Solution Techniques for Constrained Shape Optimization Problems in Shape Spaces

Kathrin Welker

Trier University

Seminar No. 125 on
"Piecewise smooth system and optimization with piecewise linearization via algorithmic differentiation"

Shonan Village Center, Japan
June 25-28, 2018
(1) Optimization in the manifold of smooth shapes
(2) PDE constrained interface problem
(3) Optimization based on Steklov-Poincaré metrics
(4) Diffeological space of $H^{1 / 2}$-shapes
(5) VI constrained optimization in shape spaces
(6) Conclusion

Shape optimization problem

```
min}\mp@code{\Omega
PDE or VI constraints
```

- J shape functional depending on a solution of a partial differential equation (PDE) or a variational inequality (VI)
(Definition: Let $D \subset \mathbb{R}^{d}$ be non-empty and let $\mathcal{A} \subset\{\Omega: \Omega \subset D\}$ denote a set of subsets. A function $J: \mathcal{A} \rightarrow \mathbb{R}, \Omega \mapsto J(\Omega)$ is called a shape functional.)
- Ω shape
$\leadsto 2 D$ shape: Simply connected, compact subset Ω of \mathbb{R}^{2} with $\Omega \neq \varnothing$ and \mathcal{C}^{∞} boundary $\partial \Omega$
\leadsto How is the set of all shapes defined?

Space of smooth shapes

$2 D$ shape: Simply connected, compact subset Ω of \mathbb{R}^{2} with $\Omega \neq \varnothing$ and \mathcal{C}^{∞} boundary $\partial \Omega$

Space of smooth shapes

$2 D$ shape: Simply connected, compact subset Ω of \mathbb{R}^{2} with $\Omega \neq \varnothing$ and \mathcal{C}^{∞} boundary $\partial \Omega$
Shape space

$$
B_{e}:=\operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right) / \operatorname{Diff}\left(S^{1}\right)
$$

Space of smooth shapes

$2 D$ shape: Simply connected, compact subset Ω of \mathbb{R}^{2} with $\Omega \neq \varnothing$ and \mathcal{C}^{∞} boundary $\partial \Omega$

Shape space

$$
B_{e}:=\operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right) / \operatorname{Diff}\left(S^{1}\right)
$$

- B_{e} is a manifold (cf. [1])
- Generalization to higher dimensions: $B_{e}(M, N):=\operatorname{Emb}(M, N) / \operatorname{Diff}(M)$, where M is a compact manifold and N denotes a Riemannian manifold with $\operatorname{dim}(M)<\operatorname{dim}(N)$
[1] A. Kriegl and P. Michor. The Convient Setting of Global Analysis, volume 53 of Mathematical Surveys and Monographs. American Mathematical Society, 1997.

Space of smooth shapes

$2 D$ shape: Simply connected, compact subset Ω of \mathbb{R}^{2} with $\Omega \neq \varnothing$ and \mathcal{C}^{∞} boundary $\partial \Omega$

Shape space

$$
B_{e}:=\operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right) / \operatorname{Diff}\left(S^{1}\right)
$$

- B_{e} is a manifold (cf. [1])
- Generalization to higher dimensions: $B_{e}(M, N):=\operatorname{Emb}(M, N) / \operatorname{Diff}(M)$, where M is a compact manifold and N denotes a Riemannian manifold with $\operatorname{dim}(M)<\operatorname{dim}(N)$

$b_{1} \in B_{e}\left(S^{2}, \mathbb{R}^{3}\right)$

$b_{2} \notin B_{e}\left(S^{2}, \mathbb{R}^{3}\right)$

$c_{1} \in B_{e}\left(S^{1}, \mathbb{R}^{2}\right)$

$c_{2} \notin B_{e}\left(S^{1}, \mathbb{R}^{2}\right)$
[1] A. Kriegl and P. Michor. The Convient Setting of Global Analysis, volume 53 of Mathematical Surveys and Monographs. American Mathematical Society, 1997.

Optimization on manifolds (cf. [2])

- Line-search methods in $\mathbb{R}^{n}: x_{k+1}=x_{k}+t_{k} \xi_{k}$
- Manifolds are not necessarily linear spaces \Rightarrow Select ξ_{k} as a tangent vector to \mathcal{M} at x_{k}
\Rightarrow Points from the tangent space have to be mapped to the manifold
[2] P.-A. Absil, R. Mahony and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2008.

Optimization on manifolds (cf. [2])

- Line-search methods in $\mathbb{R}^{n}: x_{k+1}=x_{k}+t_{k} \xi_{k}$
- Manifolds are not necessarily linear spaces \Rightarrow Select ξ_{k} as a tangent vector to \mathcal{M} at x_{k}
\Rightarrow Points from the tangent space have to be mapped to the manifold

Example: Steepest descent method on B_{e}

Goal: Find a solution of $\min _{x \in B_{e}} J(x)$
Input: $x_{0} \in B_{e}$
for $k=0,1, \ldots$ do
[1] Compute the increment $\xi_{k}:=-\operatorname{grad} J\left(x^{k}\right) \in T_{x_{k}} B_{e}$
[2] Set $x_{k+1}:=\mathcal{R}_{x_{k}}\left(t_{k} \xi_{k}\right)$ for some steplength t_{k} and a retraction \mathcal{R}
[2] P.-A. Absil, R. Mahony and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2008.

Optimization on manifolds (cf. [2])

- Line-search methods in $\mathbb{R}^{n}: x_{k+1}=x_{k}+t_{k} \xi_{k}$
- Manifolds are not necessarily linear spaces \Rightarrow Select ξ_{k} as a tangent vector to \mathcal{M} at x_{k}
\Rightarrow Points from the tangent space have to be mapped to the manifold

Example: Steepest descent method on B_{e}

Goal: Find a solution of $\min _{x \in B_{e}} J(x)$
Input: $x_{0} \in B_{e}$
for $k=0,1, \ldots$ do
[1] Compute the increment $\xi_{k}:=-\operatorname{grad} J\left(x^{k}\right) \in T_{x_{k}} B_{e}$, where $\operatorname{grad} J$ is a Riemannian shape gradient
[2] Set $x_{k+1}:=\mathcal{R}_{x_{k}}\left(t_{k} \xi_{k}\right)$ for some steplength t_{k} and a retraction \mathcal{R}

Riemannian metrics on B_{e}

A Riemannian metric on a manifold M is a collection $g=\left(g_{p}\right)_{p \in M}$ of inner products

$$
g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R},(v, w) \mapsto g_{p}(v, w),
$$

one for every $p \in M$, such that the map $M \rightarrow \mathbb{R}, p \mapsto g_{p}(X(p), Y(p))$ is smooth for every pair of vector fields X, Y on M.

Riemannian metrics on B_{e}

A Riemannian metric on a manifold M is a collection $g=\left(g_{p}\right)_{p \in M}$ of inner products

$$
g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R},(v, w) \mapsto g_{p}(v, w)
$$

one for every $p \in M$, such that the map $M \rightarrow \mathbb{R}, p \mapsto g_{p}(X(p), Y(p))$ is smooth for every pair of vector fields X, Y on M.

Sobolev metric (cf. [3])

$$
g^{1}: T_{c} B_{e} \times T_{c} B_{e} \rightarrow \mathbb{R},(h, k) \mapsto\left\langle\left(I-A \triangle_{c}\right) \alpha, \beta\right\rangle_{L^{2}(c)} \text { with } A>0
$$

Here $h=\alpha n$ and $k=\beta n$ denote two elements of the tangent space

$$
T_{c} B_{e} \cong\left\{\psi \mid \psi=\alpha n, \alpha \in \mathcal{C}^{\infty}\left(S^{1}, \mathbb{R}\right)\right\}
$$

[3] M. Bauer, P. Harms, and P. Michor. Sobolev metrics on shape space of surfaces. JGM, 3(4):389-438, 2011.

Riemannian metrics on B_{e}

A Riemannian metric on a manifold M is a collection $g=\left(g_{p}\right)_{p \in M}$ of inner products

$$
g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R},(v, w) \mapsto g_{p}(v, w),
$$

one for every $p \in M$, such that the map $M \rightarrow \mathbb{R}, p \mapsto g_{p}(X(p), Y(p))$ is smooth for every pair of vector fields X, Y on M.

Sobolev metric (cf. [3])

$$
g^{1}: T_{c} B_{e} \times T_{c} B_{e} \rightarrow \mathbb{R},(h, k) \mapsto\left\langle\left(I-A \triangle_{c}\right) \alpha, \beta\right\rangle_{L^{2}(c)} \text { with } A>0
$$

Here $h=\alpha n$ and $k=\beta n$ denote two elements of the tangent space

$$
T_{c} B_{e} \cong\left\{\psi \mid \psi=\alpha n, \alpha \in \mathcal{C}^{\infty}\left(S^{1}, \mathbb{R}\right)\right\}
$$

Riemannian shape gradient w.r.t. g^{1}

Representation of $D J(x)$ such that $\quad g^{1}(\operatorname{grad} J(x), h)=D J(x)[h] \quad \forall h \in T_{x} B_{e}$
[3] M. Bauer, P. Harms, and P. Michor. Sobolev metrics on shape space of surfaces. JGM, 3(4):389-438, 2011.

Shape derivative

Definition

Let $D \subset \mathbb{R}^{d}$ be non-empty and open and let $\Omega \subset D$ be measurable. The shape derivative of a shape functional J at Ω in direction $V \in \mathcal{C}_{0}^{k}\left(D, \mathbb{R}^{d}\right), k \in \mathbb{N} \cup\{\infty\}$, is defined by the Eulerian derivative

$$
D J(\Omega)[V]=\lim _{t \rightarrow 0^{+}} \frac{J\left(\Omega_{t}\right)-J(\Omega)}{t} \quad\left(\Omega_{t}=\{x+t \cdot V(x): x \in \Omega\}\right)
$$

- Shape derivative of a shape differentiable functional is a directional derivative in the direction of a differentiable vector field
- Hadamard Structure Theorem (cf. Theorem 2.17 in [4]):
- Only the normal part of a vector field on the boundary Γ of a domain Ω has an impact on the value of the shape derivative
- Existence of a scalar distribution r on Γ
- If $r \in L^{1}(\Gamma)$, then $D J(\Omega)[V]=\int_{\Gamma} r\langle V, n\rangle d s$
- r is often called the shape gradient but gradients depend on chosen scalar products defined on the space under consideration
[4] J. Sokolowski and J.-P. Zolésio. Introduction to Shape Optimization, volume 16 of Computational Mathematics Springer, 1992.

Contents

(1) Optimization in the manifold of smooth shapes
(2) PDE constrained interface problem
(3) Optimization based on Steklov-Poincaré metrics
(4) Diffeological space of $H^{1 / 2}$-shapes
(5) VI constrained optimization in shape spaces
(6) Conclusion

Interface problem

- Diffusion process
- $\Omega \subset \mathbb{R}^{2}$ bounded Lipschitz domain
- Two materials $\Omega_{1}, \Omega_{2} \subset \Omega$ with different permeability
- Fixed outer boundary $\partial \Omega=\Gamma_{\mathrm{b}} \cup \Gamma_{\mathrm{l}} \cup \Gamma_{\mathrm{r}} \cup \Gamma_{\mathrm{t}}$
- Variable boundary $\Gamma_{\text {int }} \in B_{e}\left(S^{1}, \mathbb{R}^{2}\right)$ \Rightarrow Fit to measured concentration
- Homogeneous concentration in Ω for $t=0$

- Higher concentration on the top in the beginning

Diffusion problem

For concentration y and diffusion coefficient k :

$$
\begin{array}{rlrl}
\min _{\Gamma_{\text {int }}} J(y, \Omega)=j(y, \Omega)+j^{\mathrm{reg}}(\Omega):=\frac{1}{2} \int_{0}^{T} \int_{\Omega}(y-\bar{y})^{2} d x d t+\mu \int_{\Gamma_{\text {int }}} 1 d s \\
\text { s.t. } \frac{\partial y}{\partial t}-\operatorname{div}(k \nabla y) & =f & & \text { in } \Omega \times(0, T] \\
y & =1 & & \text { on } \Gamma_{\mathrm{t}} \times(0, T] \\
\frac{\partial y}{\partial n} & =0 & & \text { on }\left(\Gamma_{\mathrm{b}} \cup \Gamma_{\mathrm{l}} \cup \Gamma_{\mathrm{r}}\right) \times(0, T] \\
y & =y_{0} & & \text { in } \Omega \times\{0\}
\end{array}
$$

- Data measurements: $\bar{y} \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$
- Right hand-side: $\quad f=$ const. in $\Omega \times(0, T]$
- Jumping coefficient: $k= \begin{cases}k_{1}=\text { const. } & \text { in } \Omega_{1} \\ k_{2}=\text { const. } & \text { in } \Omega_{2}\end{cases}$
- Transmission conditions: $\quad \llbracket y \rrbracket=0, \quad \llbracket k \frac{\partial y}{\partial n} \rrbracket=0 \quad$ on $\Gamma_{\mathrm{int}} \times(0, T]$

Shape derivative

Shape derivative of the regularization term $j^{\text {reg }}$

$$
D_{j}^{\mathrm{reg}}(\Omega)[V]=\mu \int_{\Gamma_{\text {int }}}\langle V, n\rangle \kappa d s
$$

Shape derivative

Shape derivative of the regularization term $j^{\text {reg }}$

$$
D j^{\text {reg }}(\Omega)[V]=\mu \int_{\Gamma_{\mathrm{int}}}\langle V, n\rangle \kappa d s
$$

Shape derivative of the objective functional j

$$
D j_{\Omega}(y, \Omega)[V]=D j(y, \Omega)[V]=D j_{\Gamma_{\text {int }}}(y, \Omega)[V]
$$

- $D j_{\Omega}(y, \Omega)[V]=\int_{0}^{T} \int_{\Omega}-k \nabla y^{\top}\left(\nabla V+\nabla V^{\top}\right) \nabla p-p \nabla f^{\top} V$

$$
+\operatorname{div}(V)\left(\frac{1}{2}(y-\bar{y})^{2}+\frac{\partial y}{\partial t} p+k \nabla y^{\top} \nabla p-f p\right) d x d t
$$

- $D j_{\Gamma_{\text {int }}}(y, \Omega)[V]=\int_{0}^{T} \int_{\Gamma_{\text {int }}} \llbracket k \rrbracket \nabla y_{1}^{\top} \nabla p_{2}\langle V, n\rangle d s d t$

Shape derivative

Shape derivative of the regularization term $j^{\text {reg }}$

$$
D j^{\text {reg }}(\Omega)[V]=\mu \int_{\Gamma_{\mathrm{int}}}\langle V, n\rangle \kappa d s
$$

Shape derivative of the objective functional j

$$
D j_{\Omega}(y, \Omega)[V]=D j(y, \Omega)[V]=D j_{\Gamma_{\text {int }}}(y, \Omega)[V]
$$

- $D j_{\Omega}(y, \Omega)[V]=\int_{0}^{T} \int_{\Omega}-k \nabla y^{\top}\left(\nabla V+\nabla V^{\top}\right) \nabla p-p \nabla f^{\top} V$

$$
+\operatorname{div}(V)\left(\frac{1}{2}(y-\bar{y})^{2}+\frac{\partial y}{\partial t} p+k \nabla y^{\top} \nabla p-f p\right) d x d t
$$

- $D j_{\Gamma_{\text {int }}}(y, \Omega)[V]=\int_{0}^{T} \int_{\Gamma_{\text {int }}} \llbracket k \rrbracket \nabla y_{1}^{\top} \nabla p_{2}\langle V, n\rangle d s d t$
- Volume formulation: $y \in L^{2}\left(0, T ; H^{1}(\Omega)\right), p \in W\left(0, T ; H^{1}(\Omega)\right)$
- Surface formulation: H^{2}-regularity in space is necessary

Shape derivative

Shape derivative of the regularization term $j^{\text {reg }}$

$$
D j^{\text {reg }}(\Omega)[V]=\mu \int_{\Gamma_{\mathrm{int}}}\langle V, n\rangle \kappa d s
$$

Shape derivative of the objective functional j

$$
D j_{\Omega}(y, \Omega)[V]=D j(y, \Omega)[V]=D j_{\Gamma_{\text {int }}}(y, \Omega)[V]
$$

- $D j_{\Omega}(y, \Omega)[V]=\int_{0}^{T} \int_{\Omega}-k \nabla y^{\top}\left(\nabla V+\nabla V^{\top}\right) \nabla p-p \nabla f^{\top} V$

$$
+\operatorname{div}(V)\left(\frac{1}{2}(y-\bar{y})^{2}+\frac{\partial y}{\partial t} p+k \nabla y^{\top} \nabla p-f p\right) d x d t
$$

- $D j_{\Gamma_{\text {int }}}(y, \Omega)[V]=\int_{0}^{T} \int_{\Gamma_{\text {int }}} \llbracket k \rrbracket \nabla y_{1}^{\top} \nabla p_{2}\langle V, n\rangle d s d t=g^{1}\left(\operatorname{grad}^{B_{e}} j(y, \Omega), V\right) \forall V \in T_{\Gamma_{\text {int }}} B_{e}$
- Volume formulation: $y \in L^{2}\left(0, T ; H^{1}(\Omega)\right), p \in W\left(0, T ; H^{1}(\Omega)\right)$
- Surface formulation: H^{2}-regularity in space is necessary

Algorithm on (B_{e}, g^{1}) (cf. [5])

Evaluate measurements

Solve the state and adjoint equation

Assemble the Dirichlet boundary condition of the linear elasticity equation:

1. Compute the Riemannian shape gradient with respect to g^{1} from the surface shape derivative $D_{\Gamma} \mathcal{L}[V]=\int_{\Gamma} r\langle V, n\rangle d s\left(r \in L^{1}(\Gamma)\right)$:

$$
\operatorname{grad}^{B_{e}} \mathcal{L}=q n \operatorname{mit}\left(I-A \triangle_{\Gamma}\right) q=r \quad\left(\Gamma \in B_{e}, A>0, q \in \mathcal{C}^{\infty}(\Gamma)\right)
$$

2. Compute a Riemannian limited-memory BFGS update

Solve the linear elasticity equation with source term equals zero

Apply the resulting deformation to the finite element mesh
[5] V. Schulz, M. Siebenborn and K. W. Structured inverse modeling in parabolic diffusion problems. SICON, 53(6):3319-3338, 2015.

Contents

(1) Optimization in the manifold of smooth shapes
(2) PDE constrained interface problem
(3) Optimization based on Steklov-Poincaré metrics
(4) Diffeological space of $H^{1 / 2}$-shapes
(5) VI constrained optimization in shape spaces
(6) Conclusion

Steklov-Poincaré: Motivation and aims

- Derivation of surface shape derivative formulations is a time-consuming process
\Rightarrow Aim: Usage of volume shape derivative expressions
- Gradient representation and afterwards mesh deformation
\Rightarrow Aim: Gradient representation and mesh deformation all at once
- \mathcal{C}^{∞}-shapes
\Rightarrow Aim: Weaken the assumption of \mathcal{C}^{∞}-shapes

Steklov-Poincaré: Motivation and aims

- Derivation of surface shape derivative formulations is a time-consuming process \Rightarrow Aim: Usage of volume shape derivative expressions
- Gradient representation and afterwards mesh deformation
\Rightarrow Aim: Gradient representation and mesh deformation all at once
- \mathcal{C}^{∞}-shapes
\Rightarrow Aim: Weaken the assumption of \mathcal{C}^{∞}-shapes

Definition of an inner product based on volume formualtions

- Inner product should be derived from the second shape derivative
- Second shape derivative can be related to the Steklov-Poincaré operator (cf. [6])
\Rightarrow Definition of a Steklov-Poincaré type metric
[6] S. Schmidt and V. Schulz. Impulse response approximations of discrete shape Hessians with application in CFD. SICON, 48(4):2562-2580, 2009.

Steklov-Poincaré metric

Definition

$$
g^{s}: H^{1 / 2}(\Gamma) \times H^{1 / 2}(\Gamma) \rightarrow \mathbb{R},(\alpha, \beta) \mapsto \int_{\Gamma} \alpha \cdot\left(S^{\text {pr }}\right)^{-1} \beta d s
$$

Here $S^{\text {pr }}$ denotes the projected Poincaré-Steklov operator and is given by

$$
S^{\text {pr }}: H^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma), \xi \mapsto\left(\gamma_{0} U\right)^{\top} n,
$$

where $U \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$ solves $a(U, V)=\int_{\Gamma} \xi \cdot\left(\gamma_{0} V\right)^{\top} n d s \forall V \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$.

Steklov-Poincaré metric

Definition

$$
g^{s}: H^{1 / 2}(\Gamma) \times H^{1 / 2}(\Gamma) \rightarrow \mathbb{R},(\alpha, \beta) \mapsto \int_{\Gamma} \alpha \cdot\left(S^{\mathrm{Pr}}\right)^{-1} \beta d s
$$

Here $S^{\text {pr }}$ denotes the projected Poincare-Steklov operator and is given by

$$
S^{\mathrm{pr}}: H^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma), \xi \mapsto\left(\gamma_{0} U\right)^{\top} n,
$$

where $U \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$ solves $a(U, V)=\int_{\Gamma} \xi \cdot\left(\gamma_{0} V\right)^{\top} n d s \forall V \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$.

Shape derivative in surface formulation $D J_{\Gamma}[V]=\int_{\Gamma} r\langle V, n\rangle d s$
\leadsto Shape gradient with respect to g^{s} is given by $h \in T_{\Gamma} B_{e} \cong \mathcal{C}^{\infty}(\Gamma)$ s.t.

$$
g^{s}(\psi, h)=\langle r, \psi\rangle_{L^{2}(\Gamma)}
$$

Steklov-Poincaré metric

Definition

$$
g^{s}: H^{1 / 2}(\Gamma) \times H^{1 / 2}(\Gamma) \rightarrow \mathbb{R},(\alpha, \beta) \mapsto \int_{\Gamma} \alpha \cdot\left(S^{\mathrm{Pr}}\right)^{-1} \beta d s
$$

Here $S^{\text {pr }}$ denotes the projected Poincare-Steklov operator and is given by

$$
S^{\mathrm{pr}}: H^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma), \xi \mapsto\left(\gamma_{0} U\right)^{\top} n,
$$

where $U \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$ solves $a(U, V)=\int_{\Gamma} \xi \cdot\left(\gamma_{0} V\right)^{\top} n d s \forall V \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$.

Shape derivative in surface formulation $D J_{\Gamma}[V]=\int_{\Gamma} r\langle V, n\rangle d s$
\leadsto Shape gradient with respect to g^{s} is given by $h \in T_{\Gamma} B_{e} \cong \mathcal{C}^{\infty}(\Gamma)$ s.t.

$$
g^{s}(\psi, h)=\langle r, \psi\rangle_{L^{2}(\Gamma)} \quad\left(\Leftrightarrow \int_{\Gamma} \psi \cdot\left(S^{\mathrm{pr}}\right)^{-1} h d s=\int_{\Gamma} r \psi d s\right) \quad \forall \psi \in \mathcal{C}^{\infty}(\Gamma)
$$

Steklov-Poincaré metric

Definition

$$
g^{s}: H^{1 / 2}(\Gamma) \times H^{1 / 2}(\Gamma) \rightarrow \mathbb{R},(\alpha, \beta) \mapsto \int_{\Gamma} \alpha \cdot\left(S^{\mathrm{Pr}}\right)^{-1} \beta d s
$$

Here $S^{\text {pr }}$ denotes the projected Poincare-Steklov operator and is given by

$$
S^{\mathrm{pr}}: H^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma), \xi \mapsto\left(\gamma_{0} U\right)^{\top} n,
$$

where $U \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$ solves $a(U, V)=\int_{\Gamma} \xi \cdot\left(\gamma_{0} V\right)^{\top} n d s \forall V \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$.

Shape derivative in surface formulation $D J_{\Gamma}[V]=\int_{\Gamma} r\langle V, n\rangle d s$
\leadsto Shape gradient with respect to g^{s} is given by $h \in T_{\Gamma} B_{e} \cong \mathcal{C}^{\infty}(\Gamma)$ s.t.

$$
\begin{array}{ll}
g^{s}(\psi, h)=\langle r, \psi\rangle_{L^{2}(\Gamma)} \quad\left(\Leftrightarrow \int_{\Gamma} \psi \cdot\left(S^{\text {pr }}\right)^{-1} h d s=\int_{\Gamma} r \psi d s\right) & \forall \psi \in \mathcal{C}^{\infty}(\Gamma) \\
\Rightarrow h=S^{\text {pr } r} r=\left(\gamma_{0} U\right)^{\top} n, \text { where } U \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right) \text { solves } & \\
a(U, V)=\int_{\Gamma} r \cdot\left(\gamma_{0} V\right)^{\top} n d s & \forall V \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)
\end{array}
$$

Steklov-Poincaré metric

Definition

$$
g^{s}: H^{1 / 2}(\Gamma) \times H^{1 / 2}(\Gamma) \rightarrow \mathbb{R},(\alpha, \beta) \mapsto \int_{\Gamma} \alpha \cdot\left(S^{\mathrm{Pr}}\right)^{-1} \beta d s
$$

Here $S^{\text {pr }}$ denotes the projected Poincare-Steklov operator and is given by

$$
S^{\mathrm{pr}}: H^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma), \xi \mapsto\left(\gamma_{0} U\right)^{\top} n,
$$

where $U \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$ solves $a(U, V)=\int_{\Gamma} \xi \cdot\left(\gamma_{0} V\right)^{\top} n d s \forall V \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$.

Shape derivative in surface formulation $D J_{\Gamma}[V]=\int_{\Gamma} r\langle V, n\rangle d s$
\leadsto Shape gradient with respect to g^{s} is given by $h \in T_{\Gamma} B_{e} \cong \mathcal{C}^{\infty}(\Gamma)$ s.t.

$$
\begin{aligned}
& g^{s}(\psi, h)=\langle r, \psi\rangle_{L^{2}(\Gamma)} \quad\left(\Leftrightarrow \int_{\Gamma} \psi \cdot\left(S^{\mathrm{pr}}\right)^{-1} h d s=\int_{\Gamma} r \psi d s\right) \quad \forall \psi \in \mathcal{C}^{\infty}(\Gamma) \\
& \Rightarrow h=S^{\mathrm{pr}} r=\left(\gamma_{0} U\right)^{\top} n, \text { where } U \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right) \text { solves } \\
& a(U, V)=\int_{\Gamma} r \cdot\left(\gamma_{0} V\right)^{\top} n d s=D J_{\Gamma}[V]=D J_{\Omega}[V] \quad \forall V \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)
\end{aligned}
$$

Results

Construction of the g^{S}-metric yields

$$
g^{S}(u, v)=D J_{\Gamma}[V]=D J_{\Omega}[V]=a(U, V) \quad \forall V \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right) \text { and } v=\left(\gamma_{0} V\right)^{\top} n
$$

\Rightarrow Shape gradient representation $u=\left(\gamma_{0} U\right)^{\top} n$ and mesh deformation $U \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$

Results

Construction of the g^{S}-metric yields

$$
g^{S}(u, v)=D J_{\Gamma}[V]=D J_{\Omega}[V]=a(U, V) \quad \forall V \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right) \text { and } v=\left(\gamma_{0} V\right)^{\top} n
$$

\Rightarrow Shape gradient representation $u=\left(\gamma_{0} U\right)^{\top} n$ and mesh deformation $U \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$

We have to solve the deformation equation:

$$
a(U, V)=b(V) \quad \forall V \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)
$$

- $a(\cdot, \cdot)$ symmetric and coercive bilinearform
- $b(V):=D J_{\text {vol }}(\Omega)[V]+D J_{\text {surf }}(\Omega)[V]$
- $J_{\text {vol }}(\Omega)$ parts of J leading to volume shape derivative expressions
- $J_{\text {surf }}(\Omega)$ parts of J leading to surface shape derivative expressions
\Rightarrow Combination of surface and volume formulation of shape derivatives

Algorithm on $\left(B_{e}, g^{S}\right)$ (cf. [7])

Evaluate measurements

Solve the state and adjoint equation

Assemble the deformation equation:

- Assemble $D J_{\text {vol }}(\Omega)[V]$ for V with $\Gamma \cap \operatorname{supp}(V) \neq 0$ as source term
- Assemble $D J_{\text {surf }}(\Omega)[V]$ as Neumann boundary conditions

Solve the deformation equation

Compute a Riemannian limited-memory BFGS update

Apply the resulting deformation to the finite element mesh
[7] V. Schulz, M. Siebenborn and K. W. Efficient PDE constrained optimization based on Steklov-Poincaré type metrics. SIOPT, 26(4):2800-2819, 2016.

Numerical results

- Diffusion problem with $T=20, k=\left\{\begin{array}{l}k_{1}=1 \text { in } \Omega_{1} \\ k_{2}=0.001 \text { in } \Omega_{2}\end{array}\right.$
- $A=0.001$
- Data \bar{y} are generated from a solution of the state equation for the setting $\Omega_{2}=\left\{x:\|x\|_{2}<0.5\right\}$

Numerical results

- Diffusion problem with $T=20, k=\left\{\begin{array}{l}k_{1}=1 \text { in } \Omega_{1} \\ k_{2}=0.001 \text { in } \Omega_{2}\end{array}\right.$
- $A=0.001$
- Data \bar{y} are generated from a solution of the state equation for the setting $\Omega_{2}=\left\{x:\|x\|_{2}<0.5\right\}$

Numerical results

- Diffusion problem with $T=20, k=\left\{\begin{array}{l}k_{1}=1 \text { in } \Omega_{1} \\ k_{2}=0.001 \text { in } \Omega_{2}\end{array}\right.$
- $A=0.001$
- Data \bar{y} are generated from a solution of the state equation for the setting $\Omega_{2}=\left\{x:\|x\|_{2}<0.5\right\}$

Numerical results

- Diffusion problem with $T=20, k=\left\{\begin{array}{l}k_{1}=1 \text { in } \Omega_{1} \\ k_{2}=0.001 \text { in } \Omega_{2}\end{array}\right.$
- $A=0.001$
- Data \bar{y} are generated from a solution of the state equation for the setting $\Omega_{2}=\left\{x:\|x\|_{2}<0.5\right\}$

Contents

(1) Optimization in the manifold of smooth shapes
(2) PDE constrained interface problem
(3) Optimization based on Steklov-Poincaré metrics
(4) Diffeological space of $H^{1 / 2}$-shapes
(5) VI constrained optimization in shape spaces
(6) Conclusion

Space of $H^{1 / 2}$-shapes

$$
\mathcal{B}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right):=\mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right) / \sim
$$

- $\Gamma_{0} \subset \mathbb{R}^{d} d$-dimensional Lipschitz shape
(Definition: A dimensional Lipschitz shape is defined as the boundary $\Gamma_{0}=\partial \mathcal{X}_{0}$ of a compact Lipschitz domain $\mathcal{X}_{0} \subset \mathbb{R}^{d}$ with $\mathcal{X}_{0} \neq \varnothing$.)
- $\mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$
$:=\left\{w: w \in H^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)\right.$ injective, continuous; $w\left(\Gamma_{0}\right)$ Lipschitz shape $\}$
- $w_{1} \sim w_{2} \Leftrightarrow w_{1}\left(\Gamma_{0}\right)=w_{2}\left(\Gamma_{0}\right)$, where $w_{1}, w_{2} \in \mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$

Space of $H^{1 / 2}$-shapes

$$
\mathcal{B}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right):=\mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right) / \sim
$$

- $\Gamma_{0} \subset \mathbb{R}^{d} d$-dimensional Lipschitz shape
(Definition: A d-dimensional Lipschitz shape is defined as the boundary $\Gamma_{0}=\partial \mathcal{X}_{0}$ of a compact Lipschitz domain $\mathcal{X}_{0} \subset \mathbb{R}^{d}$ with $\mathcal{X}_{0} \neq \varnothing$.)
- $\mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$
$:=\left\{w: w \in H^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)\right.$ injective, continuous; $w\left(\Gamma_{0}\right)$ Lipschitz shape $\}$
- $w_{1} \sim w_{2} \Leftrightarrow w_{1}\left(\Gamma_{0}\right)=w_{2}\left(\Gamma_{0}\right)$, where $w_{1}, w_{2} \in \mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$

Challenges

- Properties of $w \in H^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$ such that $w\left(\Gamma_{0}\right)$ Lipschitz shape
- Independence of the definition of $\mathcal{B}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$ from the Lipschitz shape Γ_{0}
- Structure of $\mathcal{B}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$

Space of $H^{1 / 2}$-shapes

$$
\mathcal{B}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right):=\mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right) / \sim
$$

- $\Gamma_{0} \subset \mathbb{R}^{d} d$-dimensional Lipschitz shape
(Definition: A d-dimensional Lipschitz shape is defined as the boundary $\Gamma_{0}=\partial \mathcal{X}_{0}$ of a compact Lipschitz domain $\mathcal{X}_{0} \subset \mathbb{R}^{d}$ with $\mathcal{X}_{0} \neq \varnothing$.)
- $\mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$
$:=\left\{w: w \in H^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)\right.$ injective, continuous; $w\left(\Gamma_{0}\right)$ Lipschitz shape $\}$
- $w_{1} \sim w_{2} \Leftrightarrow w_{1}\left(\Gamma_{0}\right)=w_{2}\left(\Gamma_{0}\right)$, where $w_{1}, w_{2} \in \mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$

Challenges

- Properties of $w \in H^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$ such that $w\left(\Gamma_{0}\right)$ Lipschitz shape
- Independence of the definition of $\mathcal{B}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$ from the Lipschitz shape Γ_{0}
- Structure of $\mathcal{B}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$: Diffeological structure

Diffeological structure of $\mathcal{B}^{1 / 2}$ (cf. [8])

$$
\mathcal{B}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right):=\mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right) / \sim
$$

- $\mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)=\left\{w: w \in H^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)\right.$ injective, continuous; $w\left(\Gamma_{0}\right)$ Lipschitz shape $\}$
- $w_{1} \sim w_{2} \Leftrightarrow w_{1}\left(\Gamma_{0}\right)=w_{2}\left(\Gamma_{0}\right)$, where $w_{1}, w_{2} \in \mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$
- $\mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$ is obviously a subset of $H^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$
- $H^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$ is a Banach space and, thus, a manifold \Rightarrow We can view $H^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$ with the corresponding diffeology

Results in [9]:

- Every subset of a diffeological space carries a natural subset diffeology, which is defined by the pullback of the ambient diffeology by the natural inclusion
- Every quotient of a diffeological space carries a natural quotient diffeology defined by the pushforward of the diffeology of the source space to the quotient by the canonical projection
\Rightarrow We can construct diffeologies on $\mathcal{H}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$ and $\mathcal{B}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{d}\right)$
[8] K. W. Suitable spaces for shape optimization, 2017. (arXiv:1702.07579)
[9] P. Iglesias-Zemmour. Diffeology. Volume 185, American Mathematical Society, 2013.

Diffeological space

- No theory for shape optimization on diffeological spaces so far
- Diffeological structure suffices for many differential-geometric tools used in shape optimization techniques
- Riemannian structures can be used to measure shape distances and state convergence properties

Contents

(1) Optimization in the manifold of smooth shapes
(2) PDE constrained interface problem
(3) Optimization based on Steklov-Poincaré metrics
(4) Diffeological space of $H^{1 / 2}$-shapes
(5) VI constrained optimization in shape spaces

VI constrained shape optimization

- No explicit dependence on the domain in classical VIs
- In VI constrained shape optimization problems: Unavoidable source of non-linearity and non-convexity due to the non-linear and non-convex nature of shape spaces

VI constrained shape optimization

- No explicit dependence on the domain in classical VIs
- In VI constrained shape optimization problems: Unavoidable source of non-linearity and non-convexity due to the non-linear and non-convex nature of shape spaces

Setting

- $\Omega \subset \mathbb{R}^{2}$ bounded Lipschitz domain
- Two subdomains $\Omega_{1}, \Omega_{2} \subset \Omega$
- Fixed outer boundary $\partial \Omega=\Gamma_{\mathrm{b}} \cup \Gamma_{\mathrm{l}} \cup \Gamma_{\mathrm{r}} \cup \Gamma_{\mathrm{t}}$
- Variable boundary $S \in \mathrm{~B}_{\mathrm{e}}\left(\mathrm{S}^{1}, \mathbb{R}^{2}\right)$ or $S \in \mathcal{B}^{1 / 2}\left(\Gamma_{0}, \mathbb{R}^{2}\right)$
- Outer normal vector n to Ω_{2}

VI constrained problem

$$
\begin{aligned}
& \min _{S} J(y, S)=j(y, S)+j^{\mathrm{reg}}(S):=\frac{1}{2} \int_{\Omega(S)}(y-\bar{y})^{2} d x+\mu \int_{S} 1 d s \\
& \text { s.t. }-\Delta y+\lambda=f \text { in } \Omega \\
& y \leq \psi \text { in } \Omega \\
& \lambda \geq 0 \quad \text { in } \Omega \\
& \lambda(y-\psi)=0 \quad \text { in } \Omega \\
& y=0 \text { on「 }
\end{aligned}
$$

- Obstacle: $\quad \psi \in H^{4}(\Omega)$ with $0<\psi \leq M$ for $M>0$
- Jumping coefficient: $\quad f= \begin{cases}f_{\text {int }}=\text { const. } & \text { in } \Omega_{\text {int }} \\ f_{\text {out }}=\text { const. } & \text { in } \Omega_{\text {out }}\end{cases}$
- Transmission conditions: $\quad \llbracket y \rrbracket=0, \quad \llbracket \frac{\partial y}{\partial n} \rrbracket=0 \quad$ on S

VI constrained problem

$$
\min _{S} J(y, S)=j(y, S)+j^{\mathrm{reg}}(S):=\frac{1}{2} \int_{\Omega(S)}(y-\bar{y})^{2} d x+\mu \int_{S} 1 d s
$$

s.t. $-\Delta y+\lambda=f \quad$ in Ω

$$
y \leq \psi \text { in } \Omega
$$

$$
\lambda \geq 0 \quad \text { in } \Omega
$$

$$
\lambda(y-\psi)=0 \quad \text { in } \Omega
$$

$$
y=0 \quad \text { on } \Gamma
$$

Regularized version [10]: $-\Delta y+\lambda_{c}=f$ in Ω

- $\lambda_{c}=\max \{0, \bar{\lambda}+c(y-\psi)\}^{2}$
- $c>0,0 \geq \bar{\lambda} \in L^{4}(\Omega)$
- Obstacle: $\psi \in H^{4}(\Omega)$ with $0<\psi \leq M$ for $M>0$
- Jumping coefficient: $\quad f= \begin{cases}f_{\text {int }}=\text { const. } & \text { in } \Omega_{\text {int }} \\ f_{\text {out }}=\text { const. } & \text { in } \Omega_{\text {out }}\end{cases}$
- Transmission conditions: $\quad \llbracket y \rrbracket=0, \quad \llbracket \frac{\partial y}{\partial n} \rrbracket=0 \quad$ on S
[10] M. Hintermüller and A. Laurain. Optimal shape design subject to elliptic variational inequalities. SICON, 49(3):1015-1047, 2011.

Regularized state equation

Idea: Adapt the primal-dual active set (PDAS) algorithm in [11] to our problem

Modified PDAS (mPDAS) algorithm

1. Choose $y_{0}, k=0$ and $\lambda_{0}=0$
2. $\mathcal{A}_{k+1}:=\left\{x:\left[\lambda_{k}+c(y-\psi)\right](x)>0\right\}$ and $\mathcal{I}_{k+1}:=\Omega \backslash \mathcal{A}_{k+1}$
3. Compute $y_{k+1} \in H_{0}^{1}(\Omega)$ as solution of
$a\left(y_{k+1}, v\right)+\left(\left[\lambda_{k}+c\left(y_{k+1}-\psi\right)\right]^{2}, \mathcal{X}_{\mathcal{A}_{k+1}} v\right)=(f, v) \quad \forall v \in H_{0}^{1}(\Omega) \quad(*)$
4. $\lambda_{k+1}:= \begin{cases}0 & \text { if } x \in \mathcal{I}_{k+1} \\ \lambda_{k}+c\left(y_{k+1}-\psi\right) & \text { if } x \in \mathcal{A}_{k+1}\end{cases}$
5. Stop or $k:=k+1$ and go to 2 .
[11] K. Ito and K. Kunisch. Semi-smooth Newton methods for variational inequalities of the first kind. ESAIM: Mathematical Modelling and Numerical Analysis, 37(1):41-62, 2003.

Regularized state equation

Idea: Adapt the primal-dual active set (PDAS) algorithm in [11] to our problem

Modified PDAS (mPDAS) algorithm

1. Choose $y_{0}, k=0$ and $\lambda_{0}=0$
2. $\mathcal{A}_{k+1}:=\left\{x:\left[\lambda_{k}+c(y-\psi)\right](x)>0\right\}$ and $\mathcal{I}_{k+1}:=\Omega \backslash \mathcal{A}_{k+1}$
3. Compute $y_{k+1} \in H_{0}^{1}(\Omega)$ as solution of

$$
\begin{equation*}
a\left(y_{k+1}, v\right)+\left(\left[\lambda_{k}+c\left(y_{k+1}-\psi\right)\right]^{2}, \mathcal{X}_{\mathcal{A}_{k+1}} v\right)=(f, v) \quad \forall v \in H_{0}^{1}(\Omega) \tag{*}
\end{equation*}
$$

4. $\lambda_{k+1}:= \begin{cases}0 & \text { if } x \in \mathcal{I}_{k+1} \\ \lambda_{k}+c\left(y_{k+1}-\psi\right) & \text { if } x \in \mathcal{A}_{k+1}\end{cases}$
5. Stop or $k:=k+1$ and go to 2 .
[11] K. Ito and K. Kunisch. Semi-smooth Newton methods for variational inequalities of the first kind. ESAIM: Mathematical Modelling and Numerical Analysis, 37(1):41-62, 2003.

Linear mPDAS algorithm (cf. [12])

Step 3 in mPDAS algorithm

Compute $y_{k+1} \in H_{0}^{1}(\Omega)$ as solution of

$$
a\left(y_{k+1}, v\right)+\left(\left[\lambda_{k}+c\left(y_{k+1}-\psi\right)\right]^{2}, \mathcal{X}_{\mathcal{A}_{k+1}} v\right)=(f, v) \quad \forall v \in H_{0}^{1}(\Omega) \quad(*)
$$

Problem: $(*)$ is not linear
\leadsto Idea: Compute $\Delta y:=y_{k+1}-y_{k}$ instead of y_{k+1} and use the linearization

$$
\left(\lambda_{k}+c\left(y_{k}+\Delta y-\psi\right)\right)^{2} \doteq\left(\lambda_{k}+c\left(y_{k}-\psi\right)\right)^{2}+2 c \Delta y\left(\lambda_{k}+c\left(y_{k}-\psi\right)\right)
$$

Step 3 in linear mPDAS algorithm

a) Compute Δy as solution of

$$
\begin{aligned}
& a(\Delta y, v)+\left(2 c \Delta y\left[\lambda_{k}+c\left(y_{k}-\psi\right)\right], \mathcal{X}_{\mathcal{A}_{\boldsymbol{k}+\boldsymbol{1}}} v\right) \\
& =(f, v)-a\left(y_{k}, v\right)-\left(\left[\lambda_{k}+c\left(y_{k}-\psi\right)\right]^{2}, \mathcal{X}_{\mathcal{A}_{\boldsymbol{k}+\boldsymbol{1}}} v\right) \quad \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

b) $y_{k+1}:=y_{k}+\Delta y$
[12] B. Führ, V. Schulz and K. W. Shape optimization for interface identification with obstacle problems. Appears in: Vietnam Journal of Mathematics, 2018.

Solution of the regularized state equation

$$
-\Delta y+\lambda_{c}=f \quad \text { in } \Omega
$$

- $\lambda_{c}=\max \{0, \bar{\lambda}+c(y-\psi)\}^{2}$
- $0 \geq \bar{\lambda} \in L^{4}(\Omega), c=5, f= \begin{cases}f_{1}=-10 & \text { in } \Omega_{1} \\ f_{2}=100 & \text { in } \Omega_{2}\end{cases}$

Solution of the regularized state equation

$$
-\Delta y+\lambda_{c}=f \quad \text { in } \Omega
$$

- $\lambda_{c}=\max \{0, \bar{\lambda}+c(y-\psi)\}^{2}$
- $0 \geq \bar{\lambda} \in L^{4}(\Omega), c=5, f= \begin{cases}f_{1}=-10 & \text { in } \Omega_{1} \\ f_{2}=100 & \text { in } \Omega_{2}\end{cases}$

y with $\lambda_{c}=0$

Solution of the regularized state equation

$$
-\Delta y+\lambda_{c}=f \quad \text { in } \Omega
$$

- $\lambda_{c}=\max \{0, \bar{\lambda}+c(y-\psi)\}^{2}$
- $0 \geq \bar{\lambda} \in L^{4}(\Omega), c=5, f= \begin{cases}f_{1}=-10 & \text { in } \Omega_{1} \\ f_{2}=100 & \text { in } \Omega_{2}\end{cases}$

Algorithm (based on g^{S})

Evaluate objective

Solve the state equation (with the linear mPDAS algorithm)

Solve the adjoint equation

Assemble the deformation equation:

- E.g., choose the weak form of the linear elasticity equation as left hand-side of the deformation equation
- Assemble $D J_{\text {vol }}(y, X)[V]$ for all test functions V whose support includes S as a source term
- Assemble $D J_{\text {surf }}(y, X)[V]$ as Neumann boundary conditions

Solve the deformation equation

Apply the resulting deformation to the finite element mesh

- Computations on unstructured grids with about 1500 up to 6000 triangles

- Computations on unstructured grids with about 1500 up to 6000 triangles
- In the interior domain, elements are magnified by the mesh deformations \leadsto Choose locally adapted meshes or re-mesh after a few iterations
- Largest deformations at the beginning of the iteration process

- Computations on unstructured grids with about 1500 up to 6000 triangles
- In the interior domain, elements are magnified by the mesh deformations \leadsto Choose locally adapted meshes or re-mesh after a few iterations
- Largest deformations at the beginning of the iteration process
- Algorithmic performance deteriorates if the obstacle problem is strongly binding
- More iterations for tighter obstacles, i.e., small values of ψ (494 iterations for $\psi=0.5$ vs. 22 iterations for $\psi=10$)

Contents

(1) Optimization in the manifold of smooth shapes
(2) PDE constrained interface problem
(3) Optimization based on Steklov-Poincaré metrics
(4) Diffeological space of $H^{1 / 2}$-shapes
(5) VI constrained optimization in shape spaces

(6) Conclusion

Conclusion

- Optimization in the space of smooth shapes
- PDE constrained shape optimization problem
- Algorithm based on surface shape derivative formulations \leadsto Application to a parabolic diffusion problem
- Steklov-Poincaré metric
\leadsto Algorithm based on volume shape derivative formulations
\leadsto Application to a parabolic diffusion problem
- Diffeological shape space
- VI constrained shape optimization problem
- Linear modified primal-dual active set (ImPDAS) algorithm \leadsto Application to a VI constrained shape optimization problem

Conclusion

- Optimization in the space of smooth shapes
- PDE constrained shape optimization problem
- Algorithm based on surface shape derivative formulations \leadsto Application to a parabolic diffusion problem
- Steklov-Poincaré metric
\leadsto Algorithm based on volume shape derivative formulations
\leadsto Application to a parabolic diffusion problem
- Diffeological shape space
- VI constrained shape optimization problem
- Linear modified primal-dual active set (ImPDAS) algorithm \leadsto Application to a VI constrained shape optimization problem

Thank you for your attention!

