CppAD's Abs-normal Representation

Bradley M. Bell

Applied Physics Laboratory and
Institute for Health Metrics and Evaluation, University of Washington, bradbell@uw.edu

July 2, 2018

Non-Smooth Functions

$f(x)$
$f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ where the only non-smooth nodes in its computational graph are $|\cdot|$.

Non-Smooth Functions

$f(x)$
$f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ where the only non-smooth nodes in its computational graph are $|\cdot|$.
$a(x)$
Let s be number of $|\cdot|$ in f. We define $a: \mathbf{R}^{n} \rightarrow \mathbf{R}^{s}$ where $a_{i}(x)$ is the result for the i-th absolute value.

Smooth Functions

$z(x, u)$
There is a smooth $z: \mathbf{R}^{n+s} \rightarrow \mathbf{R}^{s}$ where $z_{i}(x, u)$ is argument to i-th absolute value when $u_{j}=a_{j}(x)$ for $j<i$.

Smooth Functions

$z(x, u)$
There is a smooth $z: \mathbf{R}^{n+s} \rightarrow \mathbf{R}^{s}$ where $z_{i}(x, u)$ is argument to i-th absolute value when $u_{j}=a_{j}(x)$ for $j<i$.
$y(x, u)$
There is a smooth $y: \mathbf{R}^{n+s} \rightarrow \mathbf{R}^{m}$ where $y(x, u)=f(x)$ when $u=a(x)$ for all i.

Smooth Functions

$z(x, u)$
There is a smooth $z: \mathbf{R}^{n+s} \rightarrow \mathbf{R}^{s}$ where $z_{i}(x, u)$ is argument to i-th absolute value when $u_{j}=a_{j}(x)$ for $j<i$.
$y(x, u)$
There is a smooth $y: \mathbf{R}^{n+s} \rightarrow \mathbf{R}^{m}$ where $y(x, u)=f(x)$ when $u=a(x)$ for all i.
$g(x, u)$
The function $g: \mathbf{R}^{n+s} \rightarrow \mathbf{R}^{m+s}$ is defined by

$$
g(x, u)=\left[\begin{array}{l}
y(x, u) \\
z(x, y)
\end{array}\right]
$$

Approximating $a(x)$

$$
z[\hat{x}](x, u)=z(\hat{x}, a(\hat{x}))+\partial_{x} z(\hat{x}, a(\hat{x}))(x-\hat{x})+\partial_{u} z(\hat{x}, a(\hat{x}))(u-a(\hat{x}))
$$

Approximating $a(x)$

$$
z[\hat{x}](x, u)=z(\hat{x}, a(\hat{x}))+\partial_{x} z(\hat{x}, a(\hat{x}))(x-\hat{x})+\partial_{u} z(\hat{x}, a(\hat{x}))(u-a(\hat{x}))
$$

Note that $z_{0}(x, u)$ does not depend on u :

$$
a_{0}[\hat{x}](x)=\left|z_{0}(\hat{x}, a(\hat{x}))+\partial_{x} z_{0}(\hat{x}, a(\hat{x}))(x-\hat{x})\right|
$$

Approximating $a(x)$

$$
z[\hat{x}](x, u)=z(\hat{x}, a(\hat{x}))+\partial_{x} z(\hat{x}, a(\hat{x}))(x-\hat{x})+\partial_{u} z(\hat{x}, a(\hat{x}))(u-a(\hat{x}))
$$

Note that $z_{0}(x, u)$ does not depend on u :

$$
\begin{aligned}
a_{0}[\hat{x}](x) & =\left|z_{0}(\hat{x}, a(\hat{x}))+\partial_{x} z_{0}(\hat{x}, a(\hat{x}))(x-\hat{x})\right| \\
a_{i}[\hat{x}](x) & =\mid z_{i}(\hat{x}, a(\hat{x}))+\partial_{x} z_{i}(\hat{x}, a(\hat{x}))(x-\hat{x}) \\
& +\sum_{j<i} \partial_{u(j)} z_{i}(\hat{x}, a(\hat{x}))\left(a_{j}[\hat{x}](x)-a_{j}(\hat{x})\right) \mid
\end{aligned}
$$

Approximating $a(x)$

$$
z[\hat{x}](x, u)=z(\hat{x}, a(\hat{x}))+\partial_{x} z(\hat{x}, a(\hat{x}))(x-\hat{x})+\partial_{u} z(\hat{x}, a(\hat{x}))(u-a(\hat{x}))
$$

Note that $z_{0}(x, u)$ does not depend on u :

$$
\begin{aligned}
a_{0}[\hat{x}](x) & =\left|z_{0}(\hat{x}, a(\hat{x}))+\partial_{x} z_{0}(\hat{x}, a(\hat{x}))(x-\hat{x})\right| \\
a_{i}[\hat{x}](x) & =\mid z_{i}(\hat{x}, a(\hat{x}))+\partial_{x} z_{i}(\hat{x}, a(\hat{x}))(x-\hat{x}) \\
& +\sum_{j<i} \partial_{u(j)} z_{i}(\hat{x}, a(\hat{x}))\left(a_{j}[\hat{x}](x)-a_{j}(\hat{x})\right) \mid \\
a(x) & =a[\hat{x}](x)+o(x-\hat{x})
\end{aligned}
$$

Representation

f.abs_normal_fun(g, a)

Given the ADFun<Base> object f for $f(x)$, this creates the two ADFun<Base> objects g, a for $g(x, u)$ and $a(x)$ respectively.

Representation

f.abs_normal_fun(g, a)

Given the ADFun<Base> object f for $f(x)$, this creates the two ADFun<Base> objects g, a for $g(x, u)$ and $a(x)$ respectively.

Advantages

Any AD operation can be computed for the smooth function g ; e.g., any order forward and reverse mode, sparsity patterns, and sparse derivatives.

Approximating $f(x)$

$$
y[\hat{x}](x, u)=y(\hat{x}, a(\hat{x}))+\partial_{x} y(\hat{x}, a(\hat{x}))(x-\hat{x})+\partial_{u} y(\hat{x}, a(\hat{x}))(u-a(\hat{x}))
$$

Approximating $f(x)$

$$
y[\hat{x}](x, u)=y(\hat{x}, a(\hat{x}))+\partial_{x} y(\hat{x}, a(\hat{x}))(x-\hat{x})+\partial_{u} y(\hat{x}, a(\hat{x}))(u-a(\hat{x}))
$$

$$
f(x)=y[\hat{x}](x, a[\hat{x}](x))+o(x-\hat{x})
$$

abs_eval(n, m, s, g-hat , g_jac , delta_x)
Evaluates $y[\hat{x}](x, a[\hat{x}](x))$

Approximating $f(x)$

$$
y[\hat{x}](x, u)=y(\hat{x}, a(\hat{x}))+\partial_{x} y(\hat{x}, a(\hat{x}))(x-\hat{x})+\partial_{u} y(\hat{x}, a(\hat{x}))(u-a(\hat{x}))
$$

$$
f(x)=y[\hat{x}](x, a[\hat{x}](x))+o(x-\hat{x})
$$

abs_eval(n, m, s, g_hat , g_jac , delta_x)
Evaluates $y[\hat{x}](x, a[\hat{x}](x))$

- g_hat is $g[\hat{x}, a(\hat{x})]$

Approximating $f(x)$

$$
y[\hat{x}](x, u)=y(\hat{x}, a(\hat{x}))+\partial_{x} y(\hat{x}, a(\hat{x}))(x-\hat{x})+\partial_{u} y(\hat{x}, a(\hat{x}))(u-a(\hat{x}))
$$

$$
f(x)=y[\hat{x}](x, a[\hat{x}](x))+o(x-\hat{x})
$$

abs_eval(n, m, s, g_hat , g_jac , delta_x)
Evaluates $y[\hat{x}](x, a[\hat{x}](x))$

- g_hat is $g[\hat{x}, a(\hat{x})]$
- g_jac is $g^{(1)}[\hat{x}, a(\hat{x})]$

Approximating $f(x)$

$$
y[\hat{x}](x, u)=y(\hat{x}, a(\hat{x}))+\partial_{x} y(\hat{x}, a(\hat{x}))(x-\hat{x})+\partial_{u} y(\hat{x}, a(\hat{x}))(u-a(\hat{x}))
$$

$$
f(x)=y[\hat{x}](x, a[\hat{x}](x))+o(x-\hat{x})
$$

abs_eval(n, m, s, g_hat , g_jac , delta_x)
Evaluates $y[\hat{x}](x, a[\hat{x}](x))$

- g_hat is $g[\hat{x}, a(\hat{x})]$
- $\mathrm{g}_{-} \mathrm{jac}$ is $g^{(1)}[\hat{x}, a(\hat{x})]$
- delta x is $x-\hat{x}$

abs_min_linear

Problem
minimize $\tilde{f}(x)=y[\hat{x}](x, a(\hat{x}))$ w.r.t x subject to $-b \leq x \leq b$ using the assumption that $\tilde{f}(x)$ is convex.

abs_min_linear

Problem
$\operatorname{minimize} \tilde{f}(x)=y[\hat{x}](x, a(\hat{x}))$ w.r.t x subject to $-b \leq x \leq b$ using the assumption that $\tilde{f}(x)$ is convex.

Algorithm

1. Start at with point $x=\hat{x}$ and C an empty set of cutting planes.

abs_min_linear

Problem
minimize $\tilde{f}(x)=y[\hat{x}](x, a(\hat{x}))$ w.r.t x subject to $-b \leq x \leq b$ using the assumption that $\tilde{f}(x)$ is convex.

Algorithm

1. Start at with point $x=\hat{x}$ and C an empty set of cutting planes.
2. Add affine apprimation for $\tilde{f}(x)$ at x to C.

abs_min_linear

Problem
minimize $\tilde{f}(x)=y[\hat{x}](x, a(\hat{x}))$ w.r.t x subject to $-b \leq x \leq b$ using the assumption that $\tilde{f}(x)$ is convex.

Algorithm

1. Start at with point $x=\hat{x}$ and C an empty set of cutting planes.
2. Add affine apprimation for $\tilde{f}(x)$ at x to C.
3. Minimize w.r.t x the maximum of the affine functions in C subject to $-b \leq x \leq b$ (this is an LP).

abs_min_linear

Problem
minimize $\tilde{f}(x)=y[\hat{x}](x, a(\hat{x}))$ w.r.t x subject to $-b \leq x \leq b$ using the assumption that $\tilde{f}(x)$ is convex.

Algorithm

1. Start at with point $x=\hat{x}$ and C an empty set of cutting planes.
2. Add affine apprimation for $\tilde{f}(x)$ at x to C.
3. Minimize w.r.t x the maximum of the affine functions in C subject to $-b \leq x \leq b$ (this is an LP).
4. If change in x for this this iteration is small, return x as solution. Otherwise, goto step 2.
