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Shape optimization problem

min
Ω

J(Ω)

PDE or VI constraints

• J shape functional depending on a solution of a partial differential
equation (PDE) or a variational inequality (VI)

(Definition: Let D ⊂ Rd be non-empty and let A ⊂ {Ω∶Ω ⊂ D} denote a set
of subsets. A function J ∶A → R, Ω↦ J(Ω) is called a shape
functional.)

• Ω shape
↝ 2D shape: Simply connected, compact subset Ω of R2 with Ω /= ∅

and C∞ boundary ∂Ω
↝ How is the set of all shapes defined?
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Space of smooth shapes

2D shape: Simply connected, compact subset Ω of R2 with Ω /= ∅ and C∞ boundary ∂Ω

Shape space

Be ∶= Emb(S1,R2)/Diff(S1)

• Be is a manifold (cf. [1])

• Generalization to higher dimensions: Be(M,N) ∶= Emb(M,N)/Diff(M), where M
is a compact manifold and N denotes a Riemannian manifold with
dim(M)<dim(N)

b1 ∈ Be(S2,R3) b2 /∈ Be(S2,R3) c1 ∈ Be(S1,R2) c2 /∈ Be(S1,R2)

[1] A. Kriegl and P. Michor. The Convient Setting of Global Analysis, volume 53 of Mathematical Surveys and
Monographs. American Mathematical Society, 1997.
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Optimization on manifolds (cf. [2])

• Line-search methods in Rn: xk+1 = xk + tkξk
• Manifolds are not necessarily linear spaces
⇒ Select ξk as a tangent vector toM at xk
⇒ Points from the tangent space have to be

mapped to the manifold

Example: Steepest descent method on Be

Goal: Find a solution of min
x∈Be

J(x)
Input: x0 ∈ Be

for k = 0,1, . . . do
[1] Compute the increment

[2] Set xk+1 ∶= Rxk (tkξk) for some steplength tk and a retraction R

[2] P.-A. Absil, R. Mahony and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University
Press, 2008.
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Riemannian metrics on Be

A Riemannian metric on a manifold M is a collection g = (gp)p∈M of inner products

gp ∶TpM ×TpM → R, (v ,w) ↦ gp(v ,w),
one for every p ∈M, such that the map M → R, p ↦ gp(X(p),Y (p)) is smooth for
every pair of vector fields X ,Y on M.

Sobolev metric (cf. [3])

g1∶TcBe ×TcBe → R, (h, k) ↦ ⟨(I −A△c)α,β⟩L2(c) with A > 0

Here h = αn and k = βn denote two elements of the tangent space

TcBe ≅ {ψ ∣ ψ = αn, α ∈ C∞(S1,R)}.

Riemannian shape gradient w.r.t. g1

Representation of DJ(x) such that g1(gradJ(x),h) = DJ(x)[h] ∀h ∈ TxBe

[3] M. Bauer, P. Harms, and P. Michor. Sobolev metrics on shape space of surfaces. JGM, 3(4):389–438, 2011.
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Shape derivative

Definition

Let D ⊂ Rd be non-empty and open and let Ω ⊂ D be measurable. The shape derivative
of a shape functional J at Ω in direction V ∈ Ck0 (D,Rd), k ∈ N ∪ {∞}, is defined by the
Eulerian derivative

DJ(Ω)[V ] = lim
t→0+

J(Ωt) − J(Ω)
t

(Ωt = {x + t ⋅V (x)∶ x ∈ Ω}).

• Shape derivative of a shape differentiable functional is a directional derivative in
the direction of a differentiable vector field

• Hadamard Structure Theorem (cf. Theorem 2.17 in [4]):
• Only the normal part of a vector field on the boundary Γ of a domain Ω has

an impact on the value of the shape derivative
• Existence of a scalar distribution r on Γ

• If r ∈ L1(Γ), then DJ(Ω)[V ] = ∫Γ r ⟨V ,n⟩ ds
• r is often called the shape gradient but gradients depend on chosen scalar products

defined on the space under consideration
[4] J. Sokolowski and J.-P. Zolésio. Introduction to Shape Optimization, volume 16 of Computational Mathematics

Springer, 1992.
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Interface problem

• Diffusion process

• Ω ⊂ R2 bounded Lipschitz domain

• Two materials Ω1,Ω2 ⊂ Ω with
different permeability

• Fixed outer boundary
∂Ω = Γb⊍Γl⊍Γr⊍Γt

• Variable boundary Γint ∈ Be(S1,R2)
⇒ Fit to measured concentration

• Homogeneous concentration in Ω
for t = 0

• Higher concentration on the top in
the beginning

Ω2

Ω1

Γt

Γint

Γl Γr

Γb

n
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Diffusion problem

For concentration y and diffusion coefficient k:

min
Γint

J(y ,Ω) = j(y ,Ω) + j reg(Ω) ∶= 1
2 ∫

T

0
∫

Ω
(y − ȳ)2dx dt + µ∫

Γint
1ds

s.t.
∂y
∂t

− div(k∇y) = f in Ω × (0,T ]

y = 1 on Γt × (0,T ]
∂y
∂n

= 0 on (Γb ∪ Γl ∪ Γr) × (0,T ]

y = y0 in Ω × {0}

● Data measurements: ȳ ∈ L2 (0,T ;L2(Ω))

● Right hand-side: f = const. in Ω × (0,T ]

● Jumping coefficient: k =
⎧⎪⎪⎨⎪⎪⎩

k1 = const. in Ω1

k2 = const. in Ω2

● Transmission conditions: JyK = 0,
s
k
∂y
∂n

{
= 0 on Γint × (0,T ]
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Shape derivative

Shape derivative of the regularization term j reg

Dj reg(Ω)[V ] = µ∫
Γint

⟨V ,n⟩κds

Shape derivative of the objective functional j

DjΩ(y ,Ω)[V ] = Dj(y ,Ω)[V ] = DjΓint(y ,Ω)[V ]

● DjΩ(y ,Ω)[V ] = ∫
T

0
∫

Ω
−k∇y⊺ (∇V +∇V ⊺)∇p − p∇f ⊺V

+ div(V ) (1
2
(y − y)2 + ∂y

∂t
p + k∇y⊺∇p − fp)dx dt

● DjΓint(y ,Ω)[V ] = ∫
T

0
∫

Γint
JkK∇y⊺1∇p2 ⟨V ,n⟩ds dt

DjΓint(y ,Ω)[V ] = ∫
T

0
∫

Γint
JkK∇y⊺1∇p2 ⟨V ,n⟩ds dt = g1(gradBe j(y ,Ω),V ) ∀V ∈TΓintBe

• Volume formulation: y ∈ L2 (0,T ;H1(Ω)) ,p ∈W (0,T ;H1(Ω))
• Surface formulation: H2-regularity in space is necessary
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Algorithm on (Be , g 1) (cf. [5])

Evaluate measurements

Solve the state and adjoint equation

Assemble the Dirichlet boundary condition
of the linear elasticity equation:

1. Compute the Riemannian shape gradient with respect to g1 from
the surface shape derivative DΓL[V ] = ∫Γ r ⟨V ,n⟩ds (r ∈ L1(Γ)):

gradBeL = qn mit (I −A△Γ)q = r (Γ ∈ Be ,A > 0,q ∈ C∞(Γ))

2. Compute a Riemannian limited-memory BFGS update

Solve the linear elasticity equation with source term equals zero

Apply the resulting deformation to the finite element mesh

[5] V. Schulz, M. Siebenborn and K. W. Structured inverse modeling in parabolic diffusion problems. SICON,
53(6):3319-3338, 2015.
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Steklov-Poincaré: Motivation and aims

• Derivation of surface shape derivative formulations is a time-consuming process
⇒ Aim: Usage of volume shape derivative expressions

• Gradient representation and afterwards mesh deformation
⇒ Aim: Gradient representation and mesh deformation all at once

• C∞-shapes
⇒ Aim: Weaken the assumption of C∞-shapes

Definition of an inner product based on volume formualtions

• Inner product should be derived from the second shape derivative

• Second shape derivative can be related to the Steklov-Poincaré operator (cf. [6])

⇒ Definition of a Steklov-Poincaré type metric

[6] S. Schmidt and V. Schulz. Impulse response approximations of discrete shape Hessians with application in CFD.
SICON, 48(4):2562–2580, 2009.
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Steklov-Poincaré metric

Definition

gS ∶H1/2(Γ) ×H1/2(Γ) → R, (α,β) ↦ ∫
Γ
α ⋅ (Spr)−1 βds

Here Spr denotes the projected Poincaré-Steklov operator and is given by

Spr∶H−1/2(Γ) → H1/2(Γ), ξ ↦ (γ0U)⊺n,

where U ∈ H1
0(Ω,Rd) solves a(U,V ) = ∫Γ ξ ⋅ (γ0V )⊺nds ∀V ∈ H1

0(Ω,Rd).

Shape derivative in surface formulation DJΓ[V ] = ∫Γ r⟨V ,n⟩ds

↝ Shape gradient with respect to gS is given by h ∈ TΓBe ≅ C∞(Γ) s.t.

gS(ψ,h) = ⟨r , ψ⟩L2(Γ)

(⇔ ∫
Γ
ψ ⋅ (Spr)−1 hds = ∫

Γ
rψds)

∀ψ ∈ C∞(Γ)

⇒ h = Sprr = (γ0U)⊺n, where U ∈ H1
0(Ω,Rd) solves

a(U,V ) = ∫
Γ
r ⋅ (γ0V )⊺nds = DJΓ[V ] = DJΩ[V ] ∀V ∈ H1

0(Ω,Rd)
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Results

Construction of the gS -metric yields

gS(u, v) = DJΓ[V ] = DJΩ[V ] = a(U,V ) ∀V ∈ H1
0(Ω,Rd) and v = (γ0V )⊺n

⇒ Shape gradient representation u = (γ0U)⊺n and mesh deformation U ∈ H1
0(Ω,Rd)

We have to solve the deformation equation:

a(U,V ) = b(V ) ∀V ∈ H1
0(Ω,Rd)

• a(⋅, ⋅) symmetric and coercive bilinearform

• b(V ) ∶= DJvol(Ω)[V ] +DJsurf(Ω)[V ]
• Jvol(Ω) parts of J leading to volume shape derivative expressions
• Jsurf(Ω) parts of J leading to surface shape derivative expressions

⇒ Combination of surface and volume formulation of shape derivatives
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Algorithm on (Be , gS) (cf. [7])

Evaluate measurements

Solve the state and adjoint equation

Assemble the deformation equation:

• Assemble DJvol(Ω)[V ] for V with Γ ∩ supp(V ) /= 0 as source term

• Assemble DJsurf(Ω)[V ] as Neumann boundary conditions

Solve the deformation equation

Compute a Riemannian limited-memory BFGS update

Apply the resulting deformation to the finite element mesh

[7] V. Schulz, M. Siebenborn and K. W. Efficient PDE constrained optimization based on Steklov-Poincaré type
metrics. SIOPT, 26(4):2800-2819, 2016.

K. Welker (Trier University) Optimization in Shape Spaces June 26, 2018 16 / 31



Numerical results

• Diffusion problem with T = 20, k =
⎧⎪⎪⎨⎪⎪⎩

k1 = 1 in Ω1

k2 = 0.001 in Ω2

• A = 0.001

• Data y are generated from a solution of the state equation
for the setting Ω2 = {x ∶ ∥x∥2 < 0.5}

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0,001

0,01

0,1

1

Gradient Vol
Gradient Surf
BFGS vol
BFGS surf
l3-BFGS Vol
l3-BFGS Surf
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Space of H1/2-shapes

B1/2(Γ0,Rd) ∶= H1/2(Γ0,Rd)/ ∼

• Γ0 ⊂ Rd d-dimensional Lipschitz shape
(Definition: A d-dimensional Lipschitz shape is defined as the boundary Γ0 = ∂X0

of a compact Lipschitz domain X0 ⊂ Rd with X0 ≠ ∅.)

• H1/2(Γ0,Rd)
∶= {w ∶w ∈ H1/2(Γ0,Rd) injective, continuous; w(Γ0) Lipschitz shape}

• w1 ∼ w2⇔ w1(Γ0) = w2(Γ0), where w1,w2 ∈ H1/2(Γ0,Rd)

Challenges

• Properties of w ∈ H1/2(Γ0,Rd) such that w(Γ0) Lipschitz shape
• Independence of the definition of B1/2 (Γ0,Rd) from the Lipschitz shape Γ0

• Structure of B1/2 (Γ0,Rd): Diffeological structure

K. Welker (Trier University) Optimization in Shape Spaces June 26, 2018 19 / 31



Space of H1/2-shapes

B1/2(Γ0,Rd) ∶= H1/2(Γ0,Rd)/ ∼

• Γ0 ⊂ Rd d-dimensional Lipschitz shape
(Definition: A d-dimensional Lipschitz shape is defined as the boundary Γ0 = ∂X0

of a compact Lipschitz domain X0 ⊂ Rd with X0 ≠ ∅.)

• H1/2(Γ0,Rd)
∶= {w ∶w ∈ H1/2(Γ0,Rd) injective, continuous; w(Γ0) Lipschitz shape}

• w1 ∼ w2⇔ w1(Γ0) = w2(Γ0), where w1,w2 ∈ H1/2(Γ0,Rd)

Challenges

• Properties of w ∈ H1/2(Γ0,Rd) such that w(Γ0) Lipschitz shape
• Independence of the definition of B1/2 (Γ0,Rd) from the Lipschitz shape Γ0

• Structure of B1/2 (Γ0,Rd)

: Diffeological structure

K. Welker (Trier University) Optimization in Shape Spaces June 26, 2018 19 / 31



Space of H1/2-shapes

B1/2(Γ0,Rd) ∶= H1/2(Γ0,Rd)/ ∼

• Γ0 ⊂ Rd d-dimensional Lipschitz shape
(Definition: A d-dimensional Lipschitz shape is defined as the boundary Γ0 = ∂X0

of a compact Lipschitz domain X0 ⊂ Rd with X0 ≠ ∅.)

• H1/2(Γ0,Rd)
∶= {w ∶w ∈ H1/2(Γ0,Rd) injective, continuous; w(Γ0) Lipschitz shape}

• w1 ∼ w2⇔ w1(Γ0) = w2(Γ0), where w1,w2 ∈ H1/2(Γ0,Rd)

Challenges

• Properties of w ∈ H1/2(Γ0,Rd) such that w(Γ0) Lipschitz shape
• Independence of the definition of B1/2 (Γ0,Rd) from the Lipschitz shape Γ0

• Structure of B1/2 (Γ0,Rd): Diffeological structure

K. Welker (Trier University) Optimization in Shape Spaces June 26, 2018 19 / 31



Diffeological structure of B1/2 (cf. [8])

B1/2(Γ0,Rd) ∶= H1/2(Γ0,Rd)/ ∼

• H1/2(Γ0,Rd) = {w ∶w ∈ H1/2(Γ0,Rd) injective, continuous; w(Γ0) Lipschitz shape}

• w1 ∼ w2⇔ w1(Γ0) = w2(Γ0), where w1,w2 ∈ H1/2(Γ0,Rd)

• H1/2(Γ0,Rd) is obviously a subset of H1/2(Γ0,Rd)
• H1/2(Γ0,Rd) is a Banach space and, thus, a manifold
⇒ We can view H1/2(Γ0,Rd) with the corresponding diffeology

Results in [9]:
• Every subset of a diffeological space carries a natural subset diffeology, which is

defined by the pullback of the ambient diffeology by the natural inclusion
• Every quotient of a diffeological space carries a natural quotient diffeology defined

by the pushforward of the diffeology of the source space to the quotient by the
canonical projection

⇒ We can construct diffeologies on H1/2(Γ0,Rd) and B1/2(Γ0,Rd)

[8] K. W. Suitable spaces for shape optimization, 2017. (arXiv:1702.07579)
[9] P. Iglesias-Zemmour. Diffeology. Volume 185, American Mathematical Society, 2013.
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Diffeological space

• No theory for shape optimization on diffeological spaces so far
• Diffeological structure suffices for many differential-geometric tools used in

shape optimization techniques
• Riemannian structures can be used to measure shape distances and state

convergence properties
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VI constrained shape optimization

• No explicit dependence on the domain in classical VIs

• In VI constrained shape optimization problems: Unavoidable source of
non-linearity and non-convexity due to the non-linear and non-convex nature
of shape spaces

Setting

• Ω ⊂ R2 bounded Lipschitz domain

• Two subdomains Ω1,Ω2 ⊂ Ω

• Fixed outer boundary
∂Ω = Γb⊍Γl⊍Γr⊍Γt

• Variable boundary S ∈ Be(S1,R2)
or S ∈ B1/2(Γ0,R2)

• Outer normal vector n to Ω2

Ω2

Ω1

Γ

S
n
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VI constrained problem

min
S

J(y ,S) = j(y ,S) + j reg(S) ∶= 1
2 ∫Ω(S)

(y − ȳ)2dx + µ∫
S
1ds

s.t. −∆y + λ = f in Ω

y ≤ ψ in Ω

λ ≥ 0 in Ω

λ(y − ψ) = 0 in Ω

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

Regularized version [10]: −∆y + λc = f in Ω

• λc = max{0, λ + c(y − ψ)}2

• c > 0, 0 ≥ λ ∈ L4(Ω)

y = 0 on Γ

● Obstacle: ψ ∈ H4(Ω) with 0 < ψ ≤M for M > 0

● Jumping coefficient: f =
⎧⎪⎪⎨⎪⎪⎩

fint = const. in Ωint

fout = const. in Ωout

● Transmission conditions: JyK = 0,
s
∂y
∂n

{
= 0 on S

[10] M. Hintermüller and A. Laurain. Optimal shape design subject to elliptic variational inequalities. SICON,
49(3):1015-1047, 2011.
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Regularized state equation

Idea: Adapt the primal-dual active set (PDAS) algorithm in [11] to our problem

Modified PDAS (mPDAS) algorithm

1. Choose y0, k = 0 and λ0 = 0

2. Ak+1 ∶= {x ∶ [λk + c(y − ψ)] (x) > 0} and Ik+1 ∶= Ω/Ak+1

3. Compute yk+1 ∈ H1
0(Ω) as solution of

a(yk+1, v) + ([λk + c(yk+1 − ψ)]2 ,XAk+1
v) = (f , v) ∀v ∈ H1

0(Ω) (∗)

a(yk+1, v) + ([λk + c(yk+1 − ψ)]2 ,XAk+1
v) = (f , v) ∀v ∈ H1

0(Ω) (∗)

4. λk+1 ∶=
⎧⎪⎪⎨⎪⎪⎩

0 if x ∈ Ik+1
λk + c(yk+1 − ψ) if x ∈ Ak+1

5. Stop or k ∶= k + 1 and go to 2.

[11] K. Ito and K. Kunisch. Semi–smooth Newton methods for variational inequalities of the first kind. ESAIM:
Mathematical Modelling and Numerical Analysis, 37(1):41-62, 2003.
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Linear mPDAS algorithm (cf. [12])

Step 3 in mPDAS algorithm

Compute yk+1 ∈ H1
0(Ω) as solution of

a(yk+1, v) + ([λk + c(yk+1 − ψ)]2 ,XAk+1v) = (f , v) ∀v ∈ H1
0(Ω) (∗)

Problem: (∗) is not linear
↝ Idea: Compute ∆y ∶= yk+1 − yk instead of yk+1 and use the linearization

(λk + c(yk +∆y − ψ))2 ≐ (λk + c(yk − ψ))2 + 2c∆y(λk + c(yk − ψ))

Step 3 in linear mPDAS algorithm

a) Compute ∆y as solution of

a(∆y , v) + (2c∆y [λk + c(yk − ψ)] ,XAk+1v)
= (f , v) − a(yk , v) − ([λk + c(yk − ψ)]2 ,XAk+1v) ∀v ∈ H1

0(Ω)

b) yk+1 ∶= yk +∆y

[12] B. Führ, V. Schulz and K. W. Shape optimization for interface identification with obstacle problems. Appears in:
Vietnam Journal of Mathematics, 2018.
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Solution of the regularized state equation

−∆y + λc = f in Ω

• λc = max{0, λ + c(y − ψ)}2

• 0 ≥ λ ∈ L4(Ω), c = 5, f =
⎧⎪⎪⎨⎪⎪⎩

f1 = −10 in Ω1

f2 = 100 in Ω2

y with λc = 0 y with ψ = 0.2 Corresponding λc
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Algorithm (based on gS)

Evaluate objective

Solve the state equation (with the linear mPDAS algorithm)

Solve the adjoint equation

Assemble the deformation equation:

• E.g., choose the weak form of the linear elasticity equation as left
hand-side of the deformation equation

• Assemble DJvol(y ,X)[V ] for all test functions V whose support
includes S as a source term

• Assemble DJsurf(y ,X)[V ] as Neumann boundary conditions

Solve the deformation equation

Apply the resulting deformation to the finite element mesh
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• Computations on unstructured grids with about 1 500 up to 6 000 triangles
• In the interior domain, elements are magnified by the mesh deformations
↝ Choose locally adapted meshes or re-mesh after a few iterations

• Largest deformations at the beginning of the iteration process
• Algorithmic performance deteriorates if the obstacle problem is strongly binding
• More iterations for tighter obstacles, i.e., small values of ψ (494 iterations for
ψ = 0.5 vs. 22 iterations for ψ = 10)
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Conclusion

• Optimization in the space of smooth shapes

• PDE constrained shape optimization problem

• Algorithm based on surface shape derivative formulations
↝ Application to a parabolic diffusion problem

• Steklov-Poincaré metric
↝ Algorithm based on volume shape derivative formulations
↝ Application to a parabolic diffusion problem

• Diffeological shape space

• VI constrained shape optimization problem

• Linear modified primal-dual active set (lmPDAS) algorithm
↝ Application to a VI constrained shape optimization problem

Thank you for your attention!
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