# A minimal representation of the orthosymplectic Lie supergroup

Sigiswald Barbier

Joint work with: Hendrik De Bie, Kevin Coulembier, Jan Frahm

**Ghent University** 

#### Outline

#### Introduction

Construction

- Introduction

Classification of representations

### Classification

#### Goal

Classification of all possible representations of a given group/algebra.

- Introduction

Classification of representations

### Classification

#### Goal

Classification of all irreducible representations of a given group/algebra.

- Introduction

Classification of representations

### Classification

#### Goal

Classification of all unitary irreducible representations of a given Lie group.

Minimal representation for osp(p,q|2n)

- Classification of representations

#### Connected compact groups



Figure: Élie Cartan CC BY-SA 2.5, MFO



Figure: Hermann Weyl CC BY-SA 3.0, ETH-Bibliothek

-Introduction

- Classification of representations

### Semisimple groups



Figure: Harish-Chandra CC BY-SA 4.0, Pratham Cbh

- Introduction

- Classification of representations

### The orbit method



#### Figure: Alexandre Kirillov

### The orbit method (or geometric quantization)

Gives a connection between

- the unitary irreducible representations of G
- the coadjoint orbits of g\*.

Minimal representation for osp(p,g|2n)

Minimal representations

### Minimal representations

#### Minimal representation: hand-waving definition

The representation associated to the minimal nilpotent coadjoint orbit via the orbit method.

#### Special properties

- Very small: lowest possible Gelfand-Kirillov dimension.
- Difficult from orbit method point of view.

Minimal representations

### Minimal representations: technical definition

#### Minimal representation: technical definition

A unitary representation of a simple real Lie group *G* is called *minimal* if the annihilator ideal of the derived representation of the universal enveloping algebra of  $\text{Lie}(G)_{\mathbb{C}}$  is the Joseph ideal.

#### Definition (Joseph ideal)

The Joseph ideal is the unique completely prime, two-sided ideal in the universal enveloping algebra such that the associated variety is the closure of the minimal nilpotent coadjoint orbit.



W. Gan, G. Savin. On minimal representations definitions and properties. Represent. Theory **9** (2005), 46–93.

Minimal representations

### Minimal representations: an example

#### The metaplectic representation

Unitary irreducible representation of  $Mp(2n, \mathbb{R})$ , a double cover of  $Sp(2n, \mathbb{R})$ , on  $L^2_{even}(\mathbb{R}^n)$ . On algebra level it is given by

$$d\mu \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} = -\pi i \sum_{i,j=1}^{n} C_{ij} y_i y_j \qquad \text{for } C \in \text{Sym}(n, \mathbb{R})$$
$$d\mu \begin{pmatrix} A & 0 \\ 0 & -A^t \end{pmatrix} = -\frac{1}{2} \operatorname{tr}(A) - \sum_{i,j=1}^{n} A_{ij} y_j \partial_i \qquad \text{for } A \in \mathsf{M}(n, \mathbb{R})$$
$$d\mu \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} = \frac{1}{4\pi i} \sum_{i,j=1}^{n} B_{ij} \partial_i \partial_j \qquad \text{for } B \in \text{Sym}(n, \mathbb{R}).$$

```
Minimal representation for osp(p,q|2n)
```

-Minimal representations

### Other prominent example is given by the minimal representation of O(p, q).

### There exists a unified construction of minimal representation using Jordan algebras developed in [HKM].



[HKM] J. Hilgert, T. Kobayashi, J. Möllers. Minimal representations via Bessel operators. J. Math. Soc. Japan **66** (2014), no. 2, 349–414.

```
Minimal representation for osp(p,q|2n)
```

- Supersymmetry



Introduced in the 70s.

Treat bosons and fermions at the same footing.

Add 'odd stuff' to the ordinary (even) 'stuff'.

```
Minimal representation for osp(p,q|2n)
```

Supersymmetry

### Super vector space

#### Definition

A super vector space is a  $\mathbb{Z}_2$  graded vector space, i.e.

$$V=V_{\bar{0}}\oplus V_{\bar{1}}.$$

The elements in  $V_{\overline{0}} \cup V_{\overline{1}}$  are called homogeneous.

We define parity for homogeneous elements as

|u| = i if  $u \in V_{\overline{i}}$ .

```
Minimal representation for osp(p,q|2n)
```

- Supersymmetry

### Definition of a Lie superalgebra

A Lie superalgebra  $\mathfrak{g}=\mathfrak{g}_{\bar{0}}\oplus\mathfrak{g}_{\bar{1}}$  is a super vector space with a bilinear product  $[\ ,\ ]$  which

is a graded product

$$[\mathfrak{g}_i,\mathfrak{g}_j]\subset\mathfrak{g}_{i+j}, ext{ for } i,j\in\mathbb{Z}_2$$

is super anti-commutative

$$[X, Y] = -(-1)^{|X||Y|}[Y, X]$$

satisfies the super Jacobi identity

$$(-1)^{|X||Z|}[X, [Y, Z]] + (-1)^{|Y||X|}[Y, [Z, X]] + (-1)^{|Z||Y|}[Z, [X, Y]] = 0.$$

```
Minimal representation for osp(p,q|2n)
```

└- Supersymmetry

### The orthosymplectic Lie superalgebra

Consists of the  $(p + q + 2n) \times (p + q + 2n)$  matrices for which

 $X^{st}\Omega + \Omega X = 0$ 

with

$$\Omega = \begin{pmatrix} I_p & & & \\ & -I_q & & \\ & & -I_n \\ & & I_n \end{pmatrix}$$

•

Bracket:  $[X, Y] = XY - (-1)^{|X||Y|} YX$ .

Minimal representation for osp(p,q|2n)

Supersymmetry

### The orthosymplectic Lie superalgebra $\mathfrak{osp}(1,0|2)$

Defining equation

$$\begin{pmatrix} a & d & g \\ -b & e & f \\ -c & h & i \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = 0.$$
  
So  $\mathfrak{osp}(1, 0|2n) = \left\{ X = \begin{pmatrix} 0 & b & c \\ c & e & f \\ -b & h & -e \end{pmatrix} \mid b, c, e, f, h \in \mathbb{R} \right\}.$ 

Even part:

Odd part:

$$X_{\bar{0}} = \begin{pmatrix} 0 & & \\ & e & f \\ & h & -e \end{pmatrix}$$

$$X_{\overline{1}} = \begin{pmatrix} b & c \\ c & \\ -b & \end{pmatrix}$$

- Construction

### Goal

#### Goal

Construct minimal representations for Lie supergroups.

 $\rightarrow$  Focus on the example OSp(p, q|2n).

#### Approach

Generalize the unified construction of minimal representation using Jordan algebras developed in [HKM].

[HKM] J. Hilgert, T. Kobayashi, J. Möllers. Minimal representations via Bessel operators. J. Math. Soc. Japan **66** (2014), no. 2, 349–414.

```
Minimal representation for osp(p,q|2n)
```

The classical case

# How to construct minimal representations for simple Lie groups?

#### Start from a simple Jordan algebra.

- Associate some Lie algebras/groups:
  - structure algebra/group
  - ▶ the *Tits-Kantor-Koecher Lie algebra* / conformal group.
- Construct a representation from this TKK Lie algebra on the Jordan algebra.
- $\longrightarrow$  Representation is still too big.

```
Minimal representation for osp(p,q|2n)
```

The classical case

# How to construct minimal representations for simple Lie groups?

Start from a simple Jordan algebra.

- Associate some Lie algebras/groups:
  - structure algebra/group
  - ▶ the *Tits-Kantor-Koecher Lie algebra* / conformal group.
- Construct a representation from this TKK Lie algebra on the Jordan algebra.
- $\longrightarrow$  Representation is still too big.

```
Minimal representation for osp(p,q|2n)
```

The classical case

# How to construct minimal representations for simple Lie groups?

Start from a simple Jordan algebra.

- Associate some Lie algebras/groups:
  - structure algebra/group
  - ▶ the *Tits-Kantor-Koecher Lie algebra* / conformal group.
- Construct a representation from this TKK Lie algebra on the Jordan algebra.
- $\longrightarrow$  Representation is still too big.

Minimal representation for osp(p,q|2n)

- The classical case

- Study the orbits of the Jordan algebra under the action of the structure group.
- Show that this representation restricts to the minimal orbit.
- Infinitesimally unitary representation with respect to some L<sup>2</sup> measure.
- Integrate this restricted representation to a unitary representation of the conformal group.

```
Minimal representation for osp(p,q|2n)
```

- The classical case

- Study the orbits of the Jordan algebra under the action of the structure group.
- Show that this representation restricts to the minimal orbit.
- Infinitesimally unitary representation with respect to some L<sup>2</sup> measure.
- Integrate this restricted representation to a unitary representation of the conformal group.

Minimal representation for osp(p,g|2n)

- The classical case

- Study the orbits of the Jordan algebra under the action of the structure group.
- Show that this representation restricts to the minimal orbit.
- Infinitesimally unitary representation with respect to some L<sup>2</sup> measure.
- Integrate this restricted representation to a unitary representation of the conformal group.

```
Minimal representation for osp(p,q|2n)
```

- The classical case

- Study the orbits of the Jordan algebra under the action of the structure group.
- Show that this representation restricts to the minimal orbit.
- Infinitesimally unitary representation with respect to some L<sup>2</sup> measure.
- Integrate this restricted representation to a unitary representation of the conformal group.

Minimal representation for osp(p,g|2n)

The super case

# Minimal representations for Lie supergroups: what do we need?

# ▶ Jordan superalgebras > Structure algebra and TKK algebras ✓ [BC1] ▶ Representation on the Jordan superalgebra ✓ [BC2]



[Ka] V. G. Kac.

Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras.

Comm. Algebra 5 (1977), no. 13, 1375-1400.



The super case

# Minimal representations for Lie supergroups: what do we need?



[BC1] S. Barbier, K. Coulembier. On structure and TKK algebras for Jordan superalgebras. Comm. Algebra 46 (2018), no 2, 684-704.

```
Minimal representation for osp(p,q|2n)
```

The super case

### Structure algebra and TKK

The spin factor Jordan superalgebra

$$J := \mathbb{R} e \oplus \mathbb{R}^{p+q-3|2n}$$

The structure algebra

$$\mathfrak{str}(J) = \mathfrak{osp}(p-1, q-1|2n) \oplus \mathbb{R}L_e$$

The Tits-Kantor-Koecher construction

$$\mathrm{TKK}(J) = J \oplus \mathfrak{str}(J) \oplus J = \mathfrak{osp}(p,q|2n)$$



The super case

# Minimal representations for Lie supergroups: what do we need?

▶ Jordan superalgebras
 > Structure algebra and TKK algebras
 ✓ [BC1]
 ▶ Representation on the Jordan superalgebra
 ✓ [BC2]

[BC2] S. Barbier, K. Coulembier. Polynomial Realisations of Lie (Super)Algebras and Bessel Operators. International Mathematics Research Notices 2017, no. 10, 3148-3179.



The super case

# Minimal representations for Lie supergroups: what do we need?

▶ Jordan superalgebras
 > Structure algebra and TKK algebras
 ✓ [BC1]
 ▶ Representation on the Jordan superalgebra
 ✓ [BC2]

These steps were done in general. For the next steps we restrict to osp(p, q|2n).

```
Minimal representation for osp(p,q|2n)
```

└─The osp(p, q|2n) case

# Minimal representations for $\mathfrak{osp}(p, q|2n)$ : what do we need?

- Jordan superalgebras
- Structure algebra and TKK algebras
- Representation on the Jordan superalgebra
- Minimal orbit and restriction to this orbit
- Integration to group level

✓ ✓ ✓ ✓ [BF] ✓ [BF]

```
Minimal representation for osp(p,q|2n)
```

└─The osp(p, q|2n) case

# Minimal representations for $\mathfrak{osp}(p, q|2n)$ : what do we need?

- Jordan superalgebras
- Structure algebra and TKK algebras
- Representation on the Jordan superalgebra
- Minimal orbit and restriction to this orbit
- Integration to group level
- [BF] S. Barbier and J. Frahm,
   A minimal representation of the orthosymplectic Lie superalgebra,
   45 pages, arXiv:1710.07271.

[BF]

```
Minimal representation for osp(p,q|2n)
```

└─The osp(p, q|2n) case

### Harish-Chandra supermodules

 $G = (G_0, \mathfrak{g}, \sigma)$  a Lie supergroup,  $G_0$  is connected and real reductive,  $K_0$  is a maximal compact subgroup of  $G_0$ .

#### Definition (Harish-Chandra supermodule)

A super vector space V is a Harish-Chandra supermodule if V

- is a locally finite  $K_0$ -representation
- it has a compatible g-module structure
- finitely generated over  $U(\mathfrak{g})$
- ► *K*<sub>0</sub>-multiplicity finite.
- A. Alldridge. Fréchet Globalisations of Harish-Chandra Supermodules. Int Math Res Notices 2017, no. 17, 5137-5181.

```
Minimal representation for osp(p,q|2n)
```

L The osp(p, q|2n) case

### A Harish-Chandra supermodule Set $\mu = \max(p - 2n, q) - 3$ , and $\nu = \min(p - 2n, q) - 3$ $\mathfrak{g} = \mathfrak{osp}(p, q|2n), \quad \mathfrak{k} = \mathfrak{osp}(p|2n) \oplus \mathfrak{so}(q).$

Define

$$W = U(\mathfrak{g})\widetilde{K}_{rac{
u}{2}}(|X|)$$

with  $\widetilde{K}_{\frac{\nu}{2}}(|X|)$  the modified Bessel function of the third kind. Theorem

If p + q is even and p - 2n > 0, then W is a Harish-Chandra supermodule with  $\mathfrak{k}$ -decomposition  $W = \bigoplus_{j} W_{j}$ 

$$\begin{split} W_{j} &\cong \mathcal{H}^{\frac{\mu-\nu}{2}+j}(\mathbb{R}^{p|2n}) \otimes \mathcal{H}^{j}(\mathbb{R}^{q}) \qquad \text{if } p-2n \leq q, \\ W_{j} &\cong \mathcal{H}^{j}(\mathbb{R}^{p|2n}) \otimes \mathcal{H}^{\frac{\mu-\nu}{2}+j}(\mathbb{R}^{q}) \qquad \text{if } p-2n \geq q. \end{split}$$

```
Minimal representation for osp(p,q|2n)
```

└─The osp(p, q|2n) case

# Minimal representations for $\mathfrak{osp}(p, q|2n)$ : what do we need?

- Jordan superalgebras
- Structure algebra and TKK algebras
- Representation on the Jordan superalgebra
- Minimal orbit and restriction to this orbit
- Integration to group level

[BF] S. Barbier and J. Frahm, A minimal representation of the orthosymplectic Lie superalgebra, 45 pages, arXiv:1710.07271.

[BF]

[BF]

```
Minimal representation for osp(p,q|2n)
```

⊢The osp(p, q|2n) case

### Properties of the minimal representation

- Gelfand-Kirillov dimension: p + q 3.
- ► The annihilator ideal is the Joseph ideal constructed in constructed in [CSS] if p + q 2n 2 > 0.
- There exists non-degenerate superhermitian, sesquilinear form for which the representation is skew-symmetric.
- K. Coulembier, P. Somberg, V. Souček. Joseph ideals and harmonic analysis for osp(*m*|2*n*). Int. Math. Res. Not. IMRN (2014), no. 15, 4