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Non-Smooth Functions

f (x)
f : Rn → Rm where the only non-smooth nodes in its
computational graph are | · |.

a(x)
Let s be number of | · | in f . We define a : Rn → Rs where ai (x) is
the result for the i-th absolute value.
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Smooth Functions

z(x , u)
There is a smooth z : Rn+s → Rs where zi (x , u) is argument to
i-th absolute value when uj = aj(x) for j < i .

y(x , u)
There is a smooth y : Rn+s → Rm where y(x , u) = f (x) when
u = a(x) for all i .

g(x , u)
The function g : Rn+s → Rm+s is defined by

g(x , u) =
[

y(x , u)
z(x , y)

]
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Approximating a(x)

z [x̂ ](x , u) = z(x̂ , a(x̂))+∂xz(x̂ , a(x̂))(x−x̂)+∂uz(x̂ , a(x̂))(u−a(x̂))

Note that z0(x , u) does not depend on u:

a0[x̂ ](x) = |z0(x̂ , a(x̂)) + ∂xz0(x̂ , a(x̂))(x − x̂)|

ai [x̂ ](x) =

∣∣∣∣∣∣zi (x̂ , a(x̂)) + ∂xzi (x̂ , a(x̂))(x − x̂)

+
∑
j<i

∂u(j)zi (x̂ , a(x̂))(aj [x̂ ](x)− aj(x̂))

∣∣∣∣∣∣
a(x) = a[x̂ ](x) + o(x − x̂)
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Representation

f.abs normal fun(g, a)
Given the ADFun<Base> object f for f (x), this creates the two
ADFun<Base> objects g, a for g(x , u) and a(x) respectively.

Advantages
Any AD operation can be computed for the smooth function g;
e.g., any order forward and reverse mode, sparsity patterns, and
sparse derivatives.
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Approximating f (x)

y [x̂ ](x , u) = y(x̂ , a(x̂))+∂xy(x̂ , a(x̂))(x−x̂)+∂uy(x̂ , a(x̂))(u−a(x̂))

f (x) = y [x̂ ](x , a[x̂ ](x)) + o(x − x̂)

abs eval(n, m, s, g hat , g jac , delta x)
Evaluates y [x̂ ](x , a[x̂ ](x))

I g hat is g [x̂ , a(x̂)]
I g jac is g (1)[x̂ , a(x̂)]
I delta x is x − x̂
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abs min linear

Problem
minimize f̃ (x) = y [x̂ ](x , a(x̂)) w.r.t x subject to −b ≤ x ≤ b using
the assumption that f̃ (x) is convex.

Algorithm

1. Start at with point x = x̂ and C an empty set of cutting
planes.

2. Add affine apprimation for f̃ (x) at x to C .
3. Minimize w.r.t x the maximum of the affine functions in C

subject to −b ≤ x ≤ b (this is an LP).
4. If change in x for this this iteration is small, return x as

solution. Otherwise, goto step 2.
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