

Abs-Linearization for Piecewise Smooth Optimization

Andrea Walther 1 and Andreas Griewank 2

¹Institut für Mathematik, Universität Paderborn ²School of Mathematical Sciences and Information Techno., Yachay Tech

125th NII Shonan Meeting

Shonan, June 25, 2018

Outline

- Optimization for PS functions
- 3 Abs-Linearisation
- The SALOP Algorithm
- 5 Relation to Other Derivative Concepts
- 6 Conclusion and Outlook

Definition (Piecewise Smoothness, Piecewise Linearity)

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be open and $f_i : \mathcal{D} \to \mathbb{R}^m, i = 1, \dots, k$ with $k \in \mathbb{N}$ be given.

• $f : \mathcal{D} \to \mathbb{R}^m$ is called a continuous selection of the collection f_1, \ldots, f_k on the set $U \subseteq \mathcal{D}$ if f is continuous on U and $f(x) \in \{f_1(x), \ldots, f_k(x)\} \quad \forall x \in U.$

Definition (Piecewise Smoothness, Piecewise Linearity)

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be open and $f_i : \mathcal{D} \to \mathbb{R}^m, i = 1, \dots, k$ with $k \in \mathbb{N}$ be given.

- $f : \mathcal{D} \to \mathbb{R}^m$ is called a continuous selection of the collection f_1, \ldots, f_k on the set $U \subseteq \mathcal{D}$ if f is continuous on U and $f(x) \in \{f_1(x), \ldots, f_k(x)\} \quad \forall x \in U.$
- $f: \mathcal{D} \to \mathbb{R}^m$ is called PC^r -function with $r \in \mathbb{N} \cup \{\infty\}$ if for every $x \in \mathcal{D}$ there exists an open neighboorhood $U \subseteq \mathcal{D}$ and a finite number of C^r -functions $f_i: U \to \mathbb{R}^m$, i = 1, ..., k, such that f is a continuous selection of $f_1, ..., f_k$ on U.

Definition (Piecewise Smoothness, Piecewise Linearity)

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be open and $f_i : \mathcal{D} \to \mathbb{R}^m, i = 1, \dots, k$ with $k \in \mathbb{N}$ be given.

- $f : \mathcal{D} \to \mathbb{R}^m$ is called a continuous selection of the collection f_1, \ldots, f_k on the set $U \subseteq \mathcal{D}$ if f is continuous on U and $f(x) \in \{f_1(x), \ldots, f_k(x)\} \quad \forall x \in U.$
- $f: \mathcal{D} \to \mathbb{R}^m$ is called PC^r -function with $r \in \mathbb{N} \cup \{\infty\}$ if for every $x \in \mathcal{D}$ there exists an open neighboorhood $U \subseteq \mathcal{D}$ and a finite number of C^r -functions $f_i: U \to \mathbb{R}^m$, i = 1, ..., k, such that f is a continuous selection of $f_1, ..., f_k$ on U.
- A PC^r -function with $r \ge 1$ is also called piecewise smooth.

Definition (Piecewise Smoothness, Piecewise Linearity)

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be open and $f_i : \mathcal{D} \to \mathbb{R}^m, i = 1, \dots, k$ with $k \in \mathbb{N}$ be given.

- $f : \mathcal{D} \to \mathbb{R}^m$ is called a continuous selection of the collection f_1, \ldots, f_k on the set $U \subseteq \mathcal{D}$ if f is continuous on U and $f(x) \in \{f_1(x), \ldots, f_k(x)\} \quad \forall x \in U.$
- $f: \mathcal{D} \to \mathbb{R}^m$ is called PC^r -function with $r \in \mathbb{N} \cup \{\infty\}$ if for every $x \in \mathcal{D}$ there exists an open neighboorhood $U \subseteq \mathcal{D}$ and a finite number of C^r -functions $f_i: U \to \mathbb{R}^m$, i = 1, ..., k, such that f is a continuous selection of $f_1, ..., f_k$ on U.
- A PC^r -function with $r \ge 1$ is also called piecewise smooth.
- A continuous selection $f : U \to \mathbb{R}^m$ is called piecewise linear if all elements of the collection f_1, \ldots, f_k are affine functions.

S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012

Piecewise Smooth Example Problems

Exact ℓ_1 penalty functions

Constrained optimization problem

$$\min_{x} f(x)$$
 s.t. $c_i(x) = 0, i \in \mathcal{E}, c_i(x) \ge 0, i \in \mathcal{I}$

equivalent to unconstrained optimization problem with $\ell_1\text{-penalty}$

$$\phi(x;\mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} \max\{0, -c_i(x)\}$$

Piecewise Smooth Example Problems

Exact ℓ_1 penalty functions

Constrained optimization problem

$$\min_{x} f(x)$$
 s.t. $c_i(x) = 0, i \in \mathcal{E}, \quad c_i(x) \ge 0, i \in \mathcal{I}$

equivalent to unconstrained optimization problem with $\ell_1\text{-penalty}$

$$\phi(x;\mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} \max\{0, -c_i(x)\}$$

Robust Optimization

Often formulated as min-max problems

Piecewise Smooth Example Problems

Exact ℓ_1 penalty functions

Constrained optimization problem

$$\min_{x} f(x)$$
 s.t. $c_i(x) = 0, i \in \mathcal{E}, c_i(x) \ge 0, i \in \mathcal{I}$

equivalent to unconstrained optimization problem with $\ell_1\text{-penalty}$

$$\phi(x;\mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} \max\{0, -c_i(x)\}$$

Robust Optimization

Often formulated as min-max problems

Train timetabling

yields piecewise linear optimization problem

F. Fischer, C. Helmberg: Dynamic Graph Generation and Dynamic Rolling Horizon Techniques in Large Scale Train Timetabling, 2010

Fuzzy Pattern Tree I

(together with Eyke Hüllermeier, Uni Pb)

= model class for classification and regression in machine learning

Fuzzy Pattern Tree I

(together with Eyke Hüllermeier, Uni Pb)

= model class for classification and regression in machine learning

Application: Determine wine quality

Fuzzy Pattern Tree I

(together with Eyke Hüllermeier, Uni Pb)

= model class for classification and regression in machine learning

Application: Determine wine quality via a target function defined by

$$egin{aligned} &(heta^*,\gamma^*,\sigma^*,c^*) = \operatorname{argmin}_{ heta,\gamma,\sigma,c}\sum_{i=1}^N (F_{ heta,\gamma,\sigma,c}(\mathbf{x}_i)-y_i)^2 & ext{with} \ &F_{ heta,\gamma,\sigma,c}(x) = T_{ heta}\left(\mu_{c_1}(x_{11}), C_{\gamma}(S_{\sigma}(\mu_{c_2}(x_2),\mu_{c_3}(x_{10})),\mu_{c_4}(x_2))
ight) \end{aligned}$$

Fuzzy Pattern Tree II

Here:

$$\mu_{c_i}(x) = \begin{cases} \frac{x}{c_i} & \text{if } 0 \le x \le c_i \\ \frac{1-x}{1-c_i} & \text{if } c_i \le x \le 1 \end{cases}$$

$$T_{\theta}(u, v) = \frac{u v}{\max\{u, v, \theta\}}$$

$$S_{\sigma}(u, v) = 1 - T_{\sigma}(1-u, 1-v)$$

$$C_{\gamma}(u, v) = \begin{cases} \gamma u + (1-\gamma)v & \text{if } u > v \\ (1-\gamma)u + \gamma v & \text{if } u \le v \end{cases}$$

allow non-monotonicity

- = Dubois-Prade family
- = corr. dual t-conorm
- = ordered weighted operator

Fuzzy Pattern Tree II

Here:

$$\mu_{c_i}(x) = \begin{cases} \frac{x}{c_i} & \text{if } 0 \le x \le c_i \\ \frac{1-x}{1-c_i} & \text{if } c_i \le x \le 1 \end{cases}$$

$$T_{\theta}(u, v) = \frac{u v}{\max\{u, v, \theta\}}$$

$$S_{\sigma}(u, v) = 1 - T_{\sigma}(1-u, 1-v)$$

$$C_{\gamma}(u, v) = \begin{cases} \gamma u + (1-\gamma)v & \text{if } u > v \\ (1-\gamma)u + \gamma v & \text{if } u \le v \end{cases}$$

allow non-monotonicity

= Dubois-Prade family

 $= {\sf ordered} \ {\sf weighted} \ {\sf operator}$

 \Rightarrow Piecewise smooth target function

$$\theta^*, \gamma^*, \sigma^*, c^*) = \operatorname{argmin}_{\theta, \gamma, \sigma, c} \sum_{i=1}^{N} (F_{\theta, \gamma, \sigma, c}(\mathbf{x}_i) - y_i)^2 \quad \text{with}$$
$$F_{\theta, \gamma, \sigma, c}(x) = T_{\theta} \left(\mu_{c_1}(x_{11}), C_{\gamma}(S_{\sigma}(\mu_{c_2}(x_2), \mu_{c_3}(x_{10})), \mu_{c_4}(x_2)) \right)$$

A. Walther and A. Griewank

Generalized derivative concept required:

- directional derivative
- Clarke generalized gradient

$$\partial_C \varphi(x) := \operatorname{conv} \left\{ \lim_{i \to \infty} \nabla \varphi(x_i) : x_i \mapsto x, \nabla \varphi(x_i) \text{ exists} \right\} = \operatorname{conv} \{ \partial^L \varphi(x) \}$$

F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990

• Mordukhovich subgradient $\partial_M \varphi(x)$

T Rockafellar, R. Wets: Variational Analysis, Springer, 1998

Generalized derivative concept required:

- directional derivative
- Clarke generalized gradient

$$\partial_C \varphi(x) := \operatorname{conv} \left\{ \lim_{i \to \infty} \nabla \varphi(x_i) : x_i \mapsto x, \nabla \varphi(x_i) \text{ exists} \right\} = \operatorname{conv} \{ \partial^L \varphi(x) \}$$

F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990

• Mordukhovich subgradient $\partial_M \varphi(x)$ T Rockafellar, R. Wets: Variational Analysis, Springer, 1998

Necessary optimality conditions:

- $\varphi'(x; d) \geq 0$ for all $d \in \mathbb{R}^n$
- Clarke stationarity: $0 \in \partial_C \varphi(x)$

Generalized derivative concept required:

- directional derivative
- Clarke generalized gradient

$$\partial_C \varphi(x) := \operatorname{conv} \left\{ \lim_{i \to \infty} \nabla \varphi(x_i) : x_i \mapsto x, \nabla \varphi(x_i) \text{ exists} \right\} = \operatorname{conv} \{ \partial^L \varphi(x) \}$$

F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990

• Mordukhovich subgradient $\partial_M \varphi(x)$ T Rockafellar, R. Wets: Variational Analysis, Springer, 1998

Necessary optimality conditions:

- $\varphi'(x; d) \geq 0$ for all $d \in \mathbb{R}^n$
- Clarke stationarity: $0 \in \partial_C \varphi(x)$

?
$$\partial_C(|x|) = \partial_C(-|x|)$$
 !

Generalized derivative concept required:

- directional derivative
- Clarke generalized gradient

$$\partial_C \varphi(x) := \operatorname{conv} \left\{ \lim_{i \to \infty} \nabla \varphi(x_i) : x_i \mapsto x, \nabla \varphi(x_i) \text{ exists} \right\} = \operatorname{conv} \{ \partial^L \varphi(x) \}$$

F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990

• Mordukhovich subgradient $\partial_M \varphi(x)$ T Rockafellar, R. Wets: Variational Analysis, Springer, 1998

Necessary optimality conditions:

- $\varphi'(x; d) \geq 0$ for all $d \in \mathbb{R}^n$
- Clarke stationarity: $0 \in \partial_C \varphi(x)$? $\partial_C(|x|) = \partial_C(-|x|)$!
- a little stronger: Mordukhovich stationarity: $0 \in \partial_M \varphi(x)$

Current (= Black Box) Approaches

- Use methods for smooth problems May fail, no convergence theory
- Subgradient method Very (!) slow convergence
- Bundle methods Lots of parameters, erratic convergence behaviour involves oracle
- Derivative-free methods No structure exploitation, difficult when number of optimization variables large

Hierarchy of Problems

Observations

Solving min $\varphi(x)$ with φ PL+C not easy:

- Global minimization is NP-hard
- Steepest descent with exact line search may fail
- Zeno behaviour possible, i.e., solution trajactory with infinite number of direction changes in a finite amount of time
- J.-B. Hiriart-Urruty, C. Lemaréchal: Convex Analysis and Minimization Algorithms I, Springer, 1993

Abs-Linearization for PS Optimization

New (= Gray Box) Approach

Goal: Locate stationary (?!) point of piecewise smooth function $\varphi(.)$ by

- successive approximation by piecewise linear (PL) models and
- explicit handling of kink structure in PL model.

New (= Gray Box) Approach

Goal: Locate stationary (?!) point of piecewise smooth function $\varphi(.)$ by

- successive approximation by piecewise linear (PL) models and
- explicit handling of kink structure in PL model.

Example: Half-Pipe function

$$\varphi: \mathbb{R}^2 \mapsto \mathbb{R}, \quad \varphi(x) = \max\{x_2^2 - \max\{x_1, 0\}, 0\}$$

Nonlinear function $\varphi(.)$ and its piecewise linearization at $\dot{x} = (1, 1)$

A. Walther and A. Griewank

Abs-Linearisation I

Given: Target function $\varphi : \mathbb{R}^n \mapsto \mathbb{R}$ piecewise smooth

Assumption: Non-smoothness caused by univariate piecewise linear elements like min, max or abs!

Given: Target function $\varphi : \mathbb{R}^n \mapsto \mathbb{R}$ piecewise smooth

Assumption: Non-smoothness caused by univariate piecewise linear elements like min, max or abs!

For example:

$$arphi(x) = \min_{x \in \mathbb{R}^n} \max_{1 \le i \le m} f_i(x)$$

= min max regret problem

Given: Target function $\varphi : \mathbb{R}^n \mapsto \mathbb{R}$ piecewise smooth

Assumption: Non-smoothness caused by univariate piecewise linear elements like min, max or abs!

Then: φ can be written using switching variables

$$z_i, \quad i=1,\ldots,s$$

as arguments of abs(.).

Given: Target function $\varphi : \mathbb{R}^n \mapsto \mathbb{R}$ piecewise smooth

Assumption: Non-smoothness caused by univariate piecewise linear elements like min, max or abs!

Then: φ can be written using switching variables

$$z_i, \quad i=1,\ldots,s$$

as arguments of abs(.).

The University for the Information Society

Hence:

Definition (Abs-normal form of PS function $\varphi : \mathbb{R}^n \to \mathbb{R}$)

$$F: \mathbb{R}^{n+s} \to \mathbb{R}^{s}, \quad z = F(x, |z|)$$

$$f: \mathbb{R}^{n+s} \to \mathbb{R}, \quad y = f(x, |z|) = \varphi(x)$$

with F and f at least twice differentiable.

A. Walther and A. Griewank

Abs-Linearisation II

Defining

$$\begin{split} & L = \frac{\partial}{\partial |z|} F(x, |z|) \in \mathbb{R}^{s \times s} \quad \text{strictly lower triangular} \\ & Z = \frac{\partial}{\partial x} F(x, |z|) \in \mathbb{R}^{s \times n} \quad a = \frac{\partial}{\partial x} f(x, |z|) \in \mathbb{R}^{n}, \quad b = \frac{\partial}{\partial |z|} f(x, |z|) \in \mathbb{R}^{s} \end{split}$$

Abs-Linearisation II

Defining

$$\begin{split} L &= \frac{\partial}{\partial |z|} F(x, |z|) \in \mathbb{R}^{s \times s} \quad \text{strictly lower triangular} \\ Z &= \frac{\partial}{\partial x} F(x, |z|) \in \mathbb{R}^{s \times n} \quad a = \frac{\partial}{\partial x} f(x, |z|) \in \mathbb{R}^{n}, \ b = \frac{\partial}{\partial |z|} f(x, |z|) \in \mathbb{R}^{s} \end{split}$$

one obtains

Definition (Abs-linear form of abs-normal $\varphi : \mathbb{R}^n \to \mathbb{R}$ in x) $\begin{bmatrix} z \\ \Delta y \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} Z & L \\ a & b \end{bmatrix} \begin{bmatrix} \Delta x \\ \Sigma \cdot z \end{bmatrix} \quad \text{with}$ $c_1 \in \mathbb{R}^s, c_2 \in \mathbb{R}, \quad \sigma = \sigma(x) \equiv \text{sign}(z(x)) \in \{-1, 0, 1\}^s, \Sigma \equiv \text{diag}(\sigma)$

as piecewise linearisation $\Delta \varphi$ of φ in x.

A. Walther and A. Griewank

Abs-Linearisation II

Defining

$$\begin{split} L &= \frac{\partial}{\partial |z|} F(x, |z|) \in \mathbb{R}^{s \times s} \quad \text{strictly lower triangular} \\ Z &= \frac{\partial}{\partial x} F(x, |z|) \in \mathbb{R}^{s \times n} \quad a = \frac{\partial}{\partial x} f(x, |z|) \in \mathbb{R}^{n}, \ b = \frac{\partial}{\partial |z|} f(x, |z|) \in \mathbb{R}^{s} \end{split}$$

one obtains

Definition (Abs-linear form of abs-normal $\varphi : \mathbb{R}^n \to \mathbb{R}$ in x) $\begin{bmatrix} z \\ \Delta y \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} Z & L \\ a & b \end{bmatrix} \begin{bmatrix} \Delta x \\ \Sigma \cdot z \end{bmatrix} \quad \text{with}$ $c_1 \in \mathbb{R}^s, c_2 \in \mathbb{R}, \quad \sigma = \sigma(x) \equiv \operatorname{sign}(z(x)) \in \{-1, 0, 1\}^s, \Sigma \equiv \operatorname{diag}(\sigma)$

as piecewise linearisation $\Delta \varphi$ of φ in x.

Abs-normal form can be generated using appropriate variant of AD!

A. Walther and A. Griewank

Abs-Linearization for PS Optimization

Example: Nesterov-Rosenbrock Function

Smooth variant:

$$arphi_0(x) = rac{1}{4}(x_1-1)^2 + \sum_{i=1}^{n-1}(x_{i+1}-2x_i^2+1)^2$$

Example: Nesterov-Rosenbrock Function

PS variant:

$$arphi_1(x) = rac{1}{4}(x_1-1)^2 + \sum_{i=1}^{n-1} |x_{i+1}-2x_i^2+1|$$

M. Gürbüzbalaban, M.L. Overton: On Nesterov's nonsmooth Chebyshev–Rosenbrock functions, Nonlinear Anal: Theory, Methods Appl., 2012

Example: Nesterov-Rosenbrock Function

PS variant:

$$\varphi_1(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1|$$

Abs-normal form:

$$egin{aligned} & z_i = F_i(x,|z|) = x_{i+1} - 2x_i^2 + 1, & 1 \leq i \leq n-1, \ & y = f(x,|z|) = rac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |z_i| & \Rightarrow \end{aligned}$$

Example: Nesterov-Rosenbrock Function

PS variant:

$$\varphi_1(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |x_{i+1} - 2x_i^2 + 1|$$

Abs-normal form:

$$\begin{aligned} z_i &= F_i(x, |z|) = x_{i+1} - 2x_i^2 + 1, & 1 \le i \le n - 1, \\ y &= f(x, |z|) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=1}^{n-1} |z_i| & \Rightarrow \\ Z &= \begin{bmatrix} -4x_1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -4x_2 & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & -4x_s & 1 \end{bmatrix} \in \mathbb{R}^{(n-1) \times n} \\ L &= 0 \in \mathbb{R}^{(n-1) \times (n-1)}, \ a = \left(\frac{(x_1 - 1)}{2}, 0, \dots, 0\right) \in \mathbb{R}^n, \ b = 1 \in \mathbb{R}^{n-1} \end{aligned}$$

A. Walther and A. Griewank

Open Questions I

Gap between class of abs-normal functions and PS functions?

A. Walther and A. Griewank

14 / 42

Abs-Linearization for PS Optimization

Shonan, June 25, 2018

Original Evaluation Procedure

For smooth functions, AD is based on

$$\begin{array}{cccc} v_{i-n} &=& x_i & i = 1 \dots n \\ v_i &=& \varphi_i(v_j)_{j \prec i} & i = 1 \dots l \\ y &=& v_l \end{array}$$

A. Walther and A. Griewank

15 / 42

Abs-Linearization for PS Optimization

Shonan, June 25, 2018

Adapted Evaluation Procedure

For abs-normal functions, consider

V _{i-n}	=	Xi		i = 1 n
Zi	=	$\psi_i(v_j)_{j\prec i}$		
σ_i	=	$sign(z_i)$	}	i = 1 s
Vi	=	$\sigma_i z_i = abs(z_i)$	J	
$y \equiv v_{s+1}$	=	$\psi_{s+1}(v_j)_{j\prec s+1}$		

- Declare z_i as independent variables
- adapt evaluation of abs() correspondingly

Abs-Linearisation via AD I

AD approach: tangent approximation for each elemental function

$$v_i(x + \Delta x) - v_i(x) \approx \Delta v_i \equiv \Delta v_i(\Delta x)$$

For smooth elementals:

$$\begin{array}{ll} \Delta v_i = \Delta v_j \pm \Delta v_k & \text{for } v_i = v_j \pm v_k, \\ \Delta v_i = v_j \ast \Delta v_k + v_k \ast \Delta v_j & \text{for } v_i = v_j \ast v_k, \\ \Delta v_i = \varphi'(v_j)_{j \prec i} \ast \Delta(v_j)_{j \prec i} & \text{for } v_i = \varphi_i(v_j)_{j \prec i} \neq \mathsf{abs}(v_j), \\ \Delta v_i = \mathsf{abs}(v_j + \Delta v_j) - v_i & \text{for } v_i = \mathsf{abs}(v_j). \end{array}$$

 $\Rightarrow \text{ If } y = F(x) \text{ involves no call of abs():}$ $\Delta y = \Delta F(x; \Delta x) = F'(x)\Delta x, \qquad F'(x) \in \mathbb{R}^{m \times n} = \text{Jacobian}$

standard AD!

Abs-Linearisation via AD II

For the absolute value function $v_i = abs(v_i)$:

$$\Delta v_i = \mathsf{abs}(v_j(\hat{x}) + \Delta v_j) - v_j(\hat{x})$$

$$\Rightarrow \Delta y(\Delta x) = \Delta F(\hat{x}; \Delta x) : \mathbb{R}^n \mapsto \mathbb{R}^m$$

is a piecewise linear continuous function for each fixed $x \in D$.

Abs-Linearisation via AD II

For the absolute value function $v_i = abs(v_i)$:

$$\Delta v_i = \mathsf{abs}(v_j(\mathring{x}) + \Delta v_j) - v_j(\mathring{x})$$

$$\Rightarrow \Delta y(\Delta x) = \Delta F(\mathring{x}; \Delta x) : \mathbb{R}^n \mapsto \mathbb{R}^m$$

is a piecewise linear continuous function for each fixed $x \in D$.

Theorem

Suppose F is elementwise Lipschitz continuously differentiable on $D \subset K \subset \mathbb{R}^n$, D open, K closed and convex. Then there exists $\gamma > 0$ such that for all $x, \mathring{x} \in K$

$$\|F(x) - F(\mathring{x}) - \Delta F(\mathring{x}; x - \mathring{x})\| = \gamma \|x - \mathring{x}\|^2$$

A. Griewank. On stable piecewise linearization and generalized algorithmic differentiation, Optimization Methods and Software, 2013

Abs-Linearisation via AD II

For the absolute value function $v_i = abs(v_j)$:

$$\Delta v_i = \mathsf{abs}(v_j(\mathring{x}) + \Delta v_j) - v_j(\mathring{x})$$

$$\Rightarrow \Delta y(\Delta x) = \Delta F(\mathring{x}; \Delta x) : \mathbb{R}^n \mapsto \mathbb{R}^m$$

is a piecewise linear continuous function for each fixed $x \in D$.

Theorem

Suppose F is elementwise Lipschitz continuously differentiable on $D \subset K \subset \mathbb{R}^n$, D open, K closed and convex. Then there exists $\gamma > 0$ such that for all $x, \mathring{x} \in K$

$$\|F(x) - F(\mathring{x}) - \Delta F(\mathring{x}; x - \mathring{x})\| = \gamma \|x - \mathring{x}\|^2$$

A. Griewank. On stable piecewise linearization and generalized algorithmic differentiation, Optimization Methods and Software, 2013 Derivatives a, b, c, Z, L required by abs-linear form provided by AD!

Open Questions II

Drivers/Interfaces of AD tools for abs-linearisation?

A. Walther and A. Griewank

19 / 42

Abs-Linearization for PS Optimization

Shonan, June 25, 2018

SALOP

Very brief description of the algorithm:

$$x_{k+1} = x_k + \arg\min_{\Delta x} \left\{ \Delta \varphi(x_k; \Delta x) + \frac{q}{2} \|\Delta x\|^2 \right\}$$

= Successive Abs-Linear $\mathbf{OP}\textsc{timization}$ with a proximal term

SALOP

Example

$$\varphi : \mathbb{R}^2 \to \mathbb{R}, \quad \varphi(x_1, x_2) = \max\{x_2^2 - \max\{x_1, 0\}, 0\}$$

$$k = 0$$

Example

$$\varphi: \mathbb{R}^2 \to \mathbb{R}, \quad \varphi(x_1, x_2) = \max\{x_2^2 - \max\{x_1, 0\}, 0\}$$

$$k = 0$$

local QP in x₀ based on linearization

Example

$$\varphi: \mathbb{R}^2 \to \mathbb{R}, \quad \varphi(x_1, x_2) = \max\{x_2^2 - \max\{x_1, 0\}, 0\}$$

$$k = 0$$

local QP in x₀ based on linearization

$$\rightarrow$$

New iterate $x_1 = x_0 + \Delta x_0$

Example

$$\varphi: \mathbb{R}^2 \to \mathbb{R}, \quad \varphi(x_1, x_2) = \max\{x_2^2 - \max\{x_1, 0\}, 0\}$$

$$k = 0$$

local QP in x₀ based on linearization

New iterate
$$x_1 = x_0 + \Delta x_0$$

A. Walther and A. Griewank

Abs-Linearization for PS Optimization

Shonan, June 25, 2018

Example

$$\varphi: \mathbb{R}^2 \to \mathbb{R}, \quad \varphi(x_1, x_2) = \max\{x_2^2 - \max\{x_1, 0\}, 0\}$$

$$k = 0$$

Convergence of SALOP

Finite convergence of inner loop:

- Argument space divided into finitely many polyhedra
- Function value decreased when switching polyhedra
- No polyhedron visited twice
- \Rightarrow stationary point reached after finitely many steps

Convergence of SALOP

Finite convergence of inner loop:

- Argument space divided into finitely many polyhedra
- Function value decreased when switching polyhedra
- No polyhedron visited twice
- \Rightarrow stationary point reached after finitely many steps

Convergence of outer loop:

Theorem

Assume that $\varphi : \mathbb{R}^n \to \mathbb{R}$ is a PS function as considered here with a bounded level set $\mathcal{N}_0 = \{x \in \mathbb{R}^n \mid f(x) \leq f(x_0)\}$. Let x_0 be the starting point of the generated sequence of iterates $\{x_k\}_{k \in \mathbb{N}}$ generated by SALOP. Then a cluster point x_* of the infinite sequence $\{x_k\}_{k \in \mathbb{N}}$ exists and all clusters points are Clarke stationary.

Convergence of SALOP

Finite convergence of inner loop:

- Argument space divided into finitely many polyhedra
- Function value decreased when switching polyhedra
- No polyhedron visited twice
- \Rightarrow stationary point reached after finitely many steps

Convergence of outer loop:

Theorem

Assume that $\varphi : \mathbb{R}^n \to \mathbb{R}$ is a PS function as considered here with a bounded level set $\mathcal{N}_0 = \{x \in \mathbb{R}^n \mid f(x) \leq f(x_0)\}$. Let x_0 be the starting point of the generated sequence of iterates $\{x_k\}_{k \in \mathbb{N}}$ generated by SALOP. Then a cluster point x_* of the infinite sequence $\{x_k\}_{k \in \mathbb{N}}$ exists and all clusters points are Clarke stationary.

S. Fiege, A. Walther, A. Griewank: An algorithm for nonsmooth optimization by successive piecewise linearization. Mathematical Programming, 2018

A. Walther and A. Griewank

22 / 42

The Inner Optimisation Loop

Improved solver for inner loop:

- adaption of new optimality conditions for inner loop
- corresponding modification of QP solver
- ⇒ Active Signature Method (ASM) for the first time convergence to local minimizers!

The Inner Optimisation Loop

Improved solver for inner loop:

- adaption of new optimality conditions for inner loop
- corresponding modification of QP solver
- ⇒ Active Signature Method (ASM) for the first time convergence to local minimizers!

Exam.: Nesterov-Rosenbrock function with 2^{n-1} Clarke-stationary points

$$\varphi_2 : \mathbb{R}^n \mapsto \mathbb{R}, \quad \varphi(x) = \frac{1}{4} |x_1 - 1| + \sum_{i=1,\dots,n-1} |x_{i+1} - 2|x_i| + 1|$$

The Inner Optimisation Loop

Improved solver for inner loop:

- adaption of new optimality conditions for inner loop
- corresponding modification of QP solver
- ⇒ Active Signature Method (ASM) for the first time convergence to local minimizers!

Exam.: Nesterov-Rosenbrock function with 2^{n-1} Clarke-stationary points

$$\varphi_2 : \mathbb{R}^n \mapsto \mathbb{R}, \quad \varphi(x) = \frac{1}{4} |x_1 - 1| + \sum_{i=1,\dots,n-1} |x_{i+1} - 2|x_i| + 1|$$

Iterations numbers:

n	1	2	3	4	5	6	7	8	9	10
ASM	2	4	8	16	32	64	128	256	512	1024
HANSO	3	61	494*	1341*	2521*	329*	357*	326*	307*	515*
MPBNGC	3	52	9859	9978*	3561*	4166*	2547*	1959*	9420*	9807*

A. Griewank, A. Walther: Finite convergence of an active signature method to local minima of piecewise linear functions. In revision + Matlab Implementierung von ASM

The LASSO Problem

In statistics and machine learning: Least Absolute Shrinkage and Selection Operator (LASSO)

= regression approach for variable selection and regularization to enhance prediction accuracy and interpretability of statistical model it produces

The LASSO Problem

In statistics and machine learning: Least Absolute Shrinkage and Selection Operator (LASSO)

= regression approach for variable selection and regularization to enhance prediction accuracy and interpretability of statistical model it produces

For given data $w \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$, the LASSO function is

$$\varphi : \mathbb{R}^n \mapsto \mathbb{R}, \qquad \varphi(x) = \frac{1}{m} \|w - Ax\|_2^2 + \rho \|x\|_1$$

with the penalty factor $\rho > 0$.

The LASSO Problem

In statistics and machine learning: Least Absolute Shrinkage and Selection Operator (LASSO)

= regression approach for variable selection and regularization to enhance prediction accuracy and interpretability of statistical model it produces

For given data $w \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$, the LASSO function is

$$\varphi : \mathbb{R}^n \mapsto \mathbb{R}, \qquad \varphi(x) = \frac{1}{m} \|w - Ax\|_2^2 + \rho \|x\|_1$$

with the penalty factor $\rho > 0$.

ASM with adapted quadratic term!!

LASSO: Iteration Numbers

	$\rho = 1$	00	ho = 17.353616		
Löser	opt. value	# iter.	opt. value	# iter.	
Active Signature Method	13035.7	3	11452.1	3	
LassoBlockCoordinate	13035.7	30	11452.1	29	
LassoConstrained	13035.7	8	11452.1	6	
LassoGaussSeidel	13035.7	12	11452.1	11	
LassoGrafting	13087.2	10	11452.1	11	
LassolteratedRidge	13087.7	102	11452.1	102	
LassoNonNegativeSquared	13035.7	64	11452.1	58	
LassoPrimalDualLogBarrier	13035.7	9	11452.1	7	
LassoProjection	13035.7	3	11452.1	5	
LassoShooting	13035.7	54	11452.1	51	
LassoSubGradient	13035.7	52	11452.1	23	
LassoUnconstrainedApx v1	13035.7	50	11452.1	40	
LassoUnconstrainedApx v2	13035.7	94	11452.1	27	
LassoActiveSet	13288.9	14	11602.1	12	
LassoLARS	13296.7	18	11602.1	14	
LassoSignConstraints	13288.9	1	11602.1	4	

Matlab interface for LASSO solvers: http://www.cs.ubc.ca/~schmidtm/Software/lasso.html

A. Walther and A. Griewank

Quadratic Convergence

Proposition

If x_* is a sharp minimizer of φ then SALOP with $q \ge \gamma$ converges quadratically to x_* from all x_0 in some ball $B_\rho(x_*)$.

Quadratic Convergence

Proposition

If x_* is a sharp minimizer of φ then SALOP with $q \ge \gamma$ converges quadratically to x_* from all x_0 in some ball $B_{\rho}(x_*)$.

Proof.

$$\begin{split} c\|x_{k+1} - x_*\| &\leq \varphi(x_{k+1}) - \varphi(x_*) = \varphi(x_{k+1}) - \varphi(x_k) - (\varphi(x_*) - \varphi(x_k)) \\ &\leq \Delta \varphi(x_k; x_{k+1} - x_k) - \Delta \varphi(x_k; x_* - x_k) \\ &\quad + \frac{\gamma}{2} (\|x_{k+1} - x_k\|^2 + \|x_* - x_k\|^2) \\ &\leq \frac{\gamma + q}{2} \|x_{k+1} - x_k\|^2 + \frac{\gamma - q}{2} \|x_k - x_*\|^2 \leq \gamma \|x_k - x_*\|^2 \,. \end{split}$$

Chained CB3 I

$$\varphi: \mathbb{R}^{n} \mapsto \mathbb{R}, \varphi(x) = \sum_{i=1}^{n-1} \max\{x_{i}^{4} + x_{i+1}^{2}, (2-x_{i})^{2} + (2-x_{i+1})^{2}, 2e^{-x_{i}+x_{i+1}}\}$$

 $s = 2(n-1), x_* = (1 \dots 1)^\top \in \mathbb{R}^n$ is sharp

Chained CB3 I

$$\varphi: \mathbb{R}^n \mapsto \mathbb{R}, \varphi(x) = \sum_{i=1}^{n-1} \max\{x_i^4 + x_{i+1}^2, (2-x_i)^2 + (2-x_{i+1})^2, 2e^{-x_i + x_{i+1}}\}$$

 $s = 2(n-1), x_* = (1 \dots 1)^\top \in \mathbb{R}^n$ is sharp

Implementation LiPsMin of SALOP yields for n = 10

A. Walther and A. Griewank

Linear Convergence

Proposition

Suppose x_{*} satisfies SSC with strict complementarity under LIKQ for $\varphi(.)$. Assume $q > \max(\gamma, \|\check{U}_*^{\top}\check{H}_*\check{U}_*\|)$ for the proximal parameter q. Then SALOP yields local and linear convergence with R-factor

$$\|I-rac{1}{q}\check{U}^ op_*\check{H}_*\check{U}_*\|\geq 1-(\kappa(\check{U}^ op_*\check{H}_*\check{U}_*))^{-1}\;,$$

where κ denotes the condition number with respect to the spectral norm.

Linear Convergence

Proposition

Suppose x_{*} satisfies SSC with strict complementarity under LIKQ for $\varphi(.)$. Assume $q > \max(\gamma, \|\check{U}_*^{\top}\check{H}_*\check{U}_*\|)$ for the proximal parameter q. Then SALOP yields local and linear convergence with R-factor

$$\|I - rac{1}{q}\check{U}_*^ op\check{H}_*\check{U}_*\| \geq 1 - (\kappa(\check{U}_*^ op\check{H}_*\check{U}_*))^{-1} \ ,$$

where κ denotes the condition number with respect to the spectral norm.

Proof.

- take care of nonlocalization
- formulation as fixed point problem, analysis of contraction rate

A. Griewank and A. Walther: Relaxing kink qualifications and proving convergence rates in piecewise smooth optimization, in revision

Chained Crescent I

$$\begin{split} \varphi : \mathbb{R}^n &\mapsto \mathbb{R}, \quad \varphi(x) = \max \left\{ \varphi_1(x), \varphi_2(x) \right\} \\ \varphi_1(x) &= \sum_{i=1}^{n-1} (x_i^2 + (x_{i+1} - 1)^2 + x_{i+1} - 1), \\ \varphi_2(x) &= \sum_{i=1}^{n-1} (-x_i^2 - (x_{i+1} - 1)^2 + x_{i+1} + 1), \end{split}$$

 \Rightarrow PS, nonconvex function isolated but not sharp minimizer $x_* = (1 \dots 1)^\top \in \mathbb{R}^n$, s = 1,

$$Z = (0 \ 4 \ \dots \ 4), \quad L = 0 \in \mathbb{R}, \quad a = (0 \ 1 \ \dots \ 1), \quad b = 0.5 \ ,$$

only switching variable is active at x_* , LIKQ holds

Chained Crescent I: Convergence

A. Walther and A. Griewank

30 / 42

Abs-Linearization for PS Optimization

Shonan, June 25, 2018

FPT Problem: Wine Quality

- data set contains 4 000 entries
- C implementation with old inner loop algo. could handle 200 entries
- Matlab implentation: up to 4000 entries feasible!
- n = 7, s = 18014 for m = 2000 entries
 - n = 7, s = 27014 for m = 3000 entries \implies large, sparse matrices!

FPT Problem: Wine Quality

- data set contains 4 000 entries
- C implementation with old inner loop algo. could handle 200 entries
- Matlab implentation: up to 4000 entries feasible!
- n = 7, s = 18014 for m = 2000 entries n = 7, s = 27014 for m = 3000 entries \implies large, sparse matrices!

A. Walther and A. Griewank

FPT Problem: Wine Quality

- data set contains 4 000 entries
- C implementation with old inner loop algo. could handle 200 entries
- Matlab implentation: up to 4000 entries feasible!
- n = 7, s = 18014 for m = 2000 entries n = 7, s = 27014 for m = 3000 entries \implies large, sparse matrices!

A. Walther and A. Griewank

Open Questions III

- linear convergence with fewer assumptions?
- superlinear convergence?
- Iarger class of functions?

Signature Vectors

The signature vector

 $\sigma(x) = \operatorname{sign}(z(x))$

and the corresponding diagonal matrix

$$\Sigma = \operatorname{diag}(\sigma)$$

define active switch set

$$\alpha = \alpha(x) \equiv \{1 \le i \le s \ |\sigma_i(x) = 0\} \qquad |\alpha(x)| = s - |\sigma(x)|.$$

Signature Vectors

The signature vector

 $\sigma(x) = \operatorname{sign}(z(x))$

and the corresponding diagonal matrix

 $\Sigma = \mathsf{diag}(\sigma)$

define active switch set

$$\alpha = \alpha(x) \equiv \{1 \le i \le s \ |\sigma_i(x) = 0\} \qquad |\alpha(x)| = s - |\sigma(x)|.$$

Furthermore, for fixed σ and hence also Σ

$$z = F(x, \Sigma z)$$

has unique solution z^{σ} with $\nabla z^{\sigma} = \frac{\partial}{\partial x} z^{\sigma} = (I - L\Sigma)^{-1} z$.

Signature Vectors

The signature vector

 $\sigma(x) = \operatorname{sign}(z(x))$

and the corresponding diagonal matrix

 $\Sigma = \mathsf{diag}(\sigma)$

define active switch set

$$\alpha = \alpha(x) \equiv \{1 \le i \le s \ |\sigma_i(x) = 0\} \qquad |\alpha(x)| = s - |\sigma(x)|.$$

Furthermore, for fixed σ and hence also Σ

$$z = F(x, \Sigma z)$$

has unique solution z^{σ} with $\nabla z^{\sigma} = \frac{\partial}{\partial x} z^{\sigma} = (I - L\Sigma)^{-1} z$.

Linear Independence Kink Qualification

Definition

We say that the linear independence kink qualification (LIKQ) is satisfied at a point $x \in \mathbb{R}^n$ if for $\sigma = \sigma(x)$ the active Jacobian

$$J(x) \equiv \nabla z_{\alpha}^{\sigma}(x) \equiv \left(e_{i}^{\top} \nabla z^{\sigma}(x)\right)_{i \in \alpha} \in \mathbb{R}^{|\alpha| \times n}$$

has full row rank $|\alpha|$, which requires in particular that $|\sigma| \ge s - n$.

Linear Independence Kink Qualification

Definition

We say that the linear independence kink qualification (LIKQ) is satisfied at a point $x \in \mathbb{R}^n$ if for $\sigma = \sigma(x)$ the active Jacobian

$$J(x) \equiv \nabla z_{\alpha}^{\sigma}(x) \equiv \left(e_{i}^{\top} \nabla z^{\sigma}(x)\right)_{i \in \alpha} \in \mathbb{R}^{|\alpha| \times n}$$

has full row rank $|\alpha|$, which requires in particular that $|\sigma| \ge s - n$.

Generalization of LICQ!

Generalized Gradients by AD

Definition

For a PS function $\varphi : \mathbb{R}^n \mapsto \mathbb{R}$ as considered here and a point $x \in \mathbb{R}^n$ the set of conical gradients is given by

$$\partial^{K} \varphi(x) = \left\{ g \in \mathbb{R}^{n} \left| g \in \partial^{L} \Delta \varphi(x; \Delta x) \right|_{\Delta x = 0}
ight\}$$

Generalized Gradients by AD

Definition

For a PS function $\varphi: \mathbb{R}^n \mapsto \mathbb{R}$ as considered here and a point $x \in \mathbb{R}^n$ the set of conical gradients is given by

$$\partial^{K} arphi(x) = \left\{ g \in \mathbb{R}^{n} \left| g \in \partial^{L} \Delta arphi(x;\Delta x) \right|_{\Delta x = 0}
ight\} \; .$$

- Griewank (2013), considered also by Barton and Khan, see publications in 2013 and 2015
- Can be computed from the abs-normal form, i.e., they are available using AD
- A directional active gradient computed by AD is an element of the limiting gradients, i.e., g ∈ ∂^Lφ(x).

$$egin{aligned} arphi: \mathbb{R}^2 &\mapsto \mathbb{R}, & & arphi(x_1, x_2) = \max(x_2^2 - \max(x_1, 0), 0) \ &= \left\{ egin{aligned} x_2^2 & & ext{if } x_1 \leq 0 \ x_2^2 - x_1 & & ext{if } 0 \leq x_1 \leq x_2^2 \ 0 & & ext{if } 0 \leq x_2^2 \leq x_1 \end{array}
ight., \end{aligned}$$

A. Walther and A. Griewank

Abs-Linearization for PS Optimization

$$arphi : \mathbb{R}^2 \mapsto \mathbb{R}, \qquad arphi(x_1, x_2) = \max(x_2^2 - \max(x_1, 0), 0) \ = \left\{ egin{array}{cc} x_2^2 & ext{if } x_1 \leq 0 \ x_2^2 - x_1 & ext{if } 0 \leq x_1 \leq x_2^2 \ 0 & ext{if } 0 \leq x_2^2 \leq x_1 \end{array}
ight.,$$

Here, one has that

$$\begin{split} \widehat{\partial}^{M}\varphi(0) &= \{(0,0)\} \subsetneq \partial^{M}\varphi(0) = \{(0,0), (-1,0)\} = \partial^{L}\varphi(0), \\ \Rightarrow \quad \partial^{C}\varphi(0) &= \{(v,0) \mid v \in [-1,0]\}, \\ \partial^{K}\varphi(0) &= \partial^{L}\Delta\varphi(0;0) = \{(0,0)\} \end{split}$$

$$arphi : \mathbb{R}^2 \mapsto \mathbb{R}, \qquad arphi(x_1, x_2) = \max(x_2^2 - \max(x_1, 0), 0) \ = \left\{ egin{array}{cc} x_2^2 & ext{if } x_1 \leq 0 \ x_2^2 - x_1 & ext{if } 0 \leq x_1 \leq x_2^2 \ 0 & ext{if } 0 \leq x_2^2 \leq x_1 \end{array}
ight.,$$

Here, one has that

$$\begin{split} \widehat{\partial}^{M}\varphi(0) &= \{(0,0)\} \subsetneq \partial^{M}\varphi(0) = \{(0,0), (-1,0)\} = \partial^{L}\varphi(0), \\ \Rightarrow \quad \partial^{C}\varphi(0) &= \{(v,0) \mid v \in [-1,0]\}, \\ \partial^{K}\varphi(0) &= \partial^{L}\Delta\varphi(0;0) = \{(0,0)\} \end{split}$$

yielding

$$\{\nabla\varphi(\mathbf{0})\}=\widehat{\partial}^{M}\varphi(\mathbf{0})\subsetneq\partial^{M}\varphi(\mathbf{0})=\partial^{L}\varphi(\mathbf{0}),$$

$$arphi : \mathbb{R}^2 \mapsto \mathbb{R}, \qquad arphi(x_1, x_2) = \max(x_2^2 - \max(x_1, 0), 0) \ = \left\{ egin{array}{cc} x_2^2 & ext{if } x_1 \leq 0 \ x_2^2 - x_1 & ext{if } 0 \leq x_1 \leq x_2^2 \ 0 & ext{if } 0 \leq x_2^2 \leq x_1 \end{array}
ight.,$$

Here, one has that

$$\begin{split} \widehat{\partial}^{M}\varphi(0) &= \{(0,0)\} \subsetneq \partial^{M}\varphi(0) = \{(0,0), (-1,0)\} = \partial^{L}\varphi(0), \\ \Rightarrow \quad \partial^{C}\varphi(0) &= \{(v,0) \mid v \in [-1,0]\}, \\ \partial^{K}\varphi(0) &= \partial^{L}\Delta\varphi(0;0) = \{(0,0)\} \end{split}$$

yielding

$$\{\nabla\varphi(0)\} = \widehat{\partial}^{M}\varphi(0) \subsetneq \partial^{M}\varphi(0) = \partial^{L}\varphi(0), \quad \partial^{L}\varphi(0) \neq \partial^{K}\varphi(0) \subset \partial^{C}\varphi(0) .$$

$$\begin{split} \varphi: \mathbb{R}^2 \mapsto \mathbb{R}, \quad \varphi(x_1, x_2) = |x_2 - |x_1|| + \varepsilon |x_1|, \qquad \varepsilon \in \mathbb{R} \\ &= \begin{cases} \varphi_1(x_1, x_2) = x_2 - x_1 + \varepsilon x_1 & \text{if } x_2 \ge x_1 \ge 0\\ \varphi_2(x_1, x_2) = x_2 + x_1 - \varepsilon x_1 & \text{if } x_2 \ge -x_1, x_1 < 0\\ \varphi_3(x_1, x_2) = -x_2 - x_1 - \varepsilon x_1 & \text{if } x_2 < -x_1, x_1 < 0\\ \varphi_4(x_1, x_2) = -x_2 + x_1 + \varepsilon x_1 & \text{if } x_1 > x_2, x_1 \ge 0 \end{cases}$$

Abs-Linearization for PS Optimization

$$\begin{split} \varphi: \mathbb{R}^2 \mapsto \mathbb{R}, \quad \varphi(x_1, x_2) &= |x_2 - |x_1|| + \varepsilon |x_1|, \qquad \varepsilon \in \mathbb{R} \\ &= \begin{cases} \varphi_1(x_1, x_2) &= x_2 - x_1 + \varepsilon x_1 & \text{if } x_2 \ge x_1 \ge 0\\ \varphi_2(x_1, x_2) &= x_2 + x_1 - \varepsilon x_1 & \text{if } x_2 \ge -x_1, x_1 < 0\\ \varphi_3(x_1, x_2) &= -x_2 - x_1 - \varepsilon x_1 & \text{if } x_2 < -x_1, x_1 < 0\\ \varphi_4(x_1, x_2) &= -x_2 + x_1 + \varepsilon x_1 & \text{if } x_1 > x_2, x_1 \ge 0 \end{cases}$$

If
$$\varepsilon \geq 1$$

$$\begin{split} \widehat{\partial}^{M}\varphi(\mathbf{0}) &= \partial^{M}\varphi(\mathbf{0}) = \partial^{C}\varphi(\mathbf{0}) = \operatorname{conv}\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}\\ \partial^{K}\varphi(\mathbf{0}) &= \partial^{L}\varphi(\mathbf{0}) = \left\{g_{1}, g_{2}, g_{3}, g_{4}\right\} \end{split}$$

$$\begin{split} \varphi: \mathbb{R}^2 \mapsto \mathbb{R}, \quad \varphi(x_1, x_2) &= |x_2 - |x_1|| + \varepsilon |x_1|, \qquad \varepsilon \in \mathbb{R} \\ &= \begin{cases} \varphi_1(x_1, x_2) &= x_2 - x_1 + \varepsilon x_1 & \text{if } x_2 \ge x_1 \ge 0\\ \varphi_2(x_1, x_2) &= x_2 + x_1 - \varepsilon x_1 & \text{if } x_2 \ge -x_1, x_1 < 0\\ \varphi_3(x_1, x_2) &= -x_2 - x_1 - \varepsilon x_1 & \text{if } x_2 < -x_1, x_1 < 0\\ \varphi_4(x_1, x_2) &= -x_2 + x_1 + \varepsilon x_1 & \text{if } x_1 > x_2, x_1 \ge 0 \end{cases}$$

If
$$\varepsilon \geq 1$$

$$egin{aligned} &\widehat{\partial}^M arphi(\mathbf{0}) = \partial^M arphi(\mathbf{0}) = \partial^C arphi(\mathbf{0}) = \operatorname{conv}\left\{\mathrm{g}_1,\mathrm{g}_2,\mathrm{g}_3,\mathrm{g}_4
ight\} \ &\partial^K arphi(\mathbf{0}) = \partial^L arphi(\mathbf{0}) = \left\{g_1,g_2,g_3,g_4
ight\} \end{aligned}$$

If
$$\varepsilon < -1$$

 $\widehat{\partial}^M \varphi(\mathbf{0}) = \emptyset$ and $\partial^M \varphi(\mathbf{0}) = \operatorname{conv} \{g_1, g_4\} \cup \operatorname{conv} \{g_2, g_3\}$
 $\partial^K \varphi(\mathbf{0}) = \partial^L \varphi(\mathbf{0}) = \{g_1, g_2, g_3, g_4\}$.

$$\begin{split} \varphi: \mathbb{R}^2 \mapsto \mathbb{R}, \quad \varphi(x_1, x_2) &= |x_2 - |x_1|| + \varepsilon |x_1|, \qquad \varepsilon \in \mathbb{R} \\ &= \begin{cases} \varphi_1(x_1, x_2) &= x_2 - x_1 + \varepsilon x_1 & \text{if } x_2 \ge x_1 \ge 0\\ \varphi_2(x_1, x_2) &= x_2 + x_1 - \varepsilon x_1 & \text{if } x_2 \ge -x_1, x_1 < 0\\ \varphi_3(x_1, x_2) &= -x_2 - x_1 - \varepsilon x_1 & \text{if } x_2 < -x_1, x_1 < 0\\ \varphi_4(x_1, x_2) &= -x_2 + x_1 + \varepsilon x_1 & \text{if } x_1 > x_2, x_1 \ge 0 \end{cases}$$

If
$$\varepsilon \geq 1$$

$$\widehat{\partial}^{M} \varphi(\mathbf{0}) = \partial^{M} \varphi(\mathbf{0}) = \partial^{C} \varphi(\mathbf{0}) = \operatorname{conv} \{g_{1}, g_{2}, g_{3}, g_{4}\}$$
$$\partial^{K} \varphi(\mathbf{0}) = \partial^{L} \varphi(\mathbf{0}) = \{g_{1}, g_{2}, g_{3}, g_{4}\}$$

If $\varepsilon < -1$

$$\begin{split} \widehat{\partial}^{M}\varphi(\mathbf{0}) &= \emptyset \quad \text{and} \quad \partial^{M}\varphi(\mathbf{0}) = \operatorname{conv}\left\{g_{1}, g_{4}\right\} \cup \operatorname{conv}\left\{g_{2}, g_{3}\right\} \\ \partial^{K}\varphi(\mathbf{0}) &= \partial^{L}\varphi(\mathbf{0}) = \left\{g_{1}, g_{2}, g_{3}, g_{4}\right\} \;. \end{split}$$

Relations of different generalized gradients?

Mangasarin-Fromovitz-Kink Qualification

Definition

The Mangasarin-Fromovitz-Kink Qualification (MFKQ) holds at a point \mathring{x} if

• for all $\sigma \succeq \mathring{\sigma}$ the vector inequality $J_{\sigma}v > 0$ is solvable for some $v \in \mathbb{R}^n$, where

$$\sigma \succeq \mathring{\sigma}$$
 in that $\sigma_j \mathring{\sigma}_j \geq \mathring{\sigma}_j^2$ for $j = 1, \dots, n$

and $J_{\sigma} \equiv (\sigma_i \nabla z_i^{\sigma})_{i \in \mathring{\alpha}}$, or

• if $J_{\sigma}v \geq 0$ has only the trivial solution $v = 0 \in \mathbb{R}^n$

Mangasarin-Fromovitz-Kink Qualification

Definition

The Mangasarin-Fromovitz-Kink Qualification (MFKQ) holds at a point \mathring{x} if

• for all $\sigma \succeq \mathring{\sigma}$ the vector inequality $J_{\sigma}v > 0$ is solvable for some $v \in \mathbb{R}^n$, where

$$\sigma \succeq \mathring{\sigma}$$
 in that $\sigma_j \mathring{\sigma}_j \ge \mathring{\sigma}_j^2$ for $j = 1, \dots, n$

and $J_{\sigma} \equiv (\sigma_i \nabla z_i^{\sigma})_{i \in \mathring{\alpha}}$, or

- if $J_\sigma v \ge 0$ has only the trivial solution $v = 0 \in \mathbb{R}^n$
- strongly related to constraint qualification MFCQ
- much weaker than LIKQ

One can check quite easily:

 Half-Pipe example: LIKQ and MFQK do not hold

One can check quite easily:

- Half-Pipe example: LIKQ and MFQK do not hold
- Gradient Cube example: LIKQ and MFQK do hold

One can check quite easily:

- Half-Pipe example: LIKQ and MFQK do not hold
- Gradient Cube example: LIKQ and MFQK do hold
- Lemon squeezer example:

A. Walther and A. Griewank

Abs-Linearization for PS Optimization

One can check quite easily:

- Half-Pipe example: LIKQ and MFQK do not hold
- Gradient Cube example: LIKQ and MFQK do hold
- Lemon squeezer example: LIKQ does not hold MFQK does hold

What can we prove with these properties?

Proposition (Limiting, Mordukovich and Clark subdiff'tials)

For the abs-normal function $\varphi : \mathbb{R}^n \to \mathbb{R}$ and $x \in \mathbb{R}^n$, the inclusions

 $\partial^L \varphi(x) \subset \partial_M \varphi(x) \subset \partial_C \varphi(x)$

hold. Furthermore, the function $\varphi(.)$ is regular in $\mathring{x} \in \mathbb{R}^n$ if and only if

 $\partial_M \varphi(\mathbf{\dot{x}}) = \partial_C \varphi(\mathbf{\dot{x}})$

Proposition (Limiting, Mordukovich and Clark subdiff'tials)

For the abs-normal function $\varphi : \mathbb{R}^n \to \mathbb{R}$ and $x \in \mathbb{R}^n$, the inclusions

$$\partial^L \varphi(x) \subset \partial_M \varphi(x) \subset \partial_C \varphi(x)$$

hold. Furthermore, the function $\varphi(.)$ is regular in $\mathring{x} \in \mathbb{R}^n$ if and only if

 $\partial_M \varphi(\mathbf{\dot{x}}) = \partial_C \varphi(\mathbf{\dot{x}})$

Proposition (Conical and limiting gradients)

For the abs-normal function $\varphi : \mathbb{R}^n \to \mathbb{R}$, one has

 $\partial^{K}\varphi(x)\subset\partial^{L}\varphi(x)$

for all $x \in \mathbb{R}^n$. Furthermore, if MFKQ holds at $\dot{x} \in \mathbb{R}^n$, then

$$\partial^{K} \varphi(\mathbf{\dot{x}}) = \partial^{L} \varphi(\mathbf{\dot{x}}) \; .$$

The PS function $\varphi : \mathbb{R}^n \to \mathbb{R}$ is said to be *convex of first order* at a point \dot{x} if its piecewise linearization $\Delta \varphi(\dot{x}; \cdot) : \mathbb{R}^n \to \mathbb{R}$ is convex on some ball about the argument $\Delta x = 0$.

The PS function $\varphi : \mathbb{R}^n \to \mathbb{R}$ is said to be *convex of first order* at a point \dot{x} if its piecewise linearization $\Delta \varphi(\dot{x}; \cdot) : \mathbb{R}^n \to \mathbb{R}$ is convex on some ball about the argument $\Delta x = 0$.

Theorem (Regularity and FOC)

For the abs-normal function $\varphi : \mathbb{R}^n \to \mathbb{R}$, one has that $\varphi(.)$ is first order convex in some ball about x if $\varphi(.)$ is regular in x. Furthermore, if MFKQ holds at $x \in \mathbb{R}^n$, then $\varphi(.)$ is first-order convex in some ball about x if and only if $\varphi(.)$ is regular in x.

The PS function $\varphi : \mathbb{R}^n \to \mathbb{R}$ is said to be *convex of first order* at a point \dot{x} if its piecewise linearization $\Delta \varphi(\dot{x}; \cdot) : \mathbb{R}^n \to \mathbb{R}$ is convex on some ball about the argument $\Delta x = 0$.

Theorem (Regularity and FOC)

For the abs-normal function $\varphi : \mathbb{R}^n \to \mathbb{R}$, one has that $\varphi(.)$ is first order convex in some ball about x if $\varphi(.)$ is regular in x. Furthermore, if MFKQ holds at $x \in \mathbb{R}^n$, then $\varphi(.)$ is first-order convex in some ball about x if and only if $\varphi(.)$ is regular in x.

Theorem (Complexity of convexity test)

The convexity test is co-NP complete.

The PS function $\varphi : \mathbb{R}^n \to \mathbb{R}$ is said to be *convex of first order* at a point \dot{x} if its piecewise linearization $\Delta \varphi(\dot{x}; \cdot) : \mathbb{R}^n \to \mathbb{R}$ is convex on some ball about the argument $\Delta x = 0$.

Theorem (Regularity and FOC)

For the abs-normal function $\varphi : \mathbb{R}^n \to \mathbb{R}$, one has that $\varphi(.)$ is first order convex in some ball about x if $\varphi(.)$ is regular in x. Furthermore, if MFKQ holds at $x \in \mathbb{R}^n$, then $\varphi(.)$ is first-order convex in some ball about x if and only if $\varphi(.)$ is regular in x.

Theorem (Complexity of convexity test)

The convexity test is co-NP complete.

A. Walther, A. Griewank. Characterizing and testing subdifferential regularity for piecewise smooth objective functions, in revision

Conclusion and Outlook

- Practically all nonsmooth problems are piecewise smooth in abs-normal form.
- Extended tools for algorithmic differentiation yield abs-linearization in form of Z, L, a, b, c.
 - \Rightarrow generation of abs-normal form can be automated!

Conclusion and Outlook

- Practically all nonsmooth problems are piecewise smooth in abs-normal form.
- Extended tools for algorithmic differentiation yield abs-linearization in form of Z, L, a, b, c.
 ⇒ generation of abs-normal form can be automated!
- $\bullet~{\sf LIKQ} \Rightarrow {\sf First}$ order minimality can be tested with polynomial effort
- SALOP yields typically linear, quadratic, or superlinear convergence Inner loop: PL functions can be minimized effectively by adapted QP solver
- Wine quality test feasible for 3 000 out of 4 000 data sets
 ⇒ training of model possible!

Conclusion and Outlook

- Practically all nonsmooth problems are piecewise smooth in abs-normal form.
- Extended tools for algorithmic differentiation yield abs-linearization in form of Z, L, a, b, c.
 ⇒ generation of abs-normal form can be automated!
- $\bullet~{\sf LIKQ} \Rightarrow {\sf First}$ order minimality can be tested with polynomial effort
- SALOP yields typically linear, quadratic, or superlinear convergence Inner loop: PL functions can be minimized effectively by adapted QP solver
- Wine quality test feasible for 3 000 out of 4 000 data sets
 ⇒ training of model possible!
- Relation to other derivatives concepts analysed