
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

On the Algeometry Problem

Wolfgang Bertram

Institut Elie Cartan de Lorraine at Nancy

Paderborn, july 24, 2018



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I’ll start with some personal words...



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The “Algeometry Problem”

Model: Sophus Lie’s theory – the Lie functor:
G = G (g)

↓↑
g = Lie(G )

Problem. Given some class of algebras, is there a corresponding
class of “geometric objects”, in such a way that the algebra can be
considered as kind of “tangent algebra” of the geomery, and the
geometry as kind of “integral version” of the algebra:

G = Geo(A)
↓↑

A = Alg(G )
– ?

In former papers and talks, I’ve called this the “generalized
coquecigrue problem”, in honor of Jean-Louis Loday; but
Karl-Hermann convinced me that, possibly, time has come to give
it a more serious name...
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class of “geometric objects”, in such a way that the algebra can be
considered as kind of “tangent algebra” of the geomery, and the
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G = Geo(A)
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In former papers and talks, I’ve called this the “generalized
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Plan of the talk

Geometry
↓↑

Algebra

1 Introduction
• Status of the problem
• What do I mean by “algebra” ?
• What do I mean by “geometry” ?

2 Going down: “derivation” (differential calculus)

3 Going up: “integration” (no general method, for the moment)
– examples:

• Lie examples
• associative examples
• Jordan examples and Jordan-Lie examples
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Status of the problem

It is

• wide open

• answer “known” for important cases : Lie, Jordan, associative
(binary and ternary)

• work in good progress for others : alternative, Moufang,
Leibniz,...

• difficult: so far each case uses its own methods and ideas

• interesting: so far, each case gave new and beautiful insights
on geometry and was source of new maths

• challenging – especially for the Lie community (because
groups are central in this problem)

• important (I’m pretty sure that theoretical physics will be very
happy to use such a theory, once we have it.)
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What do I mean by “algebra”?

• classes (categories) of algebras defined by algebraic identities,
like: Lie, associative, Jordan,...

• I’m mostly interested in binary products, but also in ternary
ones (eg., binary Lie algebra, [X ,Y ], ternary: Lie triple system
[X ,Y ,Z ]),

• binary algebras may have a unit, or not: it’s important to
make precise if we talk about unital associative, or Jordan,
algebras (unit is part of the structure), or not,

• I don’t assume algebras to be finite-dimensional!

• I don’t even assume algebras to be defined over a field: I
prefer to allow them to be defined over a general
(commutative, unital) ring K (general philosophy: infinite
dimensional geometry over a field is best treated by working
over rings, since then you are not tempted to use bases).
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What do I mean by “geometry”?

• a “space” (manifold) with “structure” (typically, encoded by a
“structure map”, such as the group law of a Lie group, or the
Loos product (x , y) 7→ sx(y) of a symmetric space),

• are base points part of “structure”? Eg., for the structure
“group”, yes (unit), but for Loos’ symmetric space law, no.

• Put differently: are base points “arbitrary”? Eg., aren’t
“affine spaces” more geometric than “vector spaces”?
Recall: the “affine version” of a group is a torsor – a group
with ternary product (xyz) := xy−1z ,

• Lie groupoids are “geometries”: instead of one manifold, one
has a pair (G1,G0) of manifolds, but that’s ok,

• “structure” may also be a relation: like “incidence” in
projective geometry, or “transversality” on Grassmannians;

• anyhow, “space” and “structure” should be understood in
some classical sense; in this respect, I do not follow the
philosophy of Non-Commutative Geometry (NCG)!
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Going down: differentiation

Example: “the Lie algebra of a Lie group is a kind of
differentiation of the group law”

Many of you certainly have taught this “theorem” in lectures on
Lie groups: there are several proofs; none of them is “obvious”.

• via bracket of (left) invariant vector fields: this is cheating
because you have to define first the bracket of vector fields!

• via second term in BCH-series log(expX · expY ) (problem: in
general siutations you have no exponential map),

• deriving the adjoint representation: ad = T1Ad: this is fine;
in essence: second derivative of adjoint action,

• as torsion tensor of the canonical curvature free connection:
fine, too; but first you have to talk about connections...

What is the “best”, or “most natural”, method ? To give an
answer, one has to speak first about differential calculus itself...
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Differential calculus. I: functorial approach

“Functorial”: we use that the tangent functor T is a functor:

Example: (G ,m, i) Lie group ⇒ (TG ,Tm,Ti) Lie group

In general: (M, . . .) geometry ⇒ (TM,T (. . .)) geometry
⇒ (TTM,TT (. . .)) geometry, and so on...
... get higher order tangent geometry (T nM,T n(. . .))

problem: understand T nM ! ... cf B., Mem AMS 900

Lie example: TG is a group with splitting exact sequence

0 → (g,+) → TG → G → 1.

That is, semidirect product: TG ∼= G × g. Repeat this. Add index
1 everywhere in the first step, index 2 in the second step, etc. Get

TTG ∼= G × g1 × g2 × g12.

For X ,Y ∈ g, let Xα the corresponding image in gα (“lift”).

Theorem. For all X ,Y ∈ g, [X ,Y ]12 = [X1,Y2]
group , where

[g , h]group = ghg−1h−1 is the group commutator.
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Example: (G ,m, i) Lie group ⇒ (TG ,Tm,Ti) Lie group

In general: (M, . . .) geometry ⇒ (TM,T (. . .)) geometry
⇒ (TTM,TT (. . .)) geometry, and so on...
... get higher order tangent geometry (T nM,T n(. . .))

problem: understand T nM ! ... cf B., Mem AMS 900

Lie example: TG is a group with splitting exact sequence

0 → (g,+) → TG → G → 1.

That is, semidirect product: TG ∼= G × g. Repeat this. Add index
1 everywhere in the first step, index 2 in the second step, etc. Get

TTG ∼= G × g1 × g2 × g12.

For X ,Y ∈ g, let Xα the corresponding image in gα (“lift”).

Theorem. For all X ,Y ∈ g, [X ,Y ]12 = [X1,Y2]
group , where

[g , h]group = ghg−1h−1 is the group commutator.
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Lie functor: the Jacobi identity

Jacobi: need third order differential calculus! Look at TTTG :

T 3G ∼= (G × g1 × g2 × g12)× (g3 × g12 × g23 × g123)

ie., elements of T 3G can be written uniquely as products in
lexicographic ascending order.

Now rewrite both sides of

(X3 · Y2) · Z1 = X3 · (Y2 · Z1)

in ascending lexicographic order, and Jacobi drops out. (B. Mem
AMS 900. But see already Serre, 1965, using P. Hall’s identity.)

Theorem. By writing elements of T nG uniquely as “products in
ascending lexicographic order”, the n-fold tangent group T nG is
diffeomorphic to a product of G with 2n − 1 copies gA of g,
labelled by subsets A ⊂ {1, . . . , n}. There is an explicit “product
formula”, in terms of the Lie bracket, describing this group.

Rk : this a “left analog” of the Campbell-Hausdorff formula...
However, inversion is not the map X 7→ −X !
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Differential calculus. II: Conceptual calculus

...book project and two arxiv papers; cf 50th SSL proceedings...

Motto: “there is life before taking the limit”.

cf. the tangent groupoid (Alain Connes):

t = 0 (in the limit): tangent bundle, Tg0 = T tangent functor,
t = 1: pair groupoid functor Tg1M = PG(M) = M ×M

groupoid: (x , y) ∗ (y , z) = (x , z), (x , y)−1 = (y , x),
t ∈ [0, 1]: Tgt “continuous interpolation” (Connes)

Fundamental theorem of conceptual calculus. Let M be a
smooth Hausdorff manifold (over some topological base ring K).
Then there is a Lie groupoid Tg(M) over the base M ×K, such
that for each t ∈ K the groupoid TgtM over the base M satisfies:

• Tg0M is the tangent bundle (group bundle),

• TgtM
∼= PG(M) when t is invertible in K,

• for every t ∈ K, TgtM is a smooth manifold over the ring

Kt := K[X ]/(X 2 − tX ) = K⊕ bK, b2 = tb.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Differential calculus. II: Conceptual calculus

...book project and two arxiv papers; cf 50th SSL proceedings...

Motto: “there is life before taking the limit”.
cf. the tangent groupoid (Alain Connes):

t = 0 (in the limit): tangent bundle, Tg0 = T tangent functor,
t = 1: pair groupoid functor Tg1M = PG(M) = M ×M

groupoid: (x , y) ∗ (y , z) = (x , z), (x , y)−1 = (y , x),
t ∈ [0, 1]: Tgt “continuous interpolation” (Connes)

Fundamental theorem of conceptual calculus. Let M be a
smooth Hausdorff manifold (over some topological base ring K).
Then there is a Lie groupoid Tg(M) over the base M ×K, such
that for each t ∈ K the groupoid TgtM over the base M satisfies:

• Tg0M is the tangent bundle (group bundle),

• TgtM
∼= PG(M) when t is invertible in K,

• for every t ∈ K, TgtM is a smooth manifold over the ring

Kt := K[X ]/(X 2 − tX ) = K⊕ bK, b2 = tb.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Differential calculus. II: Conceptual calculus

...book project and two arxiv papers; cf 50th SSL proceedings...

Motto: “there is life before taking the limit”.
cf. the tangent groupoid (Alain Connes):

t = 0 (in the limit): tangent bundle, Tg0 = T tangent functor,
t = 1: pair groupoid functor Tg1M = PG(M) = M ×M

groupoid: (x , y) ∗ (y , z) = (x , z), (x , y)−1 = (y , x),
t ∈ [0, 1]: Tgt “continuous interpolation” (Connes)

Fundamental theorem of conceptual calculus. Let M be a
smooth Hausdorff manifold (over some topological base ring K).
Then there is a Lie groupoid Tg(M) over the base M ×K, such
that for each t ∈ K the groupoid TgtM over the base M satisfies:

• Tg0M is the tangent bundle (group bundle),

• TgtM
∼= PG(M) when t is invertible in K,

• for every t ∈ K, TgtM is a smooth manifold over the ring

Kt := K[X ]/(X 2 − tX ) = K⊕ bK, b2 = tb.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Differential calculus: Higher order

“Iterate” = “repeat over and over again”... : Tg2M = Tg(TgM)

Theorem. In the situation of the preceding theorem, Tg2M is a
(strict) double groupoid, and so is, for each (t1, t2) ∈ K2,

Tg2(t1,t2)M := Tgt2(Tgt1M).

This is also the scalar extension of M by the ring K(t1,t2) = (Kt1)t2 .
And so on: we get an n-fold groupoid TgnM which is “Lie” over a
certain ring K(t1,...,tn).

Summary. Lie groups and Lie groupoids (even: higher ones) enter
naturally into the foundations of differential calculus and of
differential geometry (cf. “Ehresman’s program”).

Therefore Lie theory plays a central role in the whole of the
“algeometry problem”!
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Going up: “integration”

Lie’s third theorem. Every (finite-dimensional, real or complex)
Lie algebra is associated to some Lie group.

Recall: the whole proof is long. It can be seperated in several
parts: some of them are purely algebraic, but inevitably some of
them are “transcendental”: arguments of topology and “hard”
analysis are used. None generalizes completely to
infinite-dimensional situations...

Surprise: the Lie case is the “most difficult” – in the Jordan and
associative case, arguments are purely algebraic, no need for
“transcendental help” ! – that’s why Jordan (and associative)
theory works so nicely in infinite dimensional situations, and over
general base fields and rings: call it “algebraic integration”.

Theorem. Every associative algebra is associated to some
associative geometry. (B.-Kinyon.)
Every Jordan algebra is associated to some Jordan geometry.
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Associative geometries in pictures

What is the geometry belonging to an associative algebra? –
Before giving general answers, let’s look at the following four
pictures:

b
Y

bX

b
Z

b
W

This is an ordinary parallelogram in an ordinary plane. There is a
geometric formula and an algebraic one describing (X ,Y ,Z ) 7→ W :

W =
(
para(Y ∨ Z ,X )

)
∧
(
para(Y ∨ X ,Z )

)
,

W = X − Y + Z
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The second picture: it’s the same as before,

b bh

b Y

b X

b
Z

bb

bW

where I have just added the drawing of the line at infinity h
(horizon). We are in a projective plane.

w =
((

(x ∨ y) ∧ h
)
∨ z

)
∧
((

(z ∨ y) ∧ h
)
∨ x

)
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Now let’s be schizophrenic and introduce two horizons a and b
instead of h, and do the following construction:

a

b

b y

b
x b

z

b

b

b

w = (xyz)ab

The point w is now defined by the formula

w := (xyz)ab :=
((

(x ∨ y) ∧ a
)
∨ z

)
∧
((

(z ∨ y) ∧ b
)
∨ x

)
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To get another view of the preceding image, let’s move back to
infinity one of the two horizons, say a:

b
b b

b
y

b
z

b x

b b

b w

Theorem. For any fixed a, b, y, the law (x , z) 7→ w defines a
group law on Uab = the projective plane with lines a, b, removed.

The whole thing (map associating to five data: (a, b, x , y , z), the
point w = (xyz)ab) is what I call the non-commutative plane. It’s
the smallest dimensional non-trivial associative geometry.
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Associative geometries: axiomatics

Underlying set: a general Grassmannian X and its dual X ′

(Weak) geometric structure: binary relation called
transversality, a⊤x iff the sum a+ x is direct; Ua = {x | x⊤a} the
set of complements of a; for every pair (a, b) ∈ X ′ × X ′, let
Uab = Ua ∩ Ub (set of common complements)

Algebraic-geometric structure: Theorem. for any y ∈ Uab, there
is a group structure on Uab with neutral element y. The product
xz in this group depends on a, b, y , so let us denote it by
x · z = (xyz)ab = Γ(x , a, y , b, z). This defines the structure map

Γ : X ×X ′ ×X ×X ′ ×X → X , (x , a, y , b, z) 7→ x ·y z = (xyz)ab.

Algebraic Identites: the structure map Γ satisfies certain
algebraic identities, all of them “nice and natural”.

Definition. Axiomatically, a structure of the type (X ,X ′,⊤, Γ) is
then called associative geometry.
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Associative geometries. Self-duality.

Theorem. (B-Kinyon.) Associative geometries are the geometries
belonging to associative pairs (have equivalence of categories...)
Under this correspondence, unital associative algebras correspond
to self-dual associative geometries (with base “point”).

Example: not self-dual. (X ,X ′) projective spaces corresponds to
(M(1, n;K),M(n, 1;K)), row and column vectors in duality, n > 1.
Special case n = 2: pictures shown above!

Example: self-dual. X = X ′ = Grassmannian of n-spaces in K2n,
corresponds to (A,A) with A full associative algebra of
n × n-matrices. It is the generalized projective line over A:

“Integration” revisited. Start with any unital associative algebra
A; then the space (manifold) is explicitly given by

X = GrasAA(A⊕ A) = X ′

with structure map Γ defined as above.
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Associative geometries. Self-duality.

Theorem. (B-Kinyon.) Associative geometries are the geometries
belonging to associative pairs (have equivalence of categories...)
Under this correspondence, unital associative algebras correspond
to self-dual associative geometries (with base “point”).

Example: not self-dual. (X ,X ′) projective spaces corresponds to
(M(1, n;K),M(n, 1;K)), row and column vectors in duality, n > 1.
Special case n = 2: pictures shown above!

Example: self-dual. X = X ′ = Grassmannian of n-spaces in K2n,
corresponds to (A,A) with A full associative algebra of
n × n-matrices. It is the generalized projective line over A:

“Integration” revisited. Start with any unital associative algebra
A; then the space (manifold) is explicitly given by

X = GrasAA(A⊕ A) = X ′

with structure map Γ defined as above.
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special Jordan geometries

Recall: an associative algebra gives rise to a special Jordan algebra
x • y = 1

2(xy + yx) (better: quadratic algebras; McCrimmon).

Question: What is the geometry belonging to this?

Definition. The Jordan structure map J of an associative
geometry (X ,X ′, Γ) is the restriction of the pentary structure map
Γ(x , a, y , b, z) to the diagonal x = z :

Jabx (y) = Γ(x , a, y , b, x) = (xyx)ab

Clue: when (a, b) is fixed, the map Jabx is the inversion map of the
group Uab with origin x . Hence Uab becomes a symmetric space
with Loos’ structure map (y , x) 7→ Jaby (x).

Second clue: when (x , y) is fixed, we also get an abelian group Ux

with origin y and product (a, b) 7→ Jaby (x) (vector group, in fact)

Definition. A special Jordan geometry is a subspace of an
associative geometry that is stable under the Jordan structure map.
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Jordan geometries by inversions

Axiomatic definition. A Jordan geometry is given by a pair of
spaces (X ,X ′), a transversality relation ⊤ and a Jordan structure
map (x , a, y , b) 7→ Jaby (x), such that certain algebraic identities

hold. These say, among other things, that Jaby is an inversion (has
order 2), fixes y , and exchanges a and b, and

– for fixed (a, b), Uab is a symmetric space (the “homotopes”),
– for fixed (x , y), (Ux , y) is an abelian group.

Theorem. (B.14.) Jordan geometries are the geometries
belonging to general Jordan pairs. Self-dual Jordan geometries
belong to general Jordan algebras.

Rk. Previous results:

– Be00 (LNM 1754), real finite dimensional case (using Loos 69)
– Be02: “generalized projective geometries”, char ̸= 2 (midpoints!)
– Be-Neeb (2005): integration: model via filtered Lie algebras
– Be14: the results above hold for characteristic 2 included!
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Jordan-Lie geometries

Motto: “some Jordan geometries are more special than
others!” ... and by accident (?) these are exactly those
corresponding to the setting of Quantum Mechanics :

(Old) observation. Spaces of Hermitian matrices or operators
are both a Jordan algebra, for •, and a Lie algebra, with Lie bracket

[X ,Y ] :=
i

ℏ
(XY − YX ).

What is behind this? Recall the associator of an algebra β

Aβ(x , y , z) := (xy)z − x(yz) = β(β(x , y), z)− β(x , β(y , z)).

Lemma. Let A be an associative algebra, i.e., Aβ = 0. Then the
associatiors of the symmetric part J(x , y) = xy + yx and of the
skew-symmetric part L(x , y) = xy − yx agree, up to a sign:

AJ = −AL.

Proof. L(L(x , y), z)− L(x , L(y , z)) = xzy + yzx − yxz − zxy , and
for J(J(x , y), z)− J(x , J(y , z)) you get its negative!
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Jordan-Lie geometries (II)

Definition. (Physics people...) Let k ∈ K be a constant. A
Jordan-Lie algebra with Jordan-Lie constant k is an algebra A with
two products [x , y ] and x • y, such that

(JL1) (V , [·, ·]) is a Lie algebra,
(JL2) (V , •) is a Jordan algebra,
(JL3) the Lie algebra acts by derivations of •, that is,

[x , u • v ] = [x , u] • v + u • [x , v ],

(JL4) the associator identity: associators of both products are
proportional, by a factor k, that is, A• = kA[−,−]. Written out,

(x • y) • z − x • (y • z) = k
(
[[x , y ], z ]− [x , [y , z ]]

)
.

Question. What geometries correspond to Jordan-Lie algebras?

• for k = −1 (or k < 0) these are the associative geometries!
• for k = 1 (or k > 0) these are... “very special” Jordan
geometries, belonging to Hermitian parts of ∗-algebras:
“geometries of Quantum Mechanics” (cf. arxiv).
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