),y(t,p))∈G R ={(t,p,x,y) :detY ≠ 0, for all Y ∈π y ∂g(t,p,x,y)}

!x(t,p) = f (t,p,x(t,p),y(t,p))
0 = g(t,p,x(t,p),y(t,p))
x(t0 ,p) = f0(p)

 (x(t,p),y(t,p))

Dependence of Solutions of
Nonsmooth DAEs on Parameters

can we calculate LD-derivatives?...

Stechlinski and Barton, Journal Diff. Eqns. 262 (2017)

29

◆  Smooth semi-explicit DAEs:

◆  A regular solution is C1 w.r.t. p (from diff. index-1)

◆  Sensitivities:

!x(t,p) = f (t,p,x(t,p),y(t,p))
0 = g(t,p,x(t,p),y(t,p))
x(t0 ,p) = f0(p)

 (x(t,p),y(t,p))

Smooth DAEs
Classical Dynamic Sensitivities

sx ≡

∂x
∂p

, s y ≡
∂y
∂p

30

Dynamic Optimization of Smooth DAEs

◆  Sequential approach (e.g. single or multiple shooting):

!x(t,p) = f (t,p,x(t,p),y(t,p))
0 = g(t,p,x(t,p),y(t,p))

Update p via optimization

p
0p

 x(t,p0),y(t,p0)

t t

!sx =
∂f
∂p

+ ∂f
∂x

sx +
∂f
∂y

s y

0 = ∂g
∂p

+ ∂g
∂x

sx +
∂g
∂y

s y

sx =

∂x
∂p

, s y =
∂y
∂p

Semi-explicit index-1 DAEs

Linear sensitivity DAEs

φ(x(t f ,p),y(t f ,p))

31

Dynamic Optimization of Nonsmooth DAEs

◆  Sequential approach in nonsmooth setting:

Semi-explicit index-1 DAEs

Sensitivity DAEs

!x(t,p) = f (t,p,x(t,p),y(t,p))
0 = g(t,p,x(t,p),y(t,p))

Update p via optimization

φ(x(t f ,p),y(t f ,p))

p
0p

 x(t,p0),y(t,p0)

t

!sx =
∂f
∂p

+ ∂f
∂x

sx +
∂f
∂y

s y

0 = ∂g
∂p

+ ∂g
∂x

sx +
∂g
∂y

s y

sx =

∂x
∂p

, s y =
∂y
∂p

???

32

◆  Nonsmooth ODE case:

◆  Goal: given reference parameter , characterize (local) sensitivity
information by computing element of

◆  Linear Newton Approximation (Pang & Stewart, 2009; Clarke, 1980):

Ø  Pros: relatively easy to evaluate
Ø  Cons: Satisfies ; does not reduce to derivative when is C1; does not

reduce to subdifferential when is convex; no sufficient optimality condition

!x(t,p) = f (t,x(t,p))
x(t0 ,p) = p

Nonsmooth ODEs
Classical Dynamic Sensitivities

 Γ(τ) = conv X(τ) : !X(t)∈∂[ft](x(t,p0))X(t); X(0) = I{ }

 ∂[x(t,⋅)](p0)
 p0

 ∂[x(t,⋅)](p0)⊂ Γ(t) x(t,⋅)
 x(t,⋅)

33

0 1 2 30

2

4

6

t

Γ[
x(
2,
⋅)]
(t)

◆  Linear Newton Approximation (LNA):

◆  Ex.

Ø  The solution is C1 and convex w.r.t. p at p=0
Ø  The LNA is calculated as , but

Nonsmooth ODEs
Classical Dynamic Sensitivities

 x(2,⋅)

 Γ[2(t,⋅)](0) = [1/ e,e]

∂[x(2,⋅)](0) = 1{ } = ∂x

∂p
(2,0)

⎧
⎨
⎩

⎫
⎬
⎭

!x(t, p) = (1− t) | x(t, p) |
x(0, p) = p

0 1 2 3-5

0

5

t

x(
t,c
)

 Γ(τ) = conv X(τ) : !X(t)∈∂[ft](x(t,p0))X(t); X(0) = I{ }

34

◆  Nonsmooth ODEs:

Ø  If f and f0 are L-smooth functions, then is L-smooth w.r.t. p

◆  Nonsmooth ODE sensitivity system:

Ø  LD-derivative mapping is unique solution of sensitivity system
Ø  If M is nonsingular, then an L-derivative can be computed for any via the linear

equation system
Ø  If f and f0 are C1 and M=I then the classical sensitivity system is recovered:

 x(t,p)

!x(t,p) = f (t,p,x(t,p))
x(t0 ,p) = f0(p)

Nonsmooth ODEs
Dynamic LD-Derivatives

!X(t) = [ft]'(p0,x(t,p0);(M,X(t))), X(0) = f0 '(p0;M)

 t! [x(t,⋅)]'(p0;M)

 X(t) = JL[x(t,⋅)](p0;M)M
 t

!X(t) = [ft]'(p0,x(t,p0);(I,X(t))) = Jft (p0,x(t,p0))

I
X(t)
⎡

⎣
⎢

⎤

⎦
⎥ =

∂f
∂p

(t,p0,x(t,p0))+ ∂f
∂x

(t,p0,x(t,p0))X(t)

Khan and Barton, Journal Opt. Theory Appl. 163 (2014)

35

◆  Ex. continued:

Ø  Nonsmooth sensitivity system:

 whose unique solution satisfies

Nonsmooth ODEs
Dynamic LD-Derivatives

!x(t, p) = (1− t) | x(t, p) |
x(0, p) = p

0 0.5 1 1.5 2 2.5 30

1

2

3

4

5

6

Time (t)

G
en

er
al

iz
ed

 d
er

iv
at

iv
e

bo
un

ds

LNA bounds
Lex. deriv. bounds

0 1 2 3-5

0

5

t

x(
t,c
)

 X (t) = [x(t,⋅)]'(0;m)

!X (t) = (1− t)fsign(x(t, p0), X (t))X (t) = (1− t) | X (t) |
X (0) = m

X (2) = X (0) = m = ∂x

∂p
(2,0)m

36

◆  Nonsmooth DAEs:

Ø  If f and g and f0 are L-smooth functions, then and are L-smooth w.r.t. p

◆  Nonsmooth DAE sensitivity system:

Ø  LD-derivative mappings and uniquely solve the

nonsmooth sensitivity system
Ø  If M is nonsingular, then L-derivatives can be computed for any
Ø  If f, g and f0 are C1 and M=I then the classical sensitivity DAE system is recovered

 x(t,p)

Nonsmooth DAEs
Dynamic LD-Derivatives

!X(t) = [ft]'(p0,x(t,p0),y(t,p0);(M,X(t),Y(t)))
0 = [gt]'(p0,x(t,p0),y(t,p0);(M,X(t),Y(t)))
X(0) = f0 '(p0;M)

 t! [x(t,⋅)]'(p0;M)

 t

!x(t,p) = f (t,p,x(t,p),y(t,p))
0 = g(p,x(t,p),y(t,p))
x(t0 ,p) = f0(p)

 y(t,p)

 t! [y(t,⋅)]'(p0;M)

Stechlinski and Barton, Journal Opt. Theory. Appl. (2016)

37

Dynamic Optimization of Nonsmooth DAEs

◆  Sequential approach in nonsmooth setting:

!x(t,p) = f (p,x(t,p),y(t,p))
0 = g(p,x(t,p),y(t,p))

 x(t,p0),y(t,p0)

Update p via optimization

p
0p

!X = [f]'(p0 ,x,y;(M,X,Y))
0 = [g]'(p0 ,x,y;(M,X,Y))

"sx "= X, " s y "= YSemi-explicit index-1 DAEs

LD-Derivative Sensitivity DAEs

φ(x(t f ,p),y(t f ,p))

38

DAE Sensitivities:
Nonsmooth vs. Smooth

Ø  Smooth DAE sensitivities:

Ø  Linear DAE system

Ø  Unique solution and unique initialization

Ø  continuous

◆  Smooth vs. nonsmooth cases:

Ø  Nonsmooth DAE sensitivities:

Ø  Nonsmooth (and nonlinear) DAE system

Ø  Unique solution and unique initialization

Ø  continuous, discontinuous

sx , s y

X Y

!X = [f]'(p0 ,x,y;(M,X,Y))
0 = [g]'(p0 ,x,y;(M,X,Y))
X(t0) = [f0]'(p0;M)

!sx =
∂f
∂p

+ ∂f
∂x

sx +
∂f
∂y

s y

0 = ∂g
∂p

+ ∂g
∂x

sx +
∂g
∂y

s y

sx (t0) = Jf0(p0)

Stechlinski and Barton, Journal Opt. Theory. Appl. (2016)

39

◆  Nonsmooth DAE model of simple const. P flash:

◆  Does there exist a (regular) solution?

Ø  Yes, under appropriate initial conditions and some simplifying assumptions
contains no singular matrices. This implies existence and uniqueness of a regular solution
(since right-hand side functions are PC1)

Simple Flash Process: Well-Posedness

!H t() =U Tout −T t()()
M = M L t() + MV t()
H t() = MhV t()− M L t()Δhvap T t()()
hV t() = Cp T t()−T0()
log Psat t()()=A - B/ T t() +C()
0 = mid MV (t), P − Psat (T (t)),−M L(t)()
"

!Q

VM

LM

outT
P

 π y ∂g(H ,T , M L)

Stechlinski, Patrascu and Barton, Comp. And Chem. Eng. (In Press)

40

◆  Nonsmooth sensitivities
of simple const. P flash:

◆  No notion of mode sequence needed

Simple Flash Process: Sensitivities

!SH t() =U 1− ST t()()
SH t() = MCpST t()− Δhvap ' T t()()ST t()
0 = mid ' MV t(), P − Psat T (t)(),−M L t();(SV (t),−Psat '(T (t))ST (t),−SL(t))()
SV t() = −SL t()

0 500 1000 1500
t [sec]

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

S
i=d

M
i/d

T ou
t [k

g/
K]

SMl
SMv

0 500 1000 1500
t [sec]

-5

0

5

10

15

20

25

30

35

S=
dT

/d
T

ou
t [K

/K
]

ST

Stechlinski, Patrascu and Barton, Comp. And Chem. Eng. (In Press)

41

◆  Nonsmooth ODEs/DAEs/hybrid automata

◆  Open loop optimal control
with nonsmooth ODE/DAEs:

◆  ODEs with LPs embedded:

◆  Etc…

Nonsmooth Dynamical Systems

!x(t,p) = f (p,x(t,p),h(x(t,p)))
h(x(t,p)) = min

v
cTv

s.t. Av = b(x(t,p))
v ≥ 0

inf
p
Φ(p) ≡ φ(t f ,p,u(t f ,p),x(t f ,p,u),y(t f ,p,u))

s.t. (x,y) satisfy nonsmooth DAE system

Khan and Barton, Journal Opt. Theory Appl. 163 (2014); Stechlinski and Barton, 55th CDC. (2016);
Höffner, Khan, and Barton. Automatica. 63 (2016); Khan and Barton, 53rd CDC. (2014);

Barton, Khan, Stechlinski, Watson, Opt. Meth. & Soft. (In Press);

42

u  Nonsmooth ODEs and DAEs possess a strong mathematical theory
(recently for DAEs)

u  Easy-to-use and solve models that act as a natural framework in
many physical problems

u  Open to tractable numerical implementations
u  Applicable to a wide range of process operations
u  Future work in adjoint sensitivities (?) and discontinuous dynamical

systems

Summary

43

SENSITIVITY ANALYSIS OF
OPTIMIZATION PROBLEMS

44

◆  Consider the following parametric NLP:

◆  Goal: given and corresponding minimizer , calculate
to characterize near

◆  Note: this is different than calculating a minimizer, for which
there are established methods

Parametric Nonlinear Programs (NLPs)

min
x

f (p,x)

s.t. g(p,x) ≤ 0

 p0 x0

∂x
∂p

(p0)
 x(p) p = p0

45

◆  Consider the following parametric NLP:

◆  A point is called a Karush-Kuhn-Tucker (KKT) point if

it satisfies the following equations:

KKT Equation System

min
x

f (p,x)

s.t. g(p,x) ≤ 0

∇x f (p0 ,x0)+
i=1

m

∑ µi∇xg(p0 ,x0) = 0,

g(p,x) ≤ 0,
µ ≥ 0,

µigi (p0 ,x0) = 0, i = 1,…,m

stationarity

 (p0 ,x0 ,µ0)

primal feasibility

dual feasibility

complementary
slackness

46

◆  Linear independence constraint qualification (LICQ) holds at :
the set of vectors are linearly independent,
where is the set of active constraints

◆  Strong second-order sufficient condition (SSOSC) holds at :

Regularity of NLP KKT Points

 d
T∇xx

2 L(p0 ,x0 ,µ0)d > 0, for all d ≠ 0 s.t. (∇x gi (p0 ,x0))T d = 0, i ∈A+ (p0 ,x0 ,µ0)

 {∇x gi (p0 ,x0) : i ∈A(p0 ,x0)}

 (p0 ,x0 ,µ0)

 (p0 ,x0)

 A(p0 ,x0) ={i : gi (p0 ,x0) = 0}

 A
+ (p0 ,x0 ,µ0) ={i : gi (p0 ,x0) = 0 < µ0,i} is the strongly active set

47

◆  Assumptions: KKT point satisfies LICQ and SSOSC and
strict complementarity (i.e.)

◆  Then are smooth near and sensitivities satisfy linear

equation system:

Classical Sensitivity System

 gi (p0 ,x0) < µ0,i for all i = 1,…,m
 (p0 ,x0 ,µ0)

(), ()x p pµ p = p0

Fiacco and McCormick, 1968. Wiley

∇xx
2 L ∇xg A+

−(∇xg A+)T 0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∂x
∂p
∂µ

A+

∂p

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
−∇xp

2 L

(∇pg A+)T

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∂µ
A−

∂p
= 0

48

◆  Let be an NLP KKT point; i.e.

◆  Observe that is equivalent to , so that

◆  Idea: regularity conditions allow for application of the nonsmooth

implicit function theorem to the nonsmooth KKT equation system
◆  Nonsmooth sensitivity system: which simplifies to…

Nonsmooth KKT Equation System

Φ(p,x,µ) =

∇x L(p,x,µ)
min(g(p,x),µ)
⎡

⎣
⎢

⎤

⎦
⎥ = 0

0 0 0,)(,p x µ

0 0 0

0 0 0

, ,)
(,)

(L∇ =
≤ − ⊥ ≥
x p x 0
0 g p x 0

µ
µ notation: 0 ≤ a ⊥ b ≥ 0 ⇔ a ≥ 0,b ≥ 0,ab = 0

 a ≥ 0,b ≥ 0,ab = 0 min(a,b) = 0

49

◆  Assumptions: KKT point satisfies LICQ and SSOSC

◆  Then are PC1 near and sensitivities
 (uniquely) satisfy nonsmooth equation system:

Nonsmooth Sensitivity System

 (p0 ,x0 ,µ0)

(), ()x p pµ p = p0

Stechlinski, Khan and Barton, SIAM Journal on Optimization. (2018)

∇xx
2 L ∇xg A+∪A0

−(∇xg A+∪A0)T 0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

X
U

A+∪A0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−∇xp
2 L

(∇pg A+)T

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

P

LMmin(− (∇pg A0)T P − (∇xg A0)T X,U
A0) = 0

 X = x '(p0;P)

 U = µ '(p0;P)

50

◆  Assumptions: KKT point satisfies LICQ and SSOSC and
strict complementarity

◆  Then are smooth near and sensitivities (uniquely)

satisfy linear equation system:

 (p0 ,x0 ,µ0)

(), ()x p pµ p = p0

∇xx
2 L ∇xg A+∪A0

−(∇xg A+∪A0)T 0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

X
U

A+∪A0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−∇xp
2 L

(∇pg A+)T

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
P

LMmin(− (∇pg A0)T P − (∇xg A0)T X,U
A0) = 0

Sensitivity Systems:
Smooth vs. Nonsmooth

51

u  Nonsmooth NLP sensitivity system admits a unique solution, which is
computationally relevant generalized derivative information

u  Recovers classical theory of Fiacco and McCormick in absence of
weakly active sets

u  Numerical solution is based on same ideas as calculating LD-
derivative of nonsmooth implicit function. There are three
approaches:
Ø  Cycle through selection functions (i.e. solve a number of classical sensitivity systems)
Ø  Directly solve nonsmooth sensitivity systems (e.g. via nonsmooth Newton methods),

which can be improved by fathoming weakly active constraints along the way in the spirit
of branch-locking techniques

Ø  Solve sequence of (convex?) QPs

u  Extension to nonunique multipliers is underway, where current
results only yield directional derivative information (Ralph & Dempe),
VIs via natural or normal maps

Summary

52

Acknowledgments
◆  Kamil Khan, Peter Stechlinski
◆  Novartis
◆  Statoil

