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Shape optimization problem

min J(Q)
PDE or VI constraints

e J shape functional depending on a solution of a partial differential

equation (PDE) or a variational inequality (VI)
(Definition: Let D c RY be non-empty and let A c {Q:Q c D} denote a set

of subsets. A function J: A >R, Q~ J(Q) is called a shape
functional.)

2/31

e Q shape
~ 2D shape: Simply connected, compact subset Q of R? with Q # &

and C* boundary 992
~ How is the set of all shapes defined?
June 26, 2018
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Space of smooth shapes

2D shape: Simply connected, compact subset Q of R? with Q # @ and C* boundary 9Q
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Space of smooth shapes

N
2D shape: Simply connected, compact subset Q of R? with Q # @ and C* boundary 9Q

Shape space

| B. := Emb(S", B?)/Diff(S")
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Space of smooth shapes ( T
(R
2D shape: Simply connected, compact subset Q of R? with Q # @ and C* boundary 9Q
| B = Emb(S", E?)/Diff(S") |

® B. is a manifold (cf. [1])
® Generalization to higher dimensions: Be(M, N) := Emb(M, N)/Diff(M), where M

is a compact manifold and N denotes a Riemannian manifold with

dim(M)<dim(N)

[1] A. Kriegl and P. Michor. The Convient Setting of Global Analysis, volume 53 of Mathematical Surveys and
June 26, 2018 3/31
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Space of smooth shapes
2D shape: Simply connected, compact subset Q of R? with Q # @ and C* boundary 9Q

Shape space

| B. = Emb(S" B?)/Diff(S") |

® B. is a manifold (cf. [1])
® Generalization to higher dimensions: Be(M, N) := Emb(M, N)/Diff(M), where M

is a compact manifold and N denotes a Riemannian manifold with
v

dim(M)<dim(N)

e ¢ Be(SH,R?)

C1 € Be(Sl,Rz)

b2 ¢ Be(527R3)

[1] A. Kriegl and P. Michor. The Convient Setting of Global Analysis, volume 53 of Mathematical Surveys and
3/31

b1 € Be(Sz,R3)

June 26, 2018

Monographs. American Mathematical Society, 1997.
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Optimization on manifolds (cf. [2])
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® Line-search methods in R™: xuy1 = xk + tx&k

® Manifolds are not necessarily linear spaces
= Select & as a tangent vector to M at xi
= Points from the tangent space have to be
mapped to the manifold

[2] P.-A. Absil, R. Mahony and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University

Press, 2008.
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Optimization on manifolds (cf. [2])

® Line-search methods in R™: xuy1 = xx + tx&k

e Manifolds are not necessarily linear spaces
= Select & as a tangent vector to M at x
= Points from the tangent space have to be

mapped to the manifold

Example: Steepest descent method on B,

Goal: Find a solution of miBn J(x)
Input: xo € Be :
for k=0,1,... do

[1] Compute the increment & = —gradJ(x¥) € T, Be

[2] Set xi+1 := R, (tiék) for some steplength t, and a retraction R

[2] P.-A. Absil, R. Mahony and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University
Press, 2008.
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Optimization on manifolds (cf. [2])

® Line-search methods in R™: xuy1 = xx + tx&k

e Manifolds are not necessarily linear spaces
= Select & as a tangent vector to M at x
= Points from the tangent space have to be

mapped to the manifold

Example: Steepest descent method on B,

Goal: Find a solution of miBn J(x)

x€Be
Input: xo € Be
for k=0,1,... do

[1] Compute the increment & = —gradJ(x¥) € T, Be, where gradJ is a Riemannian
shape gradient

[2] Set xi+1 := R, (tiék) for some steplength t, and a retraction R

[2] P.-A. Absil, R. Mahony and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University
Press, 2008.
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Riemannian metrics on B,
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A Riemannian metric on a manifold M is a collection g = (gp)pem of inner products
g TpMx ToM =R, (v,w) ~ gp(v,w),
one for every p € M, such that the map M = R, p ~ g,(X(p), Y(p)) is smooth for

every pair of vector fields X, Y on M.

June 26, 2018
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Riemannian metrics on B,

A Riemannian metric on a manifold M is a collection g = (gp)pem of inner products
g TpMx ToM =R, (v,w) ~ gp(v,w),

one for every p € M, such that the map M = R, p ~ g,(X(p), Y(p)) is smooth for
every pair of vector fields X, Y on M.

Sobolev metric (cf. [3])

g4 TeBe x TeBe = R, (h, k) = (I - AD)a, B) 12, with A>0

Here h = an and k = n denote two elements of the tangent space
TeBe 2 {9 | = an, a e C*(S",R)}.

[3] M. Bauer, P. Harms, and P. Michor. Sobolev metrics on shape space of surfaces. JGM, 3(4):389-438, 2011.
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Riemannian metrics on B,

A Riemannian metric on a manifold M is a collection g = (gp)pem of inner products
g TpMx ToM =R, (v,w) ~ gp(v,w),

one for every p € M, such that the map M = R, p ~ g,(X(p), Y(p)) is smooth for
every pair of vector fields X, Y on M.

Sobolev metric (cf. [3])

g4 TeBe x TeBe = R, (h, k) = (I - AD)a, B) 12, with A>0

Here h = an and k = n denote two elements of the tangent space
TeBe 2 {9 | = an, a e C*(S",R)}.

Riemannian shape gradient w.r.t. g*

Representation of DJ(x) such that g'(gradJ(x), h) = DJ(x)[h] Vhe TBe

[3] M. Bauer, P. Harms, and P. Michor. Sobolev metrics on shape space of surfaces. JGM, 3(4):389-438, 2011.
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Shape derivative

Definition
Let D c RY be non-empty and open and let Q c D be measurable. The shape derivative
of a shape functional J at Q in direction V € C&(D,R?), k e NU {oo}, is defined by the

Eulerian derivative
DJ(Q)[V] = |in3 L{J(m (Qe = {x+t-V(x):xeQ}).
t—0F

® Shape derivative of a shape differentiable functional is a directional derivative in
the direction of a differentiable vector field

e Hadamard Structure Theorem (cf. Theorem 2.17 in [4]):
e Only the normal part of a vector field on the boundary I' of a domain Q has

an impact on the value of the shape derivative

e Existence of a scalar distribution r on '
o If re L*(T'), then DJ(Q)[V] = [, r(V,n) ds

® ris often called the shape gradient but gradients depend on chosen scalar products

defined on the space under consideration
[4] J. Sokolowski and J.-P. Zolésio. Introduction to Shape Optimization, volume 16 of Computational Mathematics
6 /31

Springer, 1992.
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Interface problem

e Diffusion process

e Q c R? bounded Lipschitz domain r,
e Two materials Q1,5 c Q with

different permeability

rint

e Fixed outer boundary N

=T, UMHUr,Yry M r,
e Variable boundary iy € Bo(S!, R?)

= Fit to measured concentration Q

1

e Homogeneous concentration in €

fOI’ t=0 rb

e Higher concentration on the top in
the beginning

K. Welker (Trier University) Optimization in Shape Spaces June 26, 2018 8 /31



Diffusion problem

For concentration y and diffusion coefficient k:

.
min J(,9) =iy, Q)+ %@ =5 [ [ vy ddep [ 105
int 0 Q

lint

s.t. 9 —div(kvy)=f in Q2x(0,T]

ot
y=1 onT¢x(0,T]
P
a-i:o on (Ty U UT,) x (0, T]

y=yo inQx{0}

e Data measurements:  y € L° (0, T; Lz(Q))
e Right hand-side:  f =const. in Qx (0, T]

ki = const. in Q1

e Jumping coefficient: k= .
ko = const. in

e Transmission conditions: Iyl =0, [[kg—yﬂ =0 onlinex(0,T]
n
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Shape derivative

Shape derivative of the regularization term ;"¢

Df(@IV]=p [ (V.n)nds
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Shape derivative

PRI
Shape derivative of the regularization term ;"¢

DS @)V]=p [ (V.n)nds

Shape derivative of the objective functional j

| Dia(y, )[V1] = Di(y, 2)[V] = Dir,,, (v, D[ V]|
. DJ'Q(%Q)[V]:[(’T/Q—/(V)/T (VV+VVT)vp-pvf'V

+div(V) (%(y—}_/f + %p+ kvy'Vvp- fp) dx dt

 Dit (- IVI= [ [ [V Tp2 (V. n) ds
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Shape derivative

Shape derivative of the regularization term ;"¢

DS @)V]=p [ (V.n)nds

4

Shape derivative of the objective functional j

| Dia(y, )[V1] = Di(y, 2)[V] = Dir,,, (v, D[ V]|

Dj [T v i T
* Dia(y. DVI = [ [ ~kvy™ (VW + V) Vp-pveTV

+div(V) (%(y—)_/f + %p+ kvy'Vvp- fp) dx dt

 Dit (- IVI= [ [ [V Tp2 (V. n) ds

e Volume formulation: y e [ (0, T; HI(Q)) ,peW (0, T; Hl(Q))

e Surface formulation: H>-regularity in space is necessary
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Shape derivative

Shape derivative of the regularization term ;"¢

DS @)V]=p [ (V.n)nds

4

Shape derivative of the objective functional j

| Dia(y, )[V1] = Di(y, 2)[V] = Dir,,, (v, D[ V]|

Dj [T v i T
* Dia(y. DVI = [ [ ~kvy™ (VW + V) Vp-pveTV

+div(V) (%(y—)_/f + %p+ kvy'Vvp- fp) dx dt

-
. Djr;"t()/:Q)[V]:fo /r k] Vyi Vp2 (V, n) dsdt = g*(grad®j(y,Q),V) VVeTr, Be

e Volume formulation: y e [ (0, T; HI(Q)) ,peW (0, T; Hl(Q))

e Surface formulation: H>-regularity in space is necessary

V.
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Algorithm on (Be,g') (cf. [5])

—>( Evaluate measurements
( Solve the state and adjoint equation
( Assemble the Dirichlet boundary condition )
of the linear elasticity equation:
1. Compute the Riemannian shape gradient with respect to g from
the surface shape derivative DrL[V] = [; r(V,n)ds (re L*(T)):
grad® L = gn mit (1 -Aar)g=r (F€Be,A>0,qeC™(I))
L 2. Compute a Riemannian limited-memory BFGS update )
( Solve the linear elasticity equation with source term equals zero )
( Apply the resulting deformation to the finite element mesh )

[5] V. Schulz, M. Siebenborn and K. W. Structured inverse modeling in parabolic diffusion problems. SICON,
53(6):3319-3338, 2015.
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Steklov-Poincaré: Motivation and aims

® Derivation of surface shape derivative formulations is a time-consuming process

= Aim: Usage of volume shape derivative expressions

e Gradient representation and afterwards mesh deformation
= Aim: Gradient representation and mesh deformation all at once

e (C%-shapes
= Aim: Weaken the assumption of C*-shapes

June 26, 2018 13 /31
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Steklov-Poincaré: Motivation and aims

® Derivation of surface shape derivative formulations is a time-consuming process

= Aim: Usage of volume shape derivative expressions

e Gradient representation and afterwards mesh deformation
= Aim: Gradient representation and mesh deformation all at once

® (C%-shapes
= Aim: Weaken the assumption of C*-shapes

Definition of an inner product based on volume formualtions

® Inner product should be derived from the second shape derivative

® Second shape derivative can be related to the Steklov-Poincaré operator (cf. [6])

= Definition of a Steklov-Poincaré type metric

[6] S. Schmidt and V. Schulz. Impulse response approximations of discrete shape Hessians with application in CFD.
SICON, 48(4):2562-2580, 2009.
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Steklov-Poincaré metric
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i)

g H(M) x (M) > R, (a.8) > [a-(5")7 Bds

Here SP" denotes the projected Poincaré-Steklov operator and is given by
ST HTYA(M) ~ HY2(), €= (o),

where U € Hj(Q,R?) solves a(U, V) = [ € (70V) nds VV € H}(Q,RY).
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Steklov-Poincaré metric
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g H(M) x (M) > R, (a.8) > [a-(5")7 Bds

Here SP" denotes the projected Poincaré-Steklov operator and is given by

SPHTY2(M) » HY2(T), €= (7U) ",

where U € Hj(Q,R?) solves a(U, V) = [ € (70V) nds VV € H}(Q,RY).

Shape derivative in surface formulation DJ-[V] = [ r(V,n)ds

~ Shape gradient with respect to g° is given by he Ty Be = C=(T) s.t.

S
g (’wvh) = <r7’¢')L2(I’) V¢€Cw(r)
Optimization in Shape Spaces June 26, 2018 14 / 31



Steklov-Poincaré metric

g H(M) x (M) > R, (a.8) > [a-(5")7 Bds
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Here SP" denotes the projected Poincaré-Steklov operator and is given by

SPHTY2(M) » HY2(T), €= (7U) ",

where U € Hj(Q,R?) solves a(U, V) = [ € (70V) nds VV € H}(Q,RY).

Shape derivative in surface formulation DJ-[V] = [ r(V,n)ds

~ Shape gradient with respect to g° is given by he Ty Be = C=(T) s.t.
) _ . pry—1 _ oo
(k) = (rvhay (= [0 (5 hds= [ruds) vwee™(n)

K. Welker (Trier University) Optimization in Shape Spaces June 26, 2018 14 / 31



Steklov-Poincaré metric

g H(M) x (M) > R, (a.8) > [a-(5")7 Bds

Here SP" denotes the projected Poincaré-Steklov operator and is given by

SPHTY2(M) » HY2(T), €= (7U) ",

where U € Hj(Q,R?) solves a(U, V) = [ € (70V) nds VV € H}(Q,RY).

Shape derivative in surface formulation DJ-[V] = [ r(V,n)ds

~ Shape gradient with respect to g° is given by he Ty Be = C=(T) s.t.
) = (r o)z (o [v:(5)  hds= [ruds) vuec(n)
= h=5""r=(7U)"n where U e Hy(,R?) solves
a(U, V):frr-(voV)Tnds YV e HE(Q,RY)
Optimization in Shape Spaces June 26, 2018 14 / 31



Steklov-Poincaré metric

g H(M) x (M) > R, (a.8) > [a-(5")7 Bds

Here SP" denotes the projected Poincaré-Steklov operator and is given by

SPHTY2(M) » HY2(T), €= (7U) ",

where U € Hj(Q,R?) solves a(U, V) = [ € (70V) nds VV € H}(Q,RY).

Shape derivative in surface formulation DJ-[V] = [ r(V,n)ds

~ Shape gradient with respect to g° is given by he Ty Be = C=(T) s.t.
) = (r o)z (o [v:(5)  hds= [ruds) vuec(n)
= h=5""r=(7U)"n where U e Hy(,R?) solves
a(U, V):frr-(%vfnds = DJ[V]=DJa[V] VYV eHL(Q,RY)
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Results

Construction of the g°-metric yields
g°(u,v) = DI[V]=DJa[V]=a(U,V) VYV eHy(QR) and v=(1V)n

= Shape gradient representation u = (oU)"n and mesh deformation U € H&(Q,Rd)

June 26, 2018 15 / 31
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Results

Construction of the g°-metric yields
g°(u,v) = DI[V]=DJa[V]=a(U,V) VYV eHy(QR) and v=(1V)n

= Shape gradient representation u = (oU)"n and mesh deformation U € H&(Q,Rd)

We have to solve the deformation equation:
a(U,V)=b(V) VVeHy(Q,R?)

® a(-,-) symmetric and coercive bilinearform
® b(V):= Dot (Q)[V] + Dsurs(Q)[ V]

o J,01(Q2) parts of J leading to volume shape derivative expressions
® Jourf(2) parts of J leading to surface shape derivative expressions

= Combination of surface and volume formulation of shape derivatives
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Algorithm on (B, g°) (cf. [7])

—>( Evaluate measurements

!

Solve the state and adjoint equation

!

® Assemble DJ,s(Q2)[ V] as Neumann boundary conditions

!

Solve the deformation equation

!

Compute a Riemannian limited-memory BFGS update

!

Apply the resulting deformation to the finite element mesh

Assemble the deformation equation:
e Assemble DJ,o(Q)[V] for V with I nsupp(V) # 0 as source term
(
C )

[7] V. Schulz, M. Siebenborn and K. W. Efficient PDE constrained optimization based on Steklov-Poincaré type
metrics. SIOPT, 26(4):2800-2819, 2016.
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k1=1in§21

e Diffusion problem with T =20, k = :
ko =0.001 in Q5

e A=0.001

e Data y are generated from a solution of the state equation
for the setting Qy = {x:|x|2 < 0.5}
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Numerical results

e Diffusion problem with T =20, k = k= 1in Qll
ko =0.001 in €,

e A=0.001
e Data y are generated from a solution of the state equation
for the setting Q5 = {x:|x]2 < 0.5}

1
Gradient Vol
s Gradient Surf
BFGS vol
o1l —---— BFGS surf
— === I3-BFGS Vol
—— — I3-BFGS Surf
0,014
0,001

June 26, 2018 17 / 31
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Numerical results
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kk=1inQ
e Diffusion problem with T =20, k=1 N 261
ko =0.001 in Q

e A=0.001

e Data y are generated from a solution of the state equation
for the setting Qy = {x:|x|2 < 0.5}

Gradient Vol
- Gradient Surf
BFGS vol

0,1 —---— BFGS surf
— === I3-BFGS Vol
—— — I3-BFGS Surf
0,014
0,001
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O Diffeological space of H'/2-shapes
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Space of H'/2-shapes

BY(Fo,RY) := H?(Fo,RY)/ ~

e [, cRY d-dimensional Lipschitz shape
(Definition: A d-dimensional Lipschitz shape is defined as the boundary 'y = 9%
of a compact Lipschitz domain Xp c RY with X, # @.)

° Hl/z(ro,Rd)
= {w:w € HY2([o,R?) injective, continuous; w(lo) Lipschitz shape}

o wi~wy < wi(lo)=wa(lo), where wi, wy € HY?(Io,RY)
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Space of H'/2-shapes

BY(Fo,RY) := H?(Fo,RY)/ ~

e [, cRY d-dimensional Lipschitz shape
(Definition: A d-dimensional Lipschitz shape is defined as the boundary 'y = 9%
of a compact Lipschitz domain Xp c RY with X, # @.)

° Hl/z(ro,Rd)
= {w:w € HY2([o,R?) injective, continuous; w(lo) Lipschitz shape}

o wi~wy < wi(lo)=wa(lo), where wi, wy € HY?(Io,RY)

Challenges

e Properties of w € H/?(Io,RY) such that w(Io) Lipschitz shape
e Independence of the definition of 52 (I'O,Rd) from the Lipschitz shape o

e Structure of B*/? (FO,Rd)
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Space of H'/2-shapes

BY(Fo,RY) := H?(Fo,RY)/ ~

e [, cRY d-dimensional Lipschitz shape
(Definition: A d-dimensional Lipschitz shape is defined as the boundary 'y = 9%
of a compact Lipschitz domain Xp c RY with X, # @.)

° Hl/z(ro,Rd)
= {w:w € HY2([o,R?) injective, continuous; w(lo) Lipschitz shape}

o wi~wy < wi(lo)=wa(lo), where wi, wy € HY?(Io,RY)

Challenges

e Properties of w € H/?(Io,RY) such that w(Io) Lipschitz shape
e Independence of the definition of 52 (I'O,Rd) from the Lipschitz shape o

e Structure of B2 (Fo,Rd): Diffeological structure
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Diffeological structure of B2 (cf. [8])

BY?(Fo,R?) := H'?(Fo, RY)/ ~

o HY2(g,RY) = {w:w € HY2(Ip, R?) injective, continuous; w(lo) Lipschitz shape}

® W ~ W & W1(r0) = Wz(ro), where Wi, W2 € ’Hl/z(roﬂRd)

o 1'2(Ty,R¥) is obviously a subset of H*?(Io, RY)

° Hl/z(l'o,Rd) is a Banach space and, thus, a manifold
= We can view HY2(Io,R?) with the corresponding diffeology

Results in [9]:
® Every subset of a diffeological space carries a natural subset diffeology, which is

defined by the pullback of the ambient diffeology by the natural inclusion
e Every quotient of a diffeological space carries a natural quotient diffeology defined
by the pushforward of the diffeology of the source space to the quotient by the

canonical projection
= We can construct diffeologies on #*/?(Fo, RY) and B?(Fp, RY)

[8] K. W. Suitable spaces for shape optimization, 2017. (arXiv:1702.07579)
[9] P. Iglesias-Zemmour. Diffeology. Volume 185, American Mathematical Society, 2013.
June 26, 2018 20 /31
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Diffeological space
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Diffeological space

e No theory for shape optimization on diffeological spaces so far

e Diffeological structure suffices for many differential-geometric tools used in
shape optimization techniques

e Riemannian structures can be used to measure shape distances and state
convergence properties

K. Welker (Trier University) Optimization in Shape Spaces June 26, 2018 21 /31
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VI constrained shape optimization

e No explicit dependence on the domain in classical Vls

e In VI constrained shape optimization problems: Unavoidable source of
non-linearity and non-convexity due to the non-linear and non-convex nature

of shape spaces

June 26, 2018 23 /31
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VI constrained shape optimization

e No explicit dependence on the domain in classical Vls

e In VI constrained shape optimization problems: Unavoidable source of
non-linearity and non-convexity due to the non-linear and non-convex nature

of shape spaces

Setting

e Q c R? bounded Lipschitz domain r

e Two subdomains Q1,9 c Q S

o Fixed outer boundary n

0Q=Tp,UMHUr,Yre

e Variable boundary S € B.(S',R?)
or S € BY?(Iy,R?) o
1

e Quter normal vector n to €,

o’
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VI constrained problem

1
i = f reg ¢y ._ T o8
min J(y,S) =j(y,S) +J%(S): 2[9(5) (y-7) dx+ufslds

st. —Ay+A=f inQ

y<Y inQ
A>20 inQ
AMy—-v)=0 inQ
y=0 onTl |

e Obstacle: ¢ e H*(Q) with 0< ¢ < M for M >0

fint = const. in Qine

e Jumping coefficient: f =
ping {ﬁ,ut =const. in Qout

e Transmission conditions: Iyl =0, H%H =0 on$S
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VI constrained problem

1
i iy reg oy ._ 2
min J(y,S)=j(y,S)+j5(S): > [9(5) (y-y)“dx +ufslds

S —Ayra=i 1l Regularized version [10]: ‘ Ay +Xc=f inQ

y<¢y inQ - -
A20 inQ ® N =max{0,\+c(y—)}

Ay-¢)=0 inQ ® c>0,0>Xel*(Q)
y=0 onTl

e Obstacle: ¢ e H*(Q) with 0< ¢ < M for M >0

{f;nt =const. in Qjnt

e Jumping coefficient: f =
ping four = const. in Qout

e Transmission conditions: Iyl =0, H%H =0 onS
n

[10] M. Hintermiiller and A. Laurain. Optimal shape design subject to elliptic variational inequalities. SICON,
49(3):1015-1047, 2011.
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Regularized state equation

Idea: Adapt the primal-dual active set (PDAS) algorithm in [11] to our problem

Modified PDAS (mPDAS) algorithm
1. Choose yg, k=0 and A\g=0
2. Agsr = {x:[Ak +c(y =) ] (x) >0} and Zxs1 := Q\ Aks1

3. Compute yki1 € H3 () as solution of

a(err, V) + (e + cOmn =9, Xy v) = (Fv) VveHg(Q) (%)

A+ c(Vie1 =) if x € Ak

5. Stop or k:= k+1 and go to 2.

0 ifxeZ
4 )\k+1 ::{ IT X € Lgy1

[11] K. Ito and K. Kunisch. Semi—smooth Newton methods for variational inequalities of the first kind. ESAIM:
Mathematical Modelling and Numerical Analysis, 37(1):41-62, 2003.
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Idea: Adapt the primal-dual active set (PDAS) algorithm in [11] to our problem

Modified PDAS (mPDAS) algorithm
1. Choose yg, k=0 and A\g=0
2. Agsr = {x:[Ak +c(y =) ] (x) >0} and Zxs1 := Q\ Aks1

3. Compute yki1 € H3 () as solution of

(e, V) + ([ + cOiar =), Xy, v) = (F,v)  YveHI(Q) ()

A+ c(Vie1 —0)  if x € Agyr

5. Stop or k:= k+1 and go to 2.

0 ifxeZ
4 )\k+1 ::{ IT X € Lgy1

[11] K. Ito and K. Kunisch. Semi—smooth Newton methods for variational inequalities of the first kind. ESAIM:
Mathematical Modelling and Numerical Analysis, 37(1):41-62, 2003.
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Linear mPDAS algorithm (cf. [12])

Step 3 in mPDAS algorithm

Compute yi.1 € Ho () as solution of

a(yks1, v) + (M + cOer =), Xa,v) = (Fv)  YveHs(Q) (%)

Problem: () is not linear
~ ldea: Compute Ay := yx,1 — yk instead of yx,1 and use the linearization

e+ ey + Ay =) = (A + ey — 1)) + 2cAy (A + ¢y — )

Step 3 in linear mPDAS algorithm

a) Compute Ay as solution of

a(Ay,v) + (2cAy [Me + c(yk - )] s XAy, v)
=(f,v)—a(yk,v) - ([/\k + c(yk —z/))]z,.)tf,L‘,(+1 v) Vv e Hg(Q)

b) yks1:=yk + Ay

4

[12] B. Fiihr, V. Schulz and K. W. Shape optimization for interface identification with obstacle problems. Appears in:
Vietnam Journal of Mathematics, 2018.
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Solution of the regularized state equation

fsryanady

|-Ay+X.=f inQ|

o Ao =max{0, XA+ c(y - ¢)}?
fl =-10 in Ql

0>Xel*(Q), c=5, f=
* L), c {fgleO in Q,
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Solution of the regularized state equation

|-Ay+X.=f inQ|

o Ao =max{0, XA+ c(y - ¢)}?

fl—— ian

0>Xel*(Q), c=5, f=
* L), c {f2 100 in Q,

197
I 25240400

18916

1259

I 062641
169003

y with Ac =0
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Solution of the regularized state equation

|-Ay+X.=f inQ|

o Ao =max{0, XA+ c(y - ¢)}?

e 0>Xel}(), c=5 F= A0
f>=100 in Q>

197
25246400 12463
I e
I
S 01252
1259
0041322

062641
I o0
|

y with A¢ =0 y with ¢ =0.2 Corresponding \c
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Algorithm (based on g°)

—>( Evaluate objective
v

Solve the state equation (with the linear mPDAS algorithm) )
N

v

Solve the adjoint equation

v

Assemble the deformation equation:

® E.g., choose the weak form of the linear elasticity equation as left
hand-side of the deformation equation
e Assemble DJyo(y, X)[V] for all test functions V whose support

includes S as a source term

L ° Assemble DJgus(y, X)[V] as Neumann boundary conditions )
v

( Solve the deformation equation )
v

( Apply the resulting deformation to the finite element mesh )
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e Computations on unstructured grids with about 1500 up to 6000 triangles
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e Computations on unstructured grids with about 1500 up to 6000 triangles

® In the interior domain, elements are magnified by the mesh deformations
~ Choose locally adapted meshes or re-mesh after a few iterations

® |argest deformations at the beginning of the iteration process
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e Computations on unstructured grids with about 1500 up to 6000 triangles

® In the interior domain, elements are magnified by the mesh deformations
~ Choose locally adapted meshes or re-mesh after a few iterations

® |argest deformations at the beginning of the iteration process
® Algorithmic performance deteriorates if the obstacle problem is strongly binding

e More iterations for tighter obstacles, i.e., small values of 1) (494 iterations for
1 = 0.5 vs. 22 iterations for ¢ = 10)
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Conclusion

e Optimization in the space of smooth shapes
e PDE constrained shape optimization problem

e Algorithm based on surface shape derivative formulations
~ Application to a parabolic diffusion problem

o Steklov-Poincaré metric
~ Algorithm based on volume shape derivative formulations
~ Application to a parabolic diffusion problem

e Diffeological shape space
o VI constrained shape optimization problem

e Linear modified primal-dual active set (ImPDAS) algorithm
~ Application to a VI constrained shape optimization problem

Thank you for your attention! J
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