How Interval Measurement

 Uncertainty Affects the Results of Data Processing: A Calculus-Based Approach to Computing the Range of a BoxAndrew Pownuk and Vladik Kreinovich Computational Science Program
University of Texas at El Paso, El Paso, TX 79968, USA
ampownuk@utep.edu, vladik@utep.edu

Need to Take into

Case of Interval .

Resulting Problem
Simplest Case When

Discussion

Case When the

General Case: Analysis

General Case: Algorithm
Home Page

Full Screen

Close

- In many practical situations:
- we are interested in the values of the quantities y_{1}, \ldots, y_{m}
- which are difficult - or even impossible - to measure directly.
- Since we cannot measure these quantities directly, a

Discussion

Case When the

General Case: Analysis
General Case: Algorithm
Home Page
natural idea is to measure them indirectly, i.e.:

- to measure related quantities x_{1}, \ldots, x_{n} which are related to y_{j} by known relations, an
- to use appropriate algorithms to find the values of the desired quantities:

$$
y_{1}=f_{1}\left(x_{1}, \ldots, x_{n}\right) ; \ldots, y_{m}=f_{m}\left(x_{1}, \ldots, x_{n}\right)
$$

- Comment. In the real world, the relations are usually smooth.

Title Page
2. Need to Take into Account Measurement Uncertainty

Need to Take into

Case of Interval

Resulting Problem

Simplest Case When

Discussion

Case When the

General Case: Analysis

General Case: Algorithm
Home Page

- How can we gauge the resulting uncertainty in y_{j} ?

Title Page

- In many practical situations:
- the only information that we have about the measurement error $\Delta x_{i} \stackrel{\text { def }}{=} \widetilde{x}_{i}-x_{i}$
- is the upper bound Δ_{i} provided by the manufacturer of the corresponding measuring instrument.
- If the manufacturer provide no such bound, then

Home Page

- it is not a measuring instrument,
- it is a device for producing wild guesses.
- In this case:
- once we know the measurement result \widetilde{x}_{i},
- the only information we have about x_{i} is that it is somewhere on the interval $\left[\underline{x}_{i}, \bar{x}_{i}\right]$, where

```
    Title Page
```

$$
\underline{x}_{i} \stackrel{\text { def }}{=} \widetilde{x}_{i}-\Delta_{i} \text { and } \bar{x}_{i} \stackrel{\text { def }}{=} \widetilde{x}_{i}+\Delta_{i}
$$

4. Case of Interval Uncertainty (cont-d)

- There is no a priori known relation between x_{i} 's.
- So, the set of all possible values of x_{i} should not depend on the values of all other quantities $x_{j}, j \neq i$.
- Thus, the set of all possible values of the tuple $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ is the box $\left[\underline{x}_{1}, \bar{x}_{1}\right] \times \ldots \times\left[\underline{x}_{n}, \bar{x}_{n}\right]$.

Case of Interval.

Resulting Problem

Simplest Case When

Discussion

Case When the

General Case: Analysis

General Case: Algorithm
Home Page

Title Page

5. Resulting Problem

- Once we know that x belongs to the box, what are the possible values of the tuple $y=\left(y_{1}, \ldots, y_{m}\right)$?
- In mathematical terms, what is the range of the box under the mapping f ?
- In this talk, we describe calculus-based techniques for solving this problem.

Resulting Problem

Simplest Case When

Discussion

Case When the .

General Case: Analysis
General Case: Algorithm
Home Page

Title Page

44

Full Screen

Close

Quit
6. Simplest Case When We Have Only One De-

- Let us start with the simplest case, when we have only one desired quantity y_{1}.
- In this case, we are interested in the range of the function $f_{1}\left(x_{1}, \ldots, x_{n}\right)$ when each x_{i} is in $\left[\underline{x}_{i}, \bar{x}_{i}\right]$.
- For smooth (even for continuous) functions, this range

Home Page is connected and is, thus, an interval $\left[\underline{y}_{1}, \bar{y}_{1}\right]$, where:

- \underline{y}_{1} is the smallest possible value of the function $\bar{f}_{1}\left(x_{1}, \ldots, x_{n}\right)$ on the given box, and
- \bar{y}_{1} is the largest possible value of $f_{1}\left(x_{1}, \ldots, x_{n}\right)$ on the given box.

Title Page

44
7. Simplest Case When We Have Only One De-

- For each variable x_{i}, the maximum (or minimum) of the expression $y_{1}=f_{1}\left(x, \ldots, x_{n}\right)$ is attained:
- either at one of the endpoints of this interval, i.e., for $x_{i}=\underline{x}_{i}$ or $x_{i}=\bar{x}_{i}$,
- or inside the corresponding interval ($\underline{x}_{i}, \bar{x}_{i}$).
- According to calculus:

Title Page

- if the maximum or minimum is attained inside an interval,
- then the corresponding derivative $\frac{\partial f_{1}}{\partial x_{i}}$ is $=0$.

8. Simplest Case When We Have Only One De-

- So, for each i, it is sufficient to consider three possible cases:
- the case when $x_{i}=\underline{x}_{i}$;
- the case when $x_{i}=\bar{x}_{i}$, and
- the case when $\frac{\partial f_{1}}{\partial x_{i}}=0$.

Simplest Case When

Discussion

Case When the

General Case: Analysis
General Case: Algorithm
Home Page

- Thus:
- to find the minimum \underline{y}_{1} and the maximum \bar{y}_{1} of the function $y_{1}=f_{1}\left(x_{1}, \ldots, x_{b}\right)$ over the box,
- it is sufficient to consider all possible combinations of these 3 cases.
- In other words, we arrive at the following algorithm.

Title Page
9. Case When We Have Only One Desired Quantity y_{1} : Algorithm

- Consider all systems of equations, in which, for each i, we have one of the three alternatives:

$$
x_{i}=\underline{x}_{i}, \quad x_{i}=\bar{x}_{i}, \text { and } \frac{\partial f_{1}}{\partial x_{i}}=0 .
$$

- There are 3^{n} such systems.
- For each of these systems:
- we find the corresponding values $x=\left(x_{1}, \ldots, x_{n}\right)$ and
- we compute the corresponding value $y_{1}=f\left(x_{1}, \ldots, x_{n}\right)$.
- The largest of thus computed values is \bar{y}_{1}, the smallest

Go Back is \underline{y}_{1}.

Full Screen

Close

Quit

- This algorithm requires solving an exponential number of systems and thus takes exponential time.
- This is, however, unavoidable, since it is known that:
- already for quadratic functions $f_{1}\left(x_{1}, \ldots, x_{n}\right)$,
- the problem of computing the bounds \underline{y} and \bar{y} is NP-hard.
- This means that:
- unless $\mathrm{P}=\mathrm{NP}$ (which most computer scientists believe to be impossible),
- super-polynomial (e.g., exponential) computation time is unavoidable - at least for some inputs.

Resulting Problem
Simplest Case When
Discussion
Case When the .

General Case: Analysis
General Case: Algorithm
Home Page

Title Page

11. Discussion (cont-d)

- Exponential time does not mean that the algorithm is not practical.
- For reasonably small n, solving 3^{n} system is quite reasonable.
- For example, for $n=10$, we need to solve less than 60,000 systems.
- It is a large number, but it is quite doable.

Case of Interval.
Resulting Problem

Simplest Case When
Discussion
Case When the

General Case: Analysis
General Case: Algorithm
Home Page

Title Page

- In the following, we show how we can extend this calculusbased approach to the general case.
- We thus reduce:
- the difficult-to-solve problem of finding the range
- to more well-studied problems of solving systems of equations.

Resulting Problem

Simplest Case When

Discussion

Case When the .

General Case: Analysis
General Case: Algorithm
Home Page

Title Page

Go Back

Full Screen

Close

Quit
13. Case When the Number m of Desired Quantities Is $=$ the Number n of Auxiliary Ones

- To find the range means to find its border.
- At almost all points on the border, there is - locally at least one tangent plane.
- A plane in an m-dimensional space has the form

$$
\sum_{j=1}^{m} c_{j} \cdot y_{i}=c_{0}
$$

Home Page

Title Page
44
4

Page 14 of 25

Go Back

Full Screen

Close

Quit

- Similarly to the previous case, this may mean that one of the inputs x_{i} :
- either attains its largest possible value \bar{x}_{i}
- or its smallest possible value $x_{i}=\underline{x}_{i}$.
- In this case, the corresponding condition $x_{i}=\underline{x}_{i}$ or $x_{i}=\bar{x}_{i}$ determines the ($n-1$)-dimensional set.

Resulting Problem
Simplest Case When
Discussion
Case When the .
General Case: Analysis.
General Case: Algorithm
Home Page

- This set could be part of the border.
- It may also mean that the max or min of the linear function is attained when all x_{i} are inside.
- In this case, we get $\frac{\partial f}{\partial x_{i}}=0$ for all i, i.e., we get

$$
\sum_{j=1}^{m} c_{j} \cdot \frac{\partial f_{j}}{\partial x_{i}}=0 \text { for all } i
$$

Title Page

44
15. Case When $m=n$ (cont-d)

- According to linear algebra, this means that the determinant of the Jacobian matrix is equal to 0 :

$$
\operatorname{det}\left\|\frac{\partial f_{j}}{\partial x_{i}}\right\|=0
$$

- So, we arrive at the following algorithm.

Full Screen

Close

- To find the border of the desired range, for each i from 1 to $m=n$, we form two systems of equations:
- the system $y_{j}=f_{j}\left(x_{1}, \ldots, x_{n}\right)$ in which we substitute $x_{i}=\underline{x}_{i}$, and
- the system in which we substitute $x_{i}=\bar{x}_{i}$.
- Each of these systems provides a set of co-dimension 1

Resulting Problem

Simplest Case When
Discussion

Case When the

General Case: Analysis
General Case: Algorithm
Home Page that could potentially serve as part of the border.

- To these possible border sets, we add the set corresponding to the equation $\operatorname{det}\left(\partial f_{j} / \partial x_{i}\right)=0$.
- This equation defined a set of co-dimension 1.
- Plugging this set into $y_{j}=f_{j}\left(x_{1}, \ldots, x_{n}\right)$, we get a y-set of co-dimension one.
- This set can also be part of the border.

Need to Take into

Case of Interval.

- We know that the actual border can contain only segments of the above type.
- So once we have computed all these segments, we can reconstruct the border.

Resulting Problem

Simplest Case When .

Discussion

Case When the .

Go Back

Full Screen

Close

Quit

18. General Case: Analysis of the Problem

- Let us now consider the case when $m<n$.
- In this case, also, some linear combination attains its max or min:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{m} c_{j} \cdot f_{j}\left(x_{1}, \ldots, x_{n}\right)
$$

- Let v denote the number of inputs x_{i} for which at this max-or-min point, we have $x_{i}=\underline{x}_{i}$ or $x_{i}=\bar{x}_{i}$.
- We can select one of the values c_{j} equal to 1 . Then:
- the other $m-1$ values of c_{j} can be determining
- if we consider the first $m-1$ conditions as a system of linear equations with $m-1$ unknowns.
- We substitute these values for c_{j} into the remaining $n-v-(m-1)$ equalities.
- We thus get $n-v-(m-1)$ equalities that relate $n-v$ unknowns.
- In general, each additional equality imposed on elements of a set decreases its dimension by 1 .
- For example, in the 3-D space:
- the set of all the points that satisfy a certain equality is usually a 2-D surface,
- the set of points that satisfy two independent equalities in a 1-D line, etc.
- In our case:
- the dimension of the set of all the $(n-v)$-dimensional tuples x that satisfy all $n-v-(m-1)$ equalities
- is equal to the difference

$$
(n-v)-(n-v-(m-1))=m-1 .
$$

- The image of this $(m-1)$-dimensional set under the transformation $y_{j}=f_{j}(x)$ is also $(m-1)$-dimensional.

Resulting Problem
Simplest Case When

Discussion

Case When the .

General Case: Analysis
General Case: Algorithm
Home Page

Title Page

44
21. General Case (cont-d)

Case of Interval .

- The image of a $(m-1)$-dimensional set under the transformation $y_{j}=f_{j}(x)$ is also ($m-1$)-dimensional.
- So it forms a surface in the m-dimensional space of all possible tuples $y=\left(y_{1}, \ldots, y_{m}\right)$.
- As a result, we get the following algorithm.

Resulting Problem

Simplest Case When

Discussion

Case When the .

General Case: Analysis

General Case: Algorithm
Home Page

Title Page

Go Back

Full Screen

Close

- We consider all possible subsets I of the set $\{1, \ldots, n\}$ of all indices of the inputs x_{i}.
- For each such subset I of size v, we consider all 2^{v} possible combinations of values \underline{x}_{i} and \bar{x}_{i}.
- For each such combination, we consider the following system of equations for all $i \notin I$:

Home Page

$$
\sum_{j=1}^{m} c_{j} \cdot \frac{\partial f_{j}}{\partial x_{i}}=0
$$

- We can set up one of the values c_{j} to 1 and the first m 1 equations to describe c_{j} as a function of x_{1}, \ldots, x_{m}.
- We substituting the resulting expressions for c_{j} in terms of x_{i} into the remaining $n-v-(m-1)$ equalities.
- We thus get a $(m-1)$-dimensional set of tuples x.

Case of Interval.

- Substituting this set of tuples into the formula $y_{j}=$ $f_{j}(x)$, we get a $(m-1)$-dimensional set of y-tuples.
- We thus get several $(m-1)$-dimensional sets.
- We know that the actual border can only consist of the above fragments.

Resulting Problem
Simplest Case When

Discussion

Case When the .

General Case: Analysis
General Case: Algorithm
Home Page

Title Page

Go Back

Full Screen

Close

Quit

This work was supported in part by the National Science Foundation grant HRD-1242122 (Cyber-ShARE Center).

Need for Indirect
Need to Take into
Case of Interval .
Resulting Problem
Simplest Case When
Discussion
Case When the
General Case: Analysis
General Case: Algorithm

Home Page

Title Page

44
Page 25 of 25

Go Back

Full Screen

Close

Quit

