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a(x)
Let s be number of | - | in f. We define a: R” — R® where a;(x) is
the result for the i-th absolute value.
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z(x, u)
There is a smooth z : R™"$ — RS where z(x, u) is argument to
i-th absolute value when uj = aj(x) for j < i.

y(x, u)
There is a smooth y : R™* — R™ where y(x, u) = f(x) when
u = a(x) for all i.

g(x, u)
The function g : R"™* — R™*5 is defined by
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Approximating a(x)
z[X](x, u) = z(%, a(X))+0xz(%, a(X))(x—X)+0uz(X, a(X))(u—a(X))

Note that zy(x, u) does not depend on u:

ao[X](x) = [20(%, a(X)) + Oxz0(%, a(%))(x — X))

alf() = |2(% a(%)) + Ocz(%, a())(x — %)

+ Y Oyl a®) (@lK10) - (%)

Jj<i

a(x) = alf)(x) + o(x — %)



Representation

f.abs normal fun(g, a)

Given the ADFun<Base> object f for f(x), this creates the two
ADFun<Base> objects g, a for g(x, u) and a(x) respectively.



Representation

f.abs normal fun(g, a)

Given the ADFun<Base> object f for f(x), this creates the two
ADFun<Base> objects g, a for g(x, u) and a(x) respectively.

Advantages

Any AD operation can be computed for the smooth function g;
e.g., any order forward and reverse mode, sparsity patterns, and
sparse derivatives.
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Approximating f(x)

YIRI(x; u) = y (%, a(%))+0xy (%, (%)) (x=X)+0uy (%, a(X))(u—a(X))

f(x) = y[&](x, a[X](x)) + o(x — X)
abs_eval(n, m, s, ghat , g_jac , delta_x)
Evaluates y[X](x, a[X](x))
» g hat is g[%, a(X)]
> g jac is g%, a(X)]

» deltaxis x — X
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abs_min_linear

Problem
minimize f(x) = y[X](x, a(X)) w.r.t x subject to —b < x < b using

the assumption that 7(x) is convex.
Algorithm
1. Start at with point x = X and C an empty set of cutting
planes.

2. Add affine apprimation for 7(x) at x to C.

3. Minimize w.r.t x the maximum of the affine functions in C
subject to —b < x < b (this is an LP).

4. If change in x for this this iteration is small, return x as
solution. Otherwise, goto step 2.



