How Interval Measurement Uncertainty Affects the Results of Data Processing: A Calculus-Based Approach to Computing the Range of a Box

Andrew Pownuk and Vladik Kreinovich Computational Science Program University of Texas at El Paso, El Paso, TX 79968, USA ampownuk@utep.edu, vladik@utep.edu

Need for Indirect
Need to Take into
Case of Interval
Resulting Problem
Simplest Case When
Discussion
Case When the
General Case: Analysis
General Case: Algorithm
Home Page
Title Page
Page 1 of 25
Go Back
Full Screen
Close
Quit

- 1. Need for Indirect Measurements
 - In many practical situations:
 - we are interested in the values of the quantities y_1, \ldots, y_m
 - which are difficult or even impossible to measure directly.
 - Since we cannot measure these quantities directly, a natural idea is to measure them *indirectly*, i.e.:
 - to measure related quantities x_1, \ldots, x_n which are related to y_j by known relations, an
 - to use appropriate algorithms to find the values of the desired quantities:

$$y_1 = f_1(x_1, \dots, x_n); \dots, y_m = f_m(x_1, \dots, x_n).$$

• *Comment.* In the real world, the relations are usually smooth.

Need for Indirect		
Need to Take into		
Case of Interval		
Re	esulting Pr	oblem
Si	mplest Cas	se When
D	iscussion	
Ca	ase When a	the
Ge	eneral Case	: Analysis
Ge	eneral Case	e: Algorithm
		Page
	Title	Page
	Title ∢∢	Page
	••	•
	••	
	Image 2	•
	Image Image Go	>> 2 of 25
	Image Image Go Full	
	Image Page Go Full Ch	2 of 25 Back

- 2. Need to Take into Account Measurement Uncertainty
 - In practice, measurements are never absolutely precise.
 - The measurement result \tilde{x}_i is, in general, different from the actual (unknown) values of the corr. quantity.
 - When we plug in $\tilde{x}_i \neq x_i$, we, in general, get the values $\tilde{y}_j = f_j(\tilde{x}_1, \ldots, \tilde{x}_n)$ which are different from y_j .
 - How can we gauge the resulting uncertainty in y_j ?

3. Case of Interval Measurement Uncertainty

- In many practical situations:
 - the only information that we have about the measurement error $\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i x_i$
 - is the upper bound Δ_i provided by the manufacture of the corresponding measuring instrument.
- If the manufacturer provide no such bound, then
 - it is not a measuring instrument,
 - it is a device for producing wild guesses.
- In this case:
 - once we know the measurement result \widetilde{x}_i ,
 - the only information we have about x_i is that it is somewhere on the interval $[\underline{x}_i, \overline{x}_i]$, where

$$\underline{x}_i \stackrel{\text{def}}{=} \widetilde{x}_i - \Delta_i \text{ and } \overline{x}_i \stackrel{\text{def}}{=} \widetilde{x}_i + \Delta_i$$

Need for Indirect		
Need to Take into		
Case of Interval		
Resulting Problem		
Simplest Case When		
Discussion		
Case When the		
General Case: Analysis		
General Case: Algorithm		
Home Page		
Title Page		
•• ••		
Page 4 of 25		
Go Back		
Full Screen		
Close		
Quit		

4. Case of Interval Uncertainty (cont-d)

- There is no a priori known relation between x_i 's.
- So, the set of all possible values of x_i should not depend on the values of all other quantities x_j , $j \neq i$.
- Thus, the set of all possible values of the tuple $x = (x_1, \ldots, x_n)$ is the box $[\underline{x}_1, \overline{x}_1] \times \ldots \times [\underline{x}_n, \overline{x}_n]$.

5. Resulting Problem

- Once we know that x belongs to the box, what are the possible values of the tuple $y = (y_1, \ldots, y_m)$?
- In mathematical terms, what is the range of the box under the mapping f?
- In this talk, we describe calculus-based techniques for solving this problem.

Ne	eed for Ind	lirect	
Need to Take into			
Cá	ase of Inte	rval	
Re	esulting Pr	oblem	
Si	mplest Cas	se When	
Di	iscussion		
Cá	ase When	the	
Ge	eneral Case	e: Analysis	
Ge	eneral Case	e: Algorith	m
	Ноте	e Page	
	Title	Page	
	••	••	
	•	Þ	
	Page	6 of 25	
	Go	Back	
	Full S	Screen	
	CI	ose	
	Q	uit	

- 6. Simplest Case When We Have Only One Desired Quantity y_1 : Analysis of the Problem
 - Let us start with the simplest case, when we have only one desired quantity y_1 .
 - In this case, we are interested in the range of the function $f_1(x_1, \ldots, x_n)$ when each x_i is in $[\underline{x}_i, \overline{x}_i]$.
 - For smooth (even for continuous) functions, this range is connected and is, thus, an interval $[y_1, \overline{y}_1]$, where:
 - $-\underline{y}_1$ is the smallest possible value of the function $\overline{f}_1(x_1,\ldots,x_n)$ on the given box, and
 - $-\overline{y}_1$ is the largest possible value of $f_1(x_1,\ldots,x_n)$ on the given box.

Need for Indirect			
Ne	eed to Take	e into	
Case of Interval			
Re	esulting Pro	oblem	
Si	mplest Cas	e When	
Di	iscussion		
Cá	ase When t	he	
Ge	eneral Case	: Analysis	
Ge	eneral Case	: Algorithm	
	Home	Page	
	Title	Page	
	44	••	
	•		
	Page 7	of 25	
	Go E	Back	
	Full S	creen	
	Cla	ose	
	Qı	uit	

- 7. Simplest Case When We Have Only One Desired Quantity y_1 (cont-d)
 - For each variable x_i , the maximum (or minimum) of the expression $y_1 = f_1(x, \ldots, x_n)$ is attained:
 - either at one of the endpoints of this interval, i.e., for $x_i = \underline{x}_i$ or $x_i = \overline{x}_i$,
 - or inside the corresponding interval $(\underline{x}_i, \overline{x}_i)$.
 - According to calculus:
 - if the maximum or minimum is attained inside an interval,
 - then the corresponding derivative $\frac{\partial f_1}{\partial x_i}$ is = 0.

Need for Indirect			
Need to Take into			
Case of Interval			
Re	esulting Pr	oblem	
Si	mplest Cas	se When	
Di	iscussion		
Cá	ase When a	the	
Ge	eneral Case	: Analysis	
Ge	eneral Case	e: Algorithm	
	Ноте	e Page	
	Title	Page	
	••	>>	
	•		
	Page 8	3 of 25	
	Go Back		
	Full S	Screen	
	Cle	ose	
	Q	uit	

- 8. Simplest Case When We Have Only One Desired Quantity y_1 (cont-d)
 - So, for each *i*, it is sufficient to consider three possible cases:

- the case when
$$x_i = \underline{x}_i$$
;
- the case when $x_i = \overline{x}_i$, and
- the case when $\frac{\partial f_1}{\partial x_i} = 0$.

- Thus:
 - to find the minimum \underline{y}_1 and the maximum \overline{y}_1 of the function $y_1 = f_1(x_1, \ldots, x_b)$ over the box,
 - it is sufficient to consider all possible combinations of these 3 cases.
- In other words, we arrive at the following algorithm.

- 9. Case When We Have Only One Desired Quantity y_1 : Algorithm
 - Consider all systems of equations, in which, for each i, we have one of the three alternatives:

$$x_i = \underline{x}_i, \ x_i = \overline{x}_i, \ \text{and} \ \frac{\partial f_1}{\partial x_i} = 0$$

- There are 3^n such systems.
- For each of these systems:
 - we find the corresponding values $x = (x_1, \ldots, x_n)$ and

- we compute the corresponding value $y_1 = f(x_1, \ldots, x_n)$.

• The largest of thus computed values is \overline{y}_1 , the smallest is \underline{y}_1 .

10. Discussion

- This algorithm requires solving an exponential number of systems and thus takes exponential time.
- This is, however, unavoidable, since it is known that:
 - already for quadratic functions $f_1(x_1,\ldots,x_n)$,
 - the problem of computing the bounds \underline{y} and \overline{y} is NP-hard.
- This means that:
 - unless P=NP (which most computer scientists believe to be impossible),
 - super-polynomial (e.g., exponential) computation time is unavoidable – at least for some inputs.

Need for Indirect			
Need to Take into			
Case of Interval			
Re	esulting Pr	oblem	
Si	mplest Ca	se When	
Di	scussion		
Cá	se When	the	
Ge	eneral Case	e: Analysis	
Ge	eneral Cas	e: Algorithm	
	Home	e Page	
	Title	Page	
	Title	Page	
	44	••	
]	↓ ↓ Page 1	>>> >>>	
	↓↓ Page 1 Go	••• •• 1 of 25	
	Image 1 Page 1 Go Full 1	I of 25	

11. Discussion (cont-d)

- Exponential time does not mean that the algorithm is not practical.
- For reasonably small n, solving 3^n system is quite reasonable.
- For example, for n = 10, we need to solve less than 60,000 systems.
- It is a large number, but it is quite doable.
- For n = 15, we need to solve about 5 million systems still possible.

Ne	eed for Ind	lirect
Need to Take into		
Case of Interval		
Re	esulting Pr	oblem
Si	mplest Ca	se When
Di	scussion	
Cá	se When	the
Ge	eneral Case	e: Analysis
Ge	eneral Case	e: Algorithm
	Ноте	e Page
	Title	Page
	44	••
	◀	
	Page 1	2 of 25
	Go	Back
	Full S	Screen
	CI	ose
	Q	uit

12. What We Plan to Do Next

- In the following, we show how we can extend this calculusbased approach to the general case.
- We thus reduce:
 - the difficult-to-solve problem of finding the range
 - to more well-studied problems of solving systems of equations.

Need for Indirect		
Need to Take into		
Case of Interval		
Resulting Pro	oblem	
Simplest Cas	e When	
Discussion		
Case When t	he	
General Case	: Analysis	
General Case	: Algorithm	
Home	Page	
Title	Page	
44	••	
•		
Page 1.	3 of 25	
Go E	Back	
Full S	creen	
Cla	ose	
Qu	ıit	

- 13. Case When the Number m of Desired Quantities Is = the Number n of Auxiliary Ones
 - To find the range means to find its border.
 - At almost all points on the border, there is locally at least one tangent plane.
 - A plane in an *m*-dimensional space has the form

$$\sum_{j=1}^m c_j \cdot y_i = c_0$$

• Thus, at this border point $y = (y_1, \ldots, y_m)$, the following linear expression attains its local max or min:

$$y = \sum_{j=1}^{m} c_j \cdot y_j = f(x_1, \dots, x_n) \stackrel{\text{def}}{=} \sum_{j=1}^{m} c_j \cdot f_j(x_1, \dots, x_n)$$

14. Case When m = n (cont-d)

- Similarly to the previous case, this may mean that one of the inputs x_i :
 - either attains its largest possible value \overline{x}_i
 - or its smallest possible value $x_i = \underline{x}_i$.
- In this case, the corresponding condition $x_i = \underline{x}_i$ or $x_i = \overline{x}_i$ determines the (n-1)-dimensional set.
- This set could be part of the border.
- It may also mean that the max or min of the linear function is attained when all x_i are inside.
- In this case, we get $\frac{\partial f}{\partial x_i} = 0$ for all *i*, i.e., we get

$$\sum_{j=1}^{m} c_j \cdot \frac{\partial f_j}{\partial x_i} = 0 \text{ for all } i.$$

15. Case When m = n (cont-d)

• We get
$$\sum_{j=1}^{m} c_j \cdot \frac{\partial f_j}{\partial x_i} = 0$$
 for all i .

• In algebraic terns, the existence of $c_j \neq 0$ means that m = n gradient vectors are linearly dependent:

$$\left(\frac{\partial f_j}{\partial x_1}, \dots, \frac{\partial f_j}{\partial x_n}\right)$$

• According to linear algebra, this means that the determinant of the Jacobian matrix is equal to 0:

$$\det \left\| \frac{\partial f_j}{\partial x_i} \right\| = 0$$

• So, we arrive at the following algorithm.

16. Case When m = n: Algorithm

- To find the border of the desired range, for each *i* from 1 to m = n, we form two systems of equations:
 - the system $y_j = f_j(x_1, \ldots, x_n)$ in which we substitute $x_i = \underline{x}_i$, and
 - the system in which we substitute $x_i = \overline{x}_i$.
- Each of these systems provides a set of co-dimension 1 that could potentially serve as part of the border.
- To these possible border sets, we add the set corresponding to the equation $\det(\partial f_j/\partial x_i) = 0$.
- This equation defined a set of co-dimension 1.
- Plugging this set into $y_j = f_j(x_1, \ldots, x_n)$, we get a y-set of co-dimension one.
- This set can also be part of the border.

17. Case When m = n: Algorithm (cont-d)

- We know that the actual border can contain only segments of the above type.
- So once we have computed all these segments, we can reconstruct the border.

Need to Tale into		
Need to Take into		
Case of Interval		
Resulting Problem		
Simplest Case When		
Discussion		
Case When the		
General Case: Analysis		
General Case: Algorithm		
Home Page		
Title Page		
44 >>		
Page 18 of 25		
Go Back		
Full Screen		
Close		
Quit		

18. General Case: Analysis of the Problem

- We have already considered the case when m = n.
- There are two remaining cases: when n < m and when m < n.
- When n < m, the set of all possible values of the tuple y is of of smaller dimension than the m.
- So, this set is its own boundary.
- Let us now consider the case when m < n.
- In this case, also, some linear combination attains its max or min:

$$f(x_1,\ldots,x_n) = \sum_{j=1}^m c_j \cdot f_j(x_1,\ldots,x_n).$$

• Let v denote the number of inputs x_i for which at this max-or-min point, we have $x_i = \underline{x}_i$ or $x_i = \overline{x}_i$.

Need for Indirect		
Need to Take into		
Case of Interval		
Resulting Problem		
Simplest Case When		
Discussion		
Case When the		
General Case: Analysis		
General Case: Algorithm		
Home Page		
Title Page		
•• ••		
• •		
Page 19 of 25		
Go Back		
Full Screen		
Close		
Quit		

19. General Case (cont-d)

• For each of the remaining n - v variables x_i , we then have the equation

$$\sum_{j=1}^{m} c_j \cdot \frac{\partial f_j}{\partial x_i} = 0.$$

- This equality must hold for all (n v) values of i, so we must have (n v) equations.
- We can select one of the values c_j equal to 1. Then:
 - the other m-1 values of c_j can be determining
 - if we consider the first m-1 conditions as a system of linear equations with m-1 unknowns.
- We substitute these values for c_j into the remaining n v (m 1) equalities.
- We thus get n v (m 1) equalities that relate n v unknowns.

20. General Case (cont-d)

- In general, each additional equality imposed on elements of a set decreases its dimension by 1.
- For example, in the 3-D space:
 - the set of all the points that satisfy a certain equality is usually a 2-D surface,
 - the set of points that satisfy two independent equalities in a 1-D line, etc.
- In our case:
 - the dimension of the set of all the (n-v)-dimensional tuples x that satisfy all n - v - (m - 1) equalities
 - is equal to the difference

$$(n-v) - (n-v - (m-1)) = m - 1.$$

• The image of this (m-1)-dimensional set under the transformation $y_j = f_j(x)$ is also (m-1)-dimensional.

Need for Indirect		
Need to Take into		
Case of Interval		
Re	esulting Pr	oblem
Si	mplest Ca	se When
Di	scussion	
Cá	se When	the
Ge	eneral Case	e: Analysis
Ge	eneral Case	e: Algorithm
	Home	e Page
	Title	Page
	44	••
	44	••
	•	
	◀ Page 2	▶ 21 of 25
	◀ Page 2	
	Page 2 Go	▶ 21 of 25
	↓ Page 2 Go Full 5	P1 of 25 Back
	↓ Page 2 Go Full 5	P1 of 25 Back

21. General Case (cont-d)

- The image of a (m-1)-dimensional set under the transformation $y_j = f_j(x)$ is also (m-1)-dimensional.
- So it forms a surface in the *m*-dimensional space of all possible tuples $y = (y_1, \ldots, y_m)$.
- As a result, we get the following algorithm.

22. General Case: Algorithm

- We consider all possible subsets I of the set $\{1, \ldots, n\}$ of all indices of the inputs x_i .
- For each such subset I of size v, we consider all 2^v possible combinations of values \underline{x}_i and \overline{x}_i .
- For each such combination, we consider the following system of equations for all $i \notin I$:

$$\sum_{j=1}^{m} c_j \cdot \frac{\partial f_j}{\partial x_i} = 0.$$

- We can set up one of the values c_j to 1 and the first m-1 equations to describe c_j as a function of x_1, \ldots, x_m .
- We substituting the resulting expressions for c_j in terms of x_i into the remaining n v (m 1) equalities.
- We thus get a (m-1)-dimensional set of tuples x.

23. General Case: Algorithm (cont-d)

- Substituting this set of tuples into the formula $y_j = f_j(x)$, we get a (m-1)-dimensional set of y-tuples.
- We thus get several (m-1)-dimensional sets.
- We know that the actual border can only consist of the above fragments.

24. Acknowledgments

This work was supported in part by the National Science Foundation grant HRD-1242122 (Cyber-ShARE Center).

Ne	eed for Indirect			
Ne	leed to Take into			
Case of Interval				
Resulting Problem				
Simplest Case When				
Discussion				
Case When the				
General Case: Analysis				
General Case: Algorithm				
	Home Page			
	Title Page			
	44			
	••			
	•			
	Page 25 of 25			
	Go Back			
	Full Screen			
	Close			
	Quit			