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1. Need for Indirect Measurements

• In many practical situations:

– we are interested in the values of the quantities
y1, . . . , ym

– which are difficult – or even impossible – to measure
directly.

• Since we cannot measure these quantities directly, a
natural idea is to measure them indirectly, i.e.:

– to measure related quantities x1, . . . , xn which are
related to yj by known relations, an

– to use appropriate algorithms to find the values of
the desired quantities:

y1 = f1(x1, . . . , xn); . . . , ym = fm(x1, . . . , xn).

• Comment. In the real world, the relations are usually
smooth.
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2. Need to Take into Account Measurement Un-
certainty

• In practice, measurements are never absolutely precise.

• The measurement result x̃i is, in general, different from
the actual (unknown) values of the corr. quantity.

• When we plug in x̃i 6= xi, we, in general, get the values
ỹj = fj(x̃1, . . . , x̃n) which are different from yj.

• How can we gauge the resulting uncertainty in yj?
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3. Case of Interval Measurement Uncertainty

• In many practical situations:

– the only information that we have about the mea-

surement error ∆xi
def
= x̃i − xi

– is the upper bound ∆i provided by the manufac-
turer of the corresponding measuring instrument.

• If the manufacturer provide no such bound, then

– it is not a measuring instrument,

– it is a device for producing wild guesses.

• In this case:

– once we know the measurement result x̃i,

– the only information we have about xi is that it is
somewhere on the interval [xi, xi], where

xi
def
= x̃i −∆i and xi

def
= x̃i + ∆i.
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4. Case of Interval Uncertainty (cont-d)

• There is no a priori known relation between xi’s.

• So, the set of all possible values of xi should not depend
on the values of all other quantities xj, j 6= i.

• Thus, the set of all possible values of the tuple x =
(x1, . . . , xn) is the box [x1, x1]× . . .× [xn, xn].
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5. Resulting Problem

• Once we know that x belongs to the box, what are the
possible values of the tuple y = (y1, . . . , ym)?

• In mathematical terms, what is the range of the box
under the mapping f?

• In this talk, we describe calculus-based techniques for
solving this problem.
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6. Simplest Case When We Have Only One De-
sired Quantity y1: Analysis of the Problem

• Let us start with the simplest case, when we have only
one desired quantity y1.

• In this case, we are interested in the range of the func-
tion f1(x1, . . . , xn) when each xi is in [xi, xi].

• For smooth (even for continuous) functions, this range
is connected and is, thus, an interval [y

1
, y1], where:

– y
1

is the smallest possible value of the function
f1(x1, . . . , xn) on the given box, and

– y1 is the largest possible value of f1(x1, . . . , xn) on
the given box.
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7. Simplest Case When We Have Only One De-
sired Quantity y1 (cont-d)

• For each variable xi, the maximum (or minimum) of
the expression y1 = f1(x, . . . , xn) is attained:

– either at one of the endpoints of this interval, i.e.,
for xi = xi or xi = xi,

– or inside the corresponding interval (xi, xi).

• According to calculus:

– if the maximum or minimum is attained inside an
interval,

– then the corresponding derivative
∂f1
∂xi

is = 0.
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8. Simplest Case When We Have Only One De-
sired Quantity y1 (cont-d)

• So, for each i, it is sufficient to consider three possible
cases:

– the case when xi = xi;

– the case when xi = xi, and

– the case when
∂f1
∂xi

= 0.

• Thus:

– to find the minimum y
1

and the maximum y1 of the
function y1 = f1(x1, . . . , xb) over the box,

– it is sufficient to consider all possible combinations
of these 3 cases.

• In other words, we arrive at the following algorithm.
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9. Case When We Have Only One Desired Quan-
tity y1: Algorithm

• Consider all systems of equations, in which, for each i,
we have one of the three alternatives:

xi = xi, xi = xi, and
∂f1
∂xi

= 0.

• There are 3n such systems.

• For each of these systems:

– we find the corresponding values x = (x1, . . . , xn)
and

– we compute the corresponding value y1 = f(x1, . . . , xn).

• The largest of thus computed values is y1, the smallest
is y

1
.
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10. Discussion

• This algorithm requires solving an exponential number
of systems and thus takes exponential time.

• This is, however, unavoidable, since it is known that:

– already for quadratic functions f1(x1, . . . , xn),

– the problem of computing the bounds y and y is
NP-hard.

• This means that:

– unless P=NP (which most computer scientists be-
lieve to be impossible),

– super-polynomial (e.g., exponential) computation
time is unavoidable – at least for some inputs.
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11. Discussion (cont-d)

• Exponential time does not mean that the algorithm is
not practical.

• For reasonably small n, solving 3n system is quite rea-
sonable.

• For example, for n = 10, we need to solve less than
60,000 systems.

• It is a large number, but it is quite doable.

• For n = 15, we need to solve about 5 million systems
– still possible.
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12. What We Plan to Do Next

• In the following, we show how we can extend this calculus-
based approach to the general case.

• We thus reduce:

– the difficult-to-solve problem of finding the range

– to more well-studied problems of solving systems of
equations.
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13. Case When the Number m of Desired Quan-
tities Is = the Number n of Auxiliary Ones

• To find the range means to find its border.

• At almost all points on the border, there is – locally –
at least one tangent plane.

• A plane in an m-dimensional space has the form

m∑
j=1

cj · yi = c0.

• Thus, at this border point y = (y1, . . . , ym), the follow-
ing linear expression attains its local max or min:

y =
m∑
j=1

cj · yj = f(x1, . . . , xn)
def
=

m∑
j=1

cj · fj(x1, . . . , xn)



Need for Indirect . . .

Need to Take into . . .

Case of Interval . . .

Resulting Problem

Simplest Case When . . .

Discussion

Case When the . . .

General Case: Analysis . . .

General Case: Algorithm

Home Page

Title Page

JJ II

J I

Page 15 of 25

Go Back

Full Screen

Close

Quit

14. Case When m = n (cont-d)

• Similarly to the previous case, this may mean that one
of the inputs xi:

– either attains its largest possible value xi

– or its smallest possible value xi = xi.

• In this case, the corresponding condition xi = xi or
xi = xi determines the (n− 1)-dimensional set.

• This set could be part of the border.

• It may also mean that the max or min of the linear
function is attained when all xi are inside.

• In this case, we get
∂f

∂xi
= 0 for all i, i.e., we get

m∑
j=1

cj ·
∂fj
∂xi

= 0 for all i.
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15. Case When m = n (cont-d)

• We get
m∑
j=1

cj ·
∂fj
∂xi

= 0 for all i.

• In algebraic terns, the existence of cj 6= 0 means that
m = n gradient vectors are linearly dependent:(

∂fj
∂x1

, . . . ,
∂fj
∂xn

)
.

• According to linear algebra, this means that the deter-
minant of the Jacobian matrix is equal to 0:

det

∥∥∥∥∂fj∂xi

∥∥∥∥ = 0.

• So, we arrive at the following algorithm.
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16. Case When m = n: Algorithm

• To find the border of the desired range, for each i from
1 to m = n, we form two systems of equations:

– the system yj = fj(x1, . . . , xn) in which we substi-
tute xi = xi, and

– the system in which we substitute xi = xi.

• Each of these systems provides a set of co-dimension 1
that could potentially serve as part of the border.

• To these possible border sets, we add the set corre-
sponding to the equation det(∂fj/∂xi) = 0.

• This equation defined a set of co-dimension 1.

• Plugging this set into yj = fj(x1, . . . , xn), we get a
y-set of co-dimension one.

• This set can also be part of the border.
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17. Case When m = n: Algorithm (cont-d)

• We know that the actual border can contain only seg-
ments of the above type.

• So once we have computed all these segments, we can
reconstruct the border.
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18. General Case: Analysis of the Problem

• We have already considered the case when m = n.

• There are two remaining cases: when n < m and when
m < n.

• When n < m, the set of all possible values of the tuple
y is of of smaller dimension than the m.

• So, this set is its own boundary.

• Let us now consider the case when m < n.

• In this case, also, some linear combination attains its
max or min:

f(x1, . . . , xn) =
m∑
j=1

cj · fj(x1, . . . , xn).

• Let v denote the number of inputs xi for which at this
max-or-min point, we have xi = xi or xi = xi.
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19. General Case (cont-d)

• For each of the remaining n − v variables xi, we then
have the equation

m∑
j=1

cj ·
∂fj
∂xi

= 0.

• This equality must hold for all (n − v) values of i, so
we must have (n− v) equations.

• We can select one of the values cj equal to 1. Then:

– the other m− 1 values of cj can be determining

– if we consider the first m−1 conditions as a system
of linear equations with m− 1 unknowns.

• We substitute these values for cj into the remaining
n− v − (m− 1) equalities.

• We thus get n−v− (m−1) equalities that relate n−v
unknowns.
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20. General Case (cont-d)

• In general, each additional equality imposed on ele-
ments of a set decreases its dimension by 1.

• For example, in the 3-D space:

– the set of all the points that satisfy a certain equal-
ity is usually a 2-D surface,

– the set of points that satisfy two independent equal-
ities in a 1-D line, etc.

• In our case:

– the dimension of the set of all the (n−v)-dimensional
tuples x that satisfy all n− v − (m− 1) equalities

– is equal to the difference

(n− v)− (n− v − (m− 1)) = m− 1.

• The image of this (m − 1)-dimensional set under the
transformation yj = fj(x) is also (m− 1)-dimensional.
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21. General Case (cont-d)

• The image of a (m−1)-dimensional set under the trans-
formation yj = fj(x) is also (m− 1)-dimensional.

• So it forms a surface in the m-dimensional space of all
possible tuples y = (y1, . . . , ym).

• As a result, we get the following algorithm.
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22. General Case: Algorithm

• We consider all possible subsets I of the set {1, . . . , n}
of all indices of the inputs xi.

• For each such subset I of size v, we consider all 2v

possible combinations of values xi and xi.

• For each such combination, we consider the following
system of equations for all i 6∈ I:

m∑
j=1

cj ·
∂fj
∂xi

= 0.

• We can set up one of the values cj to 1 and the first m−
1 equations to describe cj as a function of x1, . . . , xm.

• We substituting the resulting expressions for cj in terms
of xi into the remaining n− v − (m− 1) equalities.

• We thus get a (m− 1)-dimensional set of tuples x.
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23. General Case: Algorithm (cont-d)

• Substituting this set of tuples into the formula yj =
fj(x), we get a (m− 1)-dimensional set of y-tuples.

• We thus get several (m− 1)-dimensional sets.

• We know that the actual border can only consist of the
above fragments.



Need for Indirect . . .

Need to Take into . . .

Case of Interval . . .

Resulting Problem

Simplest Case When . . .

Discussion

Case When the . . .

General Case: Analysis . . .

General Case: Algorithm

Home Page

Title Page

JJ II

J I

Page 25 of 25

Go Back

Full Screen

Close

Quit

24. Acknowledgments

This work was supported in part by the National Science
Foundation grant HRD-1242122 (Cyber-ShARE Center).


	Need for Indirect Measurements
	Need to Take into Account Measurement Uncertainty
	Case of Interval Measurement Uncertainty
	Case of Interval Uncertainty (cont-d)
	Resulting Problem
	Simplest Case When We Have Only One Desired Quantity y1: Analysis of the Problem
	Simplest Case When We Have Only One Desired Quantity y1 (cont-d)
	Simplest Case When We Have Only One Desired Quantity y1 (cont-d)
	Case When We Have Only One Desired Quantity y1: Algorithm
	Discussion
	Discussion (cont-d)
	What We Plan to Do Next
	Case When the Number m of Desired Quantities Is = the Number n of Auxiliary Ones
	Case When m=n (cont-d)
	Case When m=n (cont-d)
	Case When m=n: Algorithm
	Case When m=n: Algorithm (cont-d)
	General Case: Analysis of the Problem
	General Case (cont-d)
	General Case (cont-d)
	General Case (cont-d)
	General Case: Algorithm
	General Case: Algorithm (cont-d)
	Acknowledgments

