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1

PS Problems and Their Properties

Piecewise Smooth (PS) Functions

Definition (Piecewise Smoothness, Piecewise Linearity)
Let D ⊆ Rn be open and fi : D → Rm, i = 1, . . . , k with k ∈ N be given.

f : D → Rm is called a continuous selection of the collection
f1, . . . , fk on the set U ⊆ D if f is continuous on U and

f (x) ∈ {f1(x), . . . , fk(x)} ∀x ∈ U.

f : D → Rm is called PC r -function with r ∈ N ∪ {∞} if for every
x ∈ D there exists an open neighboorhood U ⊆ D and a finite
number of C r -functions fi : U → Rm, i = 1, . . . , k, such that f is a
continuous selection of f1, . . . , fk on U.
A PC r -function with r ≥ 1 is also called piecewise smooth.
A continuous selection f : U → Rm is called piecewise linear if all
elements of the collection f1, . . . , fk are affine functions.

S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012
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PS Problems and Their Properties

Piecewise Smooth Example Problems
Exact `1 penalty functions
Constrained optimization problem

min
x

f (x) s.t. ci (x) = 0, i ∈ E , ci (x) ≥ 0, i ∈ I

equivalent to unconstrained optimization problem with `1-penalty

φ(x ;µ) = f (x) + µ
∑
i∈E
|ci (x)|+ µ

∑
i∈I

max{0,−ci (x)}

Robust Optimization
Often formulated as min-max problems
Train timetabling
yields piecewise linear optimization problem
F. Fischer, C. Helmberg: Dynamic Graph Generation and Dynamic Rolling Horizon Techniques in
Large Scale Train Timetabling, 2010
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PS Problems and Their Properties

Fuzzy Pattern Tree II
(together with Eyke Hüllermeier, Uni Pb)
= model class for classification and regression in machine learning

Application: Determine wine quality via a target function defined by

(θ∗, γ∗, σ∗, c∗) = argminθ,γ,σ,c
N∑

i=1
(Fθ,γ,σ,c(xi )− yi )2 with

Fθ,γ,σ,c(x) = Tθ (µc1 (x11),Cγ(Sσ(µc2 (x2), µc3 (x10)), µc4 (x2))

1
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PS Problems and Their Properties

Fuzzy Pattern Tree II
Here:

µci (x) =
{ x

ci
if 0 ≤ x ≤ ci

1−x
1−ci

if ci ≤ x ≤ 1
allow non-monotonicity

Tθ(u, v) = u v
max{u, v , θ} = Dubois-Prade family

Sσ(u, v) = 1− Tσ(1− u, 1− v) = corr. dual t-conorm

Cγ(u, v) =
{

γu + (1− γ)v if u > v
(1− γ)u + γv if u ≤ v

= ordered weighted operator

⇒ Piecewise smooth target function

(θ∗, γ∗, σ∗, c∗) = argminθ,γ,σ,c
N∑

i=1
(Fθ,γ,σ,c(xi )− yi )2 with

Fθ,γ,σ,c(x) = Tθ (µc1 (x11),Cγ(Sσ(µc2 (x2), µc3 (x10)), µc4 (x2))
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1

Optimization for PS functions

Optimality Conditions

Generalized derivative concept required:
directional derivative
Clarke generalized gradient

∂Cϕ(x) := conv
{

lim
i→∞

∇ϕ(xi ) : xi 7→ x ,∇ϕ(xi ) exists
}

= conv{∂Lϕ(x)}

F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990

Mordukhovich subgradient ∂Mϕ(x)
T Rockafellar, R. Wets: Variational Analysis, Springer, 1998

Necessary optimality conditions:
ϕ′(x ; d) ≥ 0 for all d ∈ Rn

Clarke stationarity: 0 ∈ ∂Cϕ(x) ? ∂C (|x |) = ∂C (−|x |) !
a little stronger: Mordukhovich stationarity: 0 ∈ ∂Mϕ(x)

1
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Optimization for PS functions

Current (= Black Box) Approaches

Use methods for smooth problems
May fail, no convergence theory

Subgradient method
Very (!) slow convergence

Bundle methods
Lots of parameters, erratic convergence behaviour
involves oracle

Derivative-free methods
No structure exploitation,
difficult when number of optimization variables large

1

A. Walther and A. Griewank 7 / 42 Abs-Linearization for PS Optimization Shonan, June 25, 2018



1

Optimization for PS functions

Hierarchy of Problems

locally Lipschitz continuous (LL)

∪
piecewise smooth (PS)2

∪
piecewise linear (PL)2

∪
piecewise linear and convex (PL+C)1

1
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Optimization for PS functions

Observations

Solving minϕ(x) with ϕ PL+C not easy:

Global minimization is NP-hard

Steepest descent with exact line
search may fail

Zeno behaviour possible,
i.e., solution trajactory with
infinite number of direction
changes in a finite amount
of time

J.-B. Hiriart-Urruty, C. Lemaréchal: Convex Analysis
and Minimization Algorithms I, Springer, 1993
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1

Optimization for PS functions

New (= Gray Box) Approach
Goal: Locate stationary (?!) point of piecewise smooth function ϕ(.) by

successive approximation by piecewise linear (PL) models and
explicit handling of kink structure in PL model.

Example: Half-Pipe function

ϕ : R2 7→ R, ϕ(x) = max{x2
2 −max{x1, 0}, 0}
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Abs-Linearisation

Abs-Linearisation II
Given: Target function ϕ : Rn 7→ R piecewise smooth
Assumption: Non-smoothness caused by univariate piecewise linear
elements like min, max or abs!

For example:

ϕ(x) = min
x∈Rn

max
1≤i≤m

fi (x)

= min max regret problem

1
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Abs-Linearisation

Abs-Linearisation II
Given: Target function ϕ : Rn 7→ R piecewise smooth
Assumption: Non-smoothness caused by univariate piecewise linear
elements like min, max or abs!
Then: ϕ can be written using switching variables

zi , i = 1, . . . , s

as arguments of abs(.).
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Abs-Linearisation II
Given: Target function ϕ : Rn 7→ R piecewise smooth
Assumption: Non-smoothness caused by univariate piecewise linear
elements like min, max or abs!
Then: ϕ can be written using switching variables

zi , i = 1, . . . , s

as arguments of abs(.).

Hence:

Definition (Abs-normal form of PS function ϕ : Rn → R)
F : Rn+s → Rs , z = F (x , |z |)
f : Rn+s → R, y = f (x , |z |) = ϕ(x)

with F and f at least twice differentiable.
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Abs-Linearisation

Abs-Linearisation II
Defining

L = ∂
∂|z|F (x , |z |) ∈ Rs×s strictly lower triangular

Z = ∂
∂x F (x , |z |) ∈ Rs×n a = ∂

∂x f (x , |z |) ∈ Rn, b = ∂
∂|z| f (x , |z |) ∈ Rs

one obtains

Definition (Abs-linear form of abs-normal ϕ : Rn → R in x)[
z

∆y

]
=
[

c1
c2

]
+
[

Z L
a b

] [
∆x

Σ · z

]
with

c1 ∈ Rs , c2 ∈ R, σ = σ(x) ≡ sign(z(x)) ∈ {−1, 0, 1}s ,Σ ≡ diag(σ)

as piecewise linearisation ∆ϕ of ϕ in x .

Abs-normal form can be generated using appropriate variant of AD!
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Abs-Linearisation

Example: Nesterov-Rosenbrock Function
Smooth variant:

ϕ0(x) = 1
4 (x1 − 1)2 +

n−1∑
i=1

(xi+1 − 2x2
i + 1)2

1
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Abs-Linearisation

Example: Nesterov-Rosenbrock Function
PS variant:

ϕ1(x) = 1
4 (x1 − 1)2 +

n−1∑
i=1

∣∣xi+1 − 2x2
i + 1

∣∣
M. Gürbüzbalaban, M.L. Overton: On Nesterov’s nonsmooth Chebyshev–Rosenbrock functions,

Nonlinear Anal: Theory, Methods Appl., 2012

Abs-normal form:
zi = Fi (x , |z |) = xi+1 − 2x2

i + 1, 1 ≤ i ≤ n − 1,

y = f (x , |z |) = 1
4 (x1 − 1)2 +

n−1∑
i=1
|zi | ⇒

Z =


−4 x1 1 0 · · · 0 0

0 −4 x2 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · −4 xs 1

 ∈ R(n−1)×n

L = 0 ∈ R(n−1)×(n−1), a =
(

(x1 − 1)
2 , 0, . . . , 0

)
∈ Rn, b = 11 ∈ Rn−1

1
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M. Gürbüzbalaban, M.L. Overton: On Nesterov’s nonsmooth Chebyshev–Rosenbrock functions,
Nonlinear Anal: Theory, Methods Appl., 2012

Abs-normal form:
zi = Fi (x , |z |) = xi+1 − 2x2

i + 1, 1 ≤ i ≤ n − 1,

y = f (x , |z |) = 1
4 (x1 − 1)2 +

n−1∑
i=1
|zi | ⇒

Z =


−4 x1 1 0 · · · 0 0

0 −4 x2 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · −4 xs 1

 ∈ R(n−1)×n

L = 0 ∈ R(n−1)×(n−1), a =
(

(x1 − 1)
2 , 0, . . . , 0

)
∈ Rn, b = 11 ∈ Rn−1
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Abs-Linearisation

Open Questions I

Gap between class of abs-normal functions and PS functions?

1
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Abs-Linearisation

Original Evaluation Procedure

For smooth functions, AD is based on

vi−n = xi i = 1 ... n
vi = ϕi (vj)j≺i i = 1 ... l
y = vl

1
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Abs-Linearisation

Adapted Evaluation Procedure

For abs-normal functions, consider

vi−n = xi i = 1 ... n
zi = ψi (vj)j≺i

σi = sign(zi )

 i = 1 ... s
vi = σi zi = abs(zi )
y ≡ vs+1 = ψs+1(vj)j≺s+1

Declare zi as independent variables
adapt evaluation of abs() correspondingly

1
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Abs-Linearisation

Abs-Linearisation via AD II
AD approach: tangent approximation for each elemental function

vi (x + ∆x)− vi (x) ≈ ∆vi ≡ ∆vi (∆x)

For smooth elementals:

∆vi = ∆vj ±∆vk for vi = vj ± vk ,

∆vi = vj ∗∆vk + vk ∗∆vj for vi = vj ∗ vk ,

∆vi = ϕ′(vj)j≺i ∗∆(vj)j≺i for vi = ϕi (vj)j≺i 6= abs(vj),
∆vi = abs(vj + ∆vj)− vi for vi = abs(vj).

⇒ If y = F (x) involves no call of abs():

∆y = ∆F (x ; ∆x) = F ′(x)∆x , F ′(x) ∈ Rm×n = Jacobian

standard AD!

1
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Abs-Linearisation

Abs-Linearisation via AD II
For the absolute value function vi = abs(vj):

∆vi = abs(vj(x̊) + ∆vj)− vj(x̊)
⇒ ∆y(∆x) = ∆F (x̊ ; ∆x) : Rn 7→ Rm

is a piecewise linear continuous function for each fixed x ∈ D.

Theorem
Suppose F is elementwise Lipschitz continuously differentiable on
D ⊂ K ⊂ Rn, D open, K closed and convex. Then there exists γ > 0
such that for all x , x̊ ∈ K

‖F (x)− F (x̊)−∆F (x̊ ; x − x̊)‖ = γ‖x − x̊‖2

A. Griewank. On stable piecewise linearization and generalized algorithmic differentiation,
Optimization Methods and Software, 2013
Derivatives a, b, c,Z , L required by abs-linear form provided by AD!

1
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Abs-Linearisation

Open Questions II

Drivers/Interfaces of AD tools for abs-linearisation?

1
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The SALOP Algorithm

SALOP

Very brief description of the algorithm:

xk+1 = xk + arg min
∆x

{
∆ϕ(xk ; ∆x) + q

2‖∆x‖2}
= Successive Abs-Linear OPtimization with a proximal term

1
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The SALOP Algorithm

SALOP

1
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The SALOP Algorithm

Example
ϕ : R2 → R, ϕ(x1, x2) = max{x2

2 −max{x1, 0}, 0}
k = 0

k = 1

1

0.5x
0

-0.5

-1

-3

y

-2

-1

f(
x,

y)

0

1

-1
-0.5

0
0.5

1

2

Local QP in x0
based on

linearization →

New iterate
x1 = x0 + ∆x0

↙

Local QP in x1
based on

linearization

→

etc.

1
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The SALOP Algorithm

Convergence of SALOP
Finite convergence of inner loop:

Argument space divided into finitely many polyhedra
Function value decreased when switching polyhedra
No polyhedron visited twice

⇒ stationary point reached after finitely many steps

Convergence of outer loop:

Theorem
Assume that ϕ : Rn → R is a PS function as considered here with a
bounded level set N0 = {x ∈ Rn | f (x) ≤ f (x0)}. Let x0 be the starting
point of the generated sequence of iterates {xk}k∈N generated by
SALOP. Then a cluster point x∗ of the infinite sequence {xk}k∈N exists
and all clusters points are Clarke stationary.

S. Fiege, A. Walther, A. Griewank: An algorithm for nonsmooth optimization by successive
piecewise linearization. Mathematical Programming, 2018

1
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The SALOP Algorithm

The Inner Optimisation Loop
Improved solver for inner loop:

adaption of new optimality conditions for inner loop
corresponding modification of QP solver

⇒ Active Signature Method (ASM)
for the first time convergence to local minimizers!

Exam.: Nesterov-Rosenbrock function with 2n−1 Clarke-stationary points

ϕ2 : Rn 7→ R, ϕ(x) = 1
4 |x1 − 1| +

∑
i=1,...,n−1

|xi+1 − 2|xi |+ 1|

Iterations numbers:

n 1 2 3 4 5 6 7 8 9 10
ASM 2 4 8∗ 16∗ 32∗ 64∗ 128∗ 256∗ 512∗ 1024∗

HANSO 3 61 494∗ 1341∗ 2521∗ 329∗ 357∗ 326∗ 307∗ 515∗

MPBNGC 3 52 9859∗ 9978∗ 3561∗ 4166∗ 2547∗ 1959∗ 9420∗ 9807∗

A. Griewank, A. Walther: Finite convergence of an active signature method to local minima of
piecewise linear functions. In revision + Matlab Implementierung von ASM

1
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The SALOP Algorithm

The LASSO Problem

In statistics and machine learning: Least Absolute Shrinkage and
Selection Operator (LASSO)

= regression approach for variable selection and regularization to enhance
prediction accuracy and interpretability of statistical model it produces

For given data w ∈ Rm and A ∈ Rm×n, the LASSO function is

ϕ : Rn 7→ R, ϕ(x) = 1
m‖w − Ax‖2

2 + ρ‖x‖1

with the penalty factor ρ > 0.

ASM with adapted quadratic term!!

1
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The SALOP Algorithm

LASSO: Iteration Numbers

ρ = 100 ρ = 17.353616
Löser opt. value # iter. opt. value # iter.

Active Signature Method 13035.7 3 11452.1 3
LassoBlockCoordinate 13035.7 30 11452.1 29
LassoConstrained 13035.7 8 11452.1 6
LassoGaussSeidel 13035.7 12 11452.1 11
LassoGrafting 13087.2 10 11452.1 11
LassoIteratedRidge 13087.7 102 11452.1 102
LassoNonNegativeSquared 13035.7 64 11452.1 58
LassoPrimalDualLogBarrier 13035.7 9 11452.1 7
LassoProjection 13035.7 3 11452.1 5
LassoShooting 13035.7 54 11452.1 51
LassoSubGradient 13035.7 52 11452.1 23
LassoUnconstrainedApx v1 13035.7 50 11452.1 40
LassoUnconstrainedApx v2 13035.7 94 11452.1 27
LassoActiveSet 13288.9 14 11602.1 12
LassoLARS 13296.7 18 11602.1 14
LassoSignConstraints 13288.9 1 11602.1 4

Matlab interface for LASSO solvers: http://www.cs.ubc.ca/˜schmidtm/Software/lasso.html
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The SALOP Algorithm

Quadratic Convergence

Proposition
If x∗ is a sharp minimizer of ϕ then SALOP with q ≥ γ converges
quadratically to x∗ from all x0 in some ball Bρ(x∗).

Proof.

c‖xk+1 − x∗‖ ≤ ϕ(xk+1)− ϕ(x∗) = ϕ(xk+1)− ϕ(xk)− (ϕ(x∗)− ϕ(xk))
≤ ∆ϕ(xk ; xk+1 − xk)−∆ϕ(xk ; x∗ − xk)

+ γ
2 (‖xk+1 − xk‖2 + ‖x∗ − xk‖2)

≤ γ+q
2 ‖xk+1 − xk‖2 + γ−q

2 ‖xk − x∗‖2 ≤ γ‖xk − x∗‖2 .

1
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The SALOP Algorithm

Chained CB3 I

ϕ : Rn 7→ R, ϕ(x) =
n−1∑
i=1

max{x4
i + x2

i+1, (2− xi )2 + (2− xi+1)2, 2e−xi +xi+1}

s = 2(n − 1), x∗ = (1 . . . 1)> ∈ Rn is sharp

Implementation LiPsMin of SALOP yields for n = 10

1 2 3 4 5 6 7

iteration

-1

0

1

2

3

4

log(||x
i+1

-1||)/log(||x
i
-1||)
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The SALOP Algorithm

Linear Convergence

Proposition
Suppose x∗ satisfies SSC with strict complementarity under LIKQ for
ϕ(.). Assume q > max(γ, ‖Ǔ>∗ Ȟ∗Ǔ∗‖) for the proximal parameter q.
Then SALOP yields local and linear convergence with R-factor

‖I − 1
q Ǔ>∗ Ȟ∗Ǔ∗‖ ≥ 1− (κ(Ǔ>∗ Ȟ∗Ǔ∗))−1 ,

where κ denotes the condition number with respect to the spectral norm.

Proof.
take care of nonlocalization
formulation as fixed point problem, analysis of contraction rate

A. Griewank and A. Walther: Relaxing kink qualifications and proving convergence rates in
piecewise smooth optimization, in revision

1
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The SALOP Algorithm

Chained Crescent I

ϕ : Rn 7→ R, ϕ(x) = max {ϕ1(x), ϕ2(x)}

ϕ1(x) =
n−1∑
i=1

(x2
i +(xi+1−1)2 +xi+1−1),

ϕ2(x) =
n−1∑
i=1

(−x2
i −(xi+1−1)2 +xi+1 +1) ,

⇒ PS, nonconvex function
isolated but not sharp minimizer x∗ = (1 . . . 1)> ∈ Rn, s = 1,

Z = (0 4 . . . 4), L = 0 ∈ R, a = (0 1 . . . 1), b = 0.5 ,

only switching variable is active at x∗, LIKQ holds

1
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The SALOP Algorithm

Chained Crescent I: Convergence
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The SALOP Algorithm

FPT Problem: Wine Quality
data set contains 4 000 entries
C implementation with old inner loop algo. could handle 200 entries
Matlab implentation: up to 4 000 entries feasible!
n = 7, s = 18014 for m = 2 000 entries
n = 7, s = 27014 for m = 3 000 entries =⇒ large, sparse matrices!
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The SALOP Algorithm

Open Questions III

linear convergence with fewer assumptions?

superlinear convergence?

larger class of functions?

1
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Relation to Other Derivative Concepts

Signature Vectors
The signature vector

σ(x) = sign(z(x))

and the corresponding diagonal matrix

Σ = diag(σ)

define active switch set

α = α(x) ≡ {1 ≤ i ≤ s |σi (x) = 0} |α(x)| = s − |σ(x)|.

Furthermore, for fixed σ and hence also Σ

z = F (x ,Σz)

has unique solution zσ with ∇zσ = ∂
∂x zσ = (I − LΣ)−1z .
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Relation to Other Derivative Concepts

Linear Independence Kink Qualification

Definition
We say that the linear independence kink qualification (LIKQ) is satisfied
at a point x ∈ Rn if for σ = σ(x) the active Jacobian

J(x) ≡ ∇zσα(x) ≡
(
e>i ∇zσ(x)

)
i∈α ∈ R|α|×n

has full row rank |α|, which requires in particular that |σ| ≥ s − n.

Generalization of LICQ!
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Relation to Other Derivative Concepts

Generalized Gradients by AD

Definition
For a PS function ϕ : Rn 7→ R as considered here and a point x ∈ Rn the
set of conical gradients is given by

∂Kϕ(x) =
{

g ∈ Rn |g ∈ ∂L∆ϕ(x ; ∆x)
∣∣
∆x=0

}
.

Griewank (2013),
considered also by Barton and Khan,
see publications in 2013 and 2015
Can be computed from the abs-normal form,
i.e., they are available using AD
A directional active gradient computed by AD is an element of the
limiting gradients, i.e., g ∈ ∂Lϕ(x).
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Relation to Other Derivative Concepts

The Half-Pipe Example

ϕ : R2 7→ R, ϕ(x1, x2) = max(x2
2 −max(x1, 0), 0)

=

 x2
2 if x1 ≤ 0

x2
2 − x1 if 0 ≤ x1 ≤ x2

2
0 if 0 ≤ x2

2 ≤ x1

,
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=

 x2
2 if x1 ≤ 0

x2
2 − x1 if 0 ≤ x1 ≤ x2

2
0 if 0 ≤ x2

2 ≤ x1

,

Here, one has that

∂̂Mϕ(0) = {(0, 0)} ( ∂Mϕ(0) = {(0, 0), (−1, 0)} = ∂Lϕ(0),
⇒ ∂Cϕ(0) = {(v , 0) | v ∈ [−1, 0]},

∂Kϕ(0) = ∂L∆ϕ(0; 0) = {(0, 0)}

yielding

{∇ϕ(0)} = ∂̂Mϕ(0) ( ∂Mϕ(0) = ∂Lϕ(0),

∂Lϕ(0) 6= ∂Kϕ(0) ⊂ ∂Cϕ(0) .
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Relation to Other Derivative Concepts

Gradient Cube Example (n = 2)
ϕ : R2 7→ R, ϕ(x1, x2) = |x2 − |x1||+ ε|x1|, ε ∈ R

=


ϕ1(x1, x2) = x2 − x1 + εx1 if x2 ≥ x1 ≥ 0
ϕ2(x1, x2) = x2 + x1 − εx1 if x2 ≥ −x1, x1 < 0
ϕ3(x1, x2) =−x2 − x1 − εx1 if x2 < −x1, x1 < 0
ϕ4(x1, x2) =−x2 + x1 + εx1 if x1 > x2, x1 ≥ 0

.
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Relation to Other Derivative Concepts

Gradient Cube Example (n = 2)
ϕ : R2 7→ R, ϕ(x1, x2) = |x2 − |x1||+ ε|x1|, ε ∈ R

=


ϕ1(x1, x2) = x2 − x1 + εx1 if x2 ≥ x1 ≥ 0
ϕ2(x1, x2) = x2 + x1 − εx1 if x2 ≥ −x1, x1 < 0
ϕ3(x1, x2) =−x2 − x1 − εx1 if x2 < −x1, x1 < 0
ϕ4(x1, x2) =−x2 + x1 + εx1 if x1 > x2, x1 ≥ 0

.

If ε ≥ 1

∂̂Mϕ(0) = ∂Mϕ(0) = ∂Cϕ(0) = conv {g1, g2, g3, g4}
∂Kϕ(0) = ∂Lϕ(0) = {g1, g2, g3, g4}

If ε < −1

∂̂Mϕ(0) = ∅ and ∂Mϕ(0) = conv {g1, g4} ∪ conv {g2, g3}
∂Kϕ(0) = ∂Lϕ(0) = {g1, g2, g3, g4} .

Relations of different generalized gradients?

1
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Relation to Other Derivative Concepts

Mangasarin-Fromovitz-Kink Qualification

Definition
The Mangasarin-Fromovitz-Kink Qualification (MFKQ) holds at a point
x̊ if

for all σ � σ̊ the vector inequality Jσv > 0 is solvable for some
v ∈ Rn, where

σ � σ̊ in that σj σ̊j ≥ σ̊2
j for j = 1, . . . , n

and Jσ ≡ (σi∇zσi )i∈α̊, or
if Jσv ≥ 0 has only the trivial solution v = 0 ∈ Rn

strongly related to constraint qualification MFCQ
much weaker than LIKQ
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Relation to Other Derivative Concepts

Kink Qualifikations for the Examples
One can check quite easily:

Half-Pipe example:
LIKQ and MFQK do not hold
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Gradient Cube example:
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Relation to Other Derivative Concepts

Kink Qualifikations for the Examples
One can check quite easily:

Half-Pipe example:
LIKQ and MFQK do not hold
Gradient Cube example:
LIKQ and MFQK do hold
Lemon squeezer example:
LIKQ does not hold
MFQK does hold

What can we prove with these properties?
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Relation to Other Derivative Concepts

Proposition (Limiting, Mordukovich and Clark subdiff’tials)

For the abs-normal function ϕ : Rn → R and x ∈ Rn, the inclusions

∂Lϕ(x) ⊂ ∂Mϕ(x) ⊂ ∂Cϕ(x)

hold. Furthermore, the function ϕ(.) is regular in x̊ ∈ Rn if and only if

∂Mϕ(x̊) = ∂Cϕ(x̊)

Proposition (Conical and limiting gradients)

For the abs-normal function ϕ : Rn → R, one has

∂Kϕ(x) ⊂ ∂Lϕ(x)

for all x ∈ Rn. Furthermore, if MFKQ holds at x̊ ∈ Rn, then

∂Kϕ(x̊) = ∂Lϕ(x̊) .

1
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Relation to Other Derivative Concepts

Definition (First order convexity (FOC))
The PS function ϕ : Rn → R is said to be convex of first order at a point
x̊ if its piecewise linearization ∆ϕ(x̊ ; ·) : Rn → R is convex on some ball
about the argument ∆x = 0.

Theorem (Regularity and FOC)
For the abs-normal function ϕ : Rn → R, one has that ϕ(.) is first order
convex in some ball about x if ϕ(.) is regular in x. Furthermore, if
MFKQ holds at x ∈ Rn, then ϕ(.) is first-order convex in some ball about
x if and only if ϕ(.) is regular in x.

Theorem (Complexity of convexity test)
The convexity test is co-NP complete.

A. Walther, A. Griewank. Characterizing and testing subdifferential regularity for piecewise smooth
objective functions, in revision
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Conclusion and Outlook

Conclusion and Outlook
Practically all nonsmooth problems are piecewise smooth in
abs-normal form.

Extended tools for algorithmic differentiation yield abs-linearization
in form of Z, L, a, b, c.
⇒ generation of abs-normal form can be automated!

LIKQ ⇒ First order minimality can be tested with polynomial effort

SALOP yields typically linear, quadratic, or superlinear convergence
Inner loop: PL functions can be minimized effectively by adapted
QP solver

Wine quality test feasible for 3 000 out of 4 000 data sets
⇒ training of model possible!

Relation to other derivatives concepts analysed

1
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