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Continuous Piecewise Linear Function

definition: f(x) : D ∈ Rd 7→ R is a piecewise linear
function, if there exist a finite number of affine/line
functions pi(x):

f(x) ∈ {p1(x), p2(x), . . . , pM (x)} .
moreover, if f(x) is continuous, it is called continuous
piecewise linear function.
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Representations

piecewise representation

f(x) = pi(x),∀x ∈ Ωi.

with continuity condition

pi(x) = pj(x), ∀x ∈ Ωi

⋂
Ωj , ∀i, j

piecewise representations by boolean variables

vertex representation

x(j) =

K∑
k=0

dkjλ
k
j ,∀j f(x) =

d∑
j=1

K∑
k=0

f j(dkj )λ
k
j ,

where, dkj are breakpoints, satisfying:
∑K

k=1 λ
k
j = 1, λkj ≥ 0

and {λkj } is SOS2: special ordered set of type 2.
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Compact Representations

to represent a CPWL function as a sum/composition of
basic PWL functions;

f(x) =
∑M

m=1
wmBm(x).

composition of (finite) CPWL functions are still CPWL;
sum of (finite) CPWL functions are still CPWL.

properties

capability to represent all CPWL functions;
capability to approach any continuous function;
continuity is naturally guaranteed;
machine learning is applicable;
optimized as a regular non-smooth function.
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Canonical Representation and Hinging Hyperplanes

canonical CPWL representation1

f(x) = a>0 x + b0 +

M∑
m=1

wm|a>mx + bm|.

hinging hyperplanes2

f(x) = a>0 x + b0 +

M∑
m=1

wm max{0,a>mx + bm}.

1
Chua, Kang, Section-wise piecewise-linear functions: Canonical representation, properties,

and applications, Proc. of IEEE, 1977.
2
Breiman, Hinging hyperplanes for regression, classification and function approximation,

IEEE-TIT, 1993.
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Learning and Optimization

learn a and b from samples {xi, yi}Ni=1:

min
a,b,w

N∑
i=1

(
yi −

(
a>0 x + b0 +

M∑
m=1

wm max{0,a>mxi + bm}

))2

the function f(x) is PWL w.r.t. x and parameters a, b;
the problem is piecewise quadratic to a, b, for squared error;
the problem is piecewise linear to a, b, for absolute error.

Hinge Finding Algorithm3

for the m-th hinging hyperplane, select active set
Im = {i : a>mxi + bm > 0};
least squares on xi, i ∈ Im to update am and bm.

3
Ernst, Hinging hyperplane trees for approximation and identification, IEEE-CDC, 1998.
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Applications on Time-series Segmentation

number of subregions are controlled by number of basis function4

min
w,e

1

2

∑M

m=1
w2
m + γ

1

2

∑N

i=1
e2i +

∑M

m=1
µm|wm|

s.t. y(ti) = ei + w0 +
∑M

m=1
wmφm(ti), i = 1, 2, . . . , N,
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4
Huang, Matijás, Suykens, Hinging hyperplanes for time-series segmentation,

IEEE-TNNLS, 2013
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Limitation of Hinging Hyperplanes
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Towards Full Representation Capability

high level CPWL representation5

generalized hinging hyperplane6

Bm(x) = max
{
aTm0x + bm0,a

T
m1x + bm1, . . . ,a

T
mdx + bmd

}
in deep neural networks, max pooling and maxout7 share
the theoretical discussion of GHH.

adaptive hinging hyperplanes8

irredundant lattice representation9

smoothing hinging hyperplanes10
5
Julián, Desages, Agamennoni, High-level canonical piecewise linear representation using a

simplicial partition, IEEE-CS, 1999.
6
Wang, Sun, Generalization of hinging hyperplanes, IEEE-TIT, 2005.

7
Goodfellow, Warde-Farley, Mirza, Courville, Bengio, Maxout networks, 2013

8
Xu, Huang, Wang, Adaptive hinging hyperplanes and its applications in dynamic system

identification, Automatica, 2009
9
Xu, van den Boom, De Schutter, Wang, Irredundant lattice representations of continuous

piecewise affine functions, Automatica, 2016
10

Wang, Huang, Yeung, A neural network of smooth hinge functions, IEEE-TNN, 2010
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Compact Representation for Subregion

linear subregion, Ωi, where a CPWL function is linear:
Ωi is a polyhedron;
Ωi could be represented by upper/lower boundary function

Ωi =
{
x(d), | Li(x

(d−1)) ≤ x(1) ≤ Ui(x(d−1))
}
,

upper/lower boundaries are PWL functions in a lower space.
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Domain Partition based Neural Networks

a continuous piecewise linear function in Rd can be
represented by the boundary functions11,

f(x) =

M∑
m=1

wm max
{

0,
{
x(1)− Lm(x(d−1)),

Um(x(d−1))− Lm(x(d−1))
}}

,

recursive definition leads to deep structure;

initialization and training by back propagation.

11
Wang, Huang, Junaid, Configuration of continuous piecewise linear neural networks,

IEEE-TNN, 2008
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Deep PWL Neural Network

linear modules in convolutional neural networks
convolutional operator:

∑
i∈N

∑
j∈N wijFij

fully connected layer:
∑

i

∑
j wijFij

averaging pooling: 1
K

∑
i Fi

piecewise linear modules in convolutional neural networks
ReLu: max{0, u}
LeakyReLu: max{−τu, u}
max pooling: max{F1, F2, . . . , Fn}
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Non-parametric Models

support vector machine learns a discriminant function from
training data {xi, yi}Ni=1,xi ∈ Rd, yi ∈ {−1,+1}.

min
w,b

1

2
‖w‖2`2 + C

∑N

i=1
max

{
1− yi

(
wTφ(xi) + b

)
, 0
}
.

dual problem

min
α

1

2

∑N

i=1

∑N

j=1
yiαiK(xi,xj)αjyj −

∑N

i=1
αi

s.t.
∑N

i=1
yiαi = 0, 0 ≤ αi ≤ C,∀i.

kernel trick
K(xi,xj) = φ(xi)

Tφ(xj)

and

f(x) = wTφ(xi) + b =
∑N

i=1
yiαiK(xi,x) + b.
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Non-parametric Models

sparsity and support vectors

only a part of samples, support vector, have αi 6= 0;
sparsity is beneficial for storage and computation;
if K(xi,x) is piecewise linear, then only αi 6= 0 provides
non-convexity.
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Piecewise Linear Kernels

multiconlitron12: a separable model;

intersection kernel13 14 K(u,v) =
∑d

i=1 min{u(i),v(i)}
additive kernel;
subregion structure;

truncated `1 kernel (TL1 kernel)15:

K(u,v) = max{0, ρ− ‖u− v‖`1}
non-separable functions
flexible subregion structure;
non-PSD (positive semi-definite) kernel.

12
Li, Liu, Yang, Fu, Li, Multiconlitron:A general piecewise linear classifier, IEEE-TNN, 2011

13
Maji, Berg, Malik, Classification using intersection kernel support vector machines is

efficient, CVPR, 2008
14

Maji, Berg, Malik, Efficient classification for additive kernel SVMs, IEEE-TPAMI, 2013
15

Huang, Suykens, Wang, Hornegger, Maier, Classification with truncated l1 distance kernel,
IEEE-TNNLS, 2018.

the 125th Shanon Meeting 2018-6-25 PWL representation models 20/40



Representations for Continuous Piecewise Linear Functions
Parametric Models: PWL Neural Networks

Non-parametric Models: PWL Kernels
Optimization and Training for PWL Models

Conclusion

Indefinite Learning

indefinite learning

min
αi

1

2

∑N

i=1

∑N

j=1
yiαiK(xi,xj)αjyj −

∑N

i=1
αi

s.t.
∑N

i=1
yiαi = 0, 0 ≤ αi ≤ C,∀i.

there is no φ such that K(u,v) = φ(u)>φ(v);
the kernel matrix K : Kij = K(xi,xj) is non-PSD and the
problem is non-convex;

non-separable PWL kernels are likely to be indefinite.
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Indefinite Learning

reproducing kernel Hilbert space (RKHS) →
reproducing kernel Krĕın spaces (RKKS)16

feature space interpretation17

generalized representer theorem18

convex problem → non-convex problem;

kernel generated model;
eigenvalue cutting19/flipping20/squaring21;
finding the nearest PSD kernel22, e.g., minK̃�0 ‖K̃ − K‖F
non-convex optimization23.

16
G. Loosli, S. Canu, and C. S. Ong, Learning SVM in Krĕın spaces, TPAMI, 2016.

17
Y. Ying, C. Campbell, M. Girolami, Analysis of SVM with indefinite kernels, NIPS 2009

18
C. S. Ong, X. Mary, S. Canu, A. J. Smola, Learning with non-positive kernels, ICML 2004

19
E. Pekalska, et al., Kernel discriminant analysis for PSD/indefinite kernels, TPAMI, 2009.

20
V. Roth, J. Laub, M. Kawanabe, J. M. Buhmann, Optimal cluster preserving embedding

of nonmetric proximity data, TPAMI, 2003
21

H. Sun et al., LS regression with indefinite kernels and coefficient regul., ACHA, 2011
22

R. Luss, et al., SVM classification with indefinite kernels, NIPS 2008.
23

F. Schleif, P. Tino, Indefinite proximity learning: A review, Neural Computation, 2015
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LS-SVM

primal problem:

min
w,b,ξ

1

2
wTw + C

∑M

i=1
ξ2i

s.t. yi(w
Tφ(xi) + b) = 1− ξi, ∀i ∈ {1, . . . ,m}

dual problem:[
0 yT

y H + 1
γ I

]
[b, α1, . . . , αN ]T =

[
0
1

]
,

where I is an identity matrix, 1 is an all ones vector with
the proper dimension, and H is given by

Hij = yiyjKij = yiyjK(xi,xj).
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Indefinite LS-SVM

choose a non-PSD kernel K, the dual problem of LS-SVM is still easy

to solve, but it lacks of feature space interpretation.24

Theorem

The dual problem of

min
w+,w−,b,ξ

1

2
(wT

+w+ −wT
−w−) +

γ

2

N∑
i=1

ξ2
i

s.t. yi(w
T
+φ+(xi) + wT

−φ−(xi) + b) = 1− ξi, ∀i ∈ {1, 2, . . . , N}

is [
0 yT

y H + 1
γ
I

]
[b, α1, . . . , αM ]T =

[
0
1

]
.

24
Huang, Maier, Hornegger, Suykens, Indefinite kernels in least squares support vector

machine and principal component analysis, Applied and Comput. Harmonic Analysis, 2017
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Learning Performance of PWL Kernel

Table: Average Accuracy and Standard Deviation on Test Data

RBF kernel TL1 kernel
dataset M (σ by cross-validation) (ρ = 0.7n)

Qsar 528 86.92± 1.31% 86.05± 1.21%
Splice 1000 89.83± 0.09% 92.74± 0.02%
Guide3 1243 84.15± 3.45% 97.56± 0.00%
Madelon 2000 58.83± 0.00% 61.33± 0.00%
Spamb. 2300 93.32± 0.60% 94.05± 0.56%
ML-prove 3059 72.48± 0.32% 79.08± 0.00%
Guide1 3089 96.84± 0.16% 97.12± 0.04%
Wilt 4339 85.80± 0.74% 86.80± 0.44%
Phish. 5528 95.92± 0.30% 93.83± 0.48%
Magic 9510 86.48± 0.45% 86.04± 0.43%
RNA 59535 96.66± 0.20% 95.74± 0.22%
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Indefinite kernel PCA

primal problem:

max
w,ξ

γ

2

∑M

i=1
ξ2i −

1

2
wTw

s.t. ξi = wT (φ(xi)− µ̂φ),∀i ∈ {1, . . . ,M},

where µ̂φ is the centering term, i.e., µ̂φ = 1
m

∑M
i=1 φ(xi).

dual problem:
Ωα = λα,

where the centered kernel matrix Ω is induced from K:

Ωij = K(xi,xj)−
1

M

∑M

r=1
K(xi, xr)

− 1

M

∑M

r=1
K(xj , xr) +

1

M2

∑M

r=1

∑M

s=1
K(xr, xs).

a non-PSD kernel can also be directly used.
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Indefinite kernel PCA with PWL kernel
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Figure: Reduce data of two classes in three dimensional space into
two dimensional space
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Example 1: Chiller Plants Optimization

operation optimization for centrifugal chiller plants
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Example 1: Chiller Plants Optimization

model the input-output relationship by PWL functions;
surrogate optimization via sub linear programmings;

min
α

f0(α)

s.t. fi(α) ≤ 0

hi(α) = 0.
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Example 2: PVC Production Process Optimization

PVC production process
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Example 2: PVC Production Process Optimization

equations: 13871

optimization variables: 5064 (discrete), 8119 (continuous)

optimization time (MILP): around 2000 s (MINLP: around 14000 s)
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PWL Optimization Problems

optimization based on learned PWL models;
for unknown or complicated function g(x), model a
surrogate PWL function f(x) and optimize f(x);
discussion on specific PWL model, e.g., local optimality25

and global heuristic;
training for PWL models

piecewise linear penalty/loss → piecewise linear optimization
`1-norm regularization term, total variation, non-convex
sparsity enhancer26 27 p(u) =

∑K
k=1 |u[k]|

absolute loss, quantile loss (k-th maximum loss), hinge loss,
ramp loss, ...

smooth penalties/loss → piecewise smooth optimization
`2-norm regularization term
squared loss, sigmoid loss, logarithmic loss, ....

25
Huang, Xu, Wang, Exact penalty and optimality condition for nonseparable continuous

piecewise linear programming, Journal of Optimization Theory and Applications, 2012
26

Wang, Yin, Sparse signal recon. via iterative support detection, SIAM. Imag. Sci. 2010
27

Huang, Van Huffel, Suykens, Two-level `1 minimization for CS., Signal Processing, 2015
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Example 3: Ramp-LPSVM

`1-norm penalty (sparsity) + ramp loss (robustness)28;

p(u) =
∑n

i=1 |u(i)|, lramp(u) = max{0,min{u, 1}};
ramp loss linear programming SVM

min
α

µ
∑
i

|αi|+
1

N

N∑
i=1

lramp

(
1− yi

(∑N

j=1
αiK(xi,xj)

))
difference of convex functions:

min
α

µ
∑
i

|αi|+
1

N

N∑
i=1

max

{
1− yi

(∑N

j=1
αiK(xi,xj)

)
, 0

}

− 1

N

N∑
i=1

max

{
−yi

(∑N

j=1
αiK(xi,xj)

)
, 0

}
28

Huang, Shi, Suykens, Ramp loss linear programming support vector machine, JMLR, 2014.
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Example 3: Ramp-LPSVM

solving ramp-LPSVM
linear programming for a local optimum;
hill detouring29, i.e., search on contour lines of a concave
PWL function;
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29
Huang, Xu, Mu, Wang, The hill detouring method for minimizing hinging hyperplanes

functions, Computers & Operations Research, 2012.
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Example 3: Ramp-LPSVM

Table: Accuracy on Test Data and Number of SV (10% outliers)

Spect Monk1 Monk2 Monk3 Breast

C-SVM 81.42% #79 76.22% #51 72.41% #99 80.05% #57 89.69% #34
ramp-LPSVM 87.88% #34 79.33% #51 81.57% #70 83.43% #39 93.35% #24

Pima Trans. Haber. Ionos.

C-SVM 61.66% #61 70.33% #73 70.65% #42 85.79% #78
ramp-LPSVM 68.51% #37 75.28% #8 74.62% #4 90.35% #29

robustness to outliers is improved;

sparsity is enhanced;

algorithm is not applicable to large-scale problems.
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Outline

1 Representations for Continuous Piecewise Linear Functions

2 Parametric Models: PWL Neural Networks

3 Non-parametric Models: PWL Kernels

4 Optimization and Training for PWL Models

5 Conclusion

the 125th Shanon Meeting 2018-6-25 PWL representation models 37/40



Representations for Continuous Piecewise Linear Functions
Parametric Models: PWL Neural Networks

Non-parametric Models: PWL Kernels
Optimization and Training for PWL Models

Conclusion

Conclusion
compact continuous piecewise linear models

parametric models and its link to neural networks:
DP-CPLNN, AHH, SHH, . . .
non-parametric models and indefinite learning: TL1 kernel,
indefinite LS-SVM, and indefinite kPCA, . . .

optimization based on compact piecewise linear models
surrogate optimization for chiller plants and PVC
production process
machine learning based on piecewise linear models, e.g.,
ramp-LPSVM

Outlook
learning behavior and interpretation

deep piecewise linear neural networks
piecewise linear indefinite kernels

piecewise linear optimization
fast local search and efficient global search
training piecewise linear neural networks

conversation among different piecewise linear models
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