On the Algeometry Problem

Wolfgang Bertram

Institut Elie Cartan de Lorraine at Nancy

Paderborn, july 24, 2018

I'll start with some personal words...

The "Algeometry Problem"

Model: Sophus Lie's theory - the Lie functor:

$$
\begin{gathered}
G=G(\mathfrak{g}) \\
\quad \downarrow \uparrow \\
\mathfrak{g}=\operatorname{Lie}(G)
\end{gathered}
$$

Problem. Given some class of algebras, is there a corresponding class of "geometric objects", in such a way that the algebra can be considered as kind of "tangent algebra" of the geomery, and the geometry as kind of "integral version" of the algebra:

$$
\begin{aligned}
G= & \operatorname{Geo}(\mathbb{A}) \\
& \downarrow \uparrow \\
\mathbb{A}= & \operatorname{Alg}(G)
\end{aligned}
$$

The "Algeometry Problem"

Model: Sophus Lie's theory - the Lie functor:

$$
\begin{aligned}
G= & G(\mathfrak{g}) \\
& \downarrow \uparrow \\
\mathfrak{g}= & \operatorname{Lie}(G)
\end{aligned}
$$

Problem. Given some class of algebras, is there a corresponding class of "geometric objects", in such a way that the algebra can be considered as kind of "tangent algebra" of the geomery, and the geometry as kind of "integral version" of the algebra:

$$
\begin{aligned}
G= & \operatorname{Geo}(\mathbb{A}) \\
& \downarrow \uparrow \\
\mathbb{A}= & \operatorname{Alg}(G)
\end{aligned}
$$

In former papers and talks, l've called this the "generalized coquecigrue problem", in honor of Jean-Louis Loday; but Karl-Hermann convinced me that, possibly, time has come to give it a more serious name...

Plan of the talk

Geometry $\downarrow \uparrow$ Algebra

(1) Introduction

- Status of the problem
- What do I mean by "algebra" ?
- What do I mean by "geometry" ?
(2) Going down: "derivation" (differential calculus)
(3) Going up: "integration" (no general method, for the moment) - examples:
- Lie examples
- associative examples
- Jordan examples and Jordan-Lie examples

Status of the problem

It is

- wide open
- answer "known" for important cases : Lie, Jordan, associative (binary and ternary)
- work in good progress for others : alternative, Moufang, Leibniz,...
- difficult: so far each case uses its own methods and ideas
- interesting: so far, each case gave new and beautiful insights on geometry and was source of new maths
- challenging - especially for the Lie community (because groups are central in this problem)
- important (I'm pretty sure that theoretical physics will be very happy to use such a theory, once we have it.)

What do I mean by "algebra"?

- classes (categories) of algebras defined by algebraic identities, like: Lie, associative, Jordan,...

What do I mean by "algebra"?

- classes (categories) of algebras defined by algebraic identities, like: Lie, associative, Jordan,...
- I'm mostly interested in binary products, but also in ternary ones (eg., binary Lie algebra, $[X, Y$], ternary: Lie triple system $[X, Y, Z])$,

What do I mean by "algebra"?

- classes (categories) of algebras defined by algebraic identities, like: Lie, associative, Jordan,...
- I'm mostly interested in binary products, but also in ternary ones (eg., binary Lie algebra, $[X, Y$], ternary: Lie triple system $[X, Y, Z])$,
- binary algebras may have a unit, or not: it's important to make precise if we talk about unital associative, or Jordan, algebras (unit is part of the structure), or not,

What do I mean by "algebra"?

- classes (categories) of algebras defined by algebraic identities, like: Lie, associative, Jordan,...
- I'm mostly interested in binary products, but also in ternary ones (eg., binary Lie algebra, $[X, Y$], ternary: Lie triple system $[X, Y, Z])$,
- binary algebras may have a unit, or not: it's important to make precise if we talk about unital associative, or Jordan, algebras (unit is part of the structure), or not,
- I don't assume algebras to be finite-dimensional!

What do I mean by "algebra"?

- classes (categories) of algebras defined by algebraic identities, like: Lie, associative, Jordan,...
- I'm mostly interested in binary products, but also in ternary ones (eg., binary Lie algebra, $[X, Y$], ternary: Lie triple system [$X, Y, Z]$),
- binary algebras may have a unit, or not: it's important to make precise if we talk about unital associative, or Jordan, algebras (unit is part of the structure), or not,
- I don't assume algebras to be finite-dimensional!
- I don't even assume algebras to be defined over a field: I prefer to allow them to be defined over a general (commutative, unital) ring \mathbb{K} (general philosophy: infinite dimensional geometry over a field is best treated by working over rings, since then you are not tempted to use bases).

What do I mean by "geometry"?

- a "space" (manifold) with "structure" (typically, encoded by a "structure map", such as the group law of a Lie group, or the Loos product $(x, y) \mapsto s_{x}(y)$ of a symmetric space),

What do I mean by "geometry"?

- a "space" (manifold) with "structure" (typically, encoded by a "structure map", such as the group law of a Lie group, or the Loos product $(x, y) \mapsto s_{x}(y)$ of a symmetric space),
- are base points part of "structure"? Eg., for the structure "group", yes (unit), but for Loos' symmetric space law, no.

What do I mean by "geometry"?

- a "space" (manifold) with "structure" (typically, encoded by a "structure map", such as the group law of a Lie group, or the Loos product $(x, y) \mapsto s_{x}(y)$ of a symmetric space),
- are base points part of "structure"? Eg., for the structure "group", yes (unit), but for Loos' symmetric space law, no.
- Put differently: are base points "arbitrary"? Eg., aren't "affine spaces" more geometric than "vector spaces"? Recall: the "affine version" of a group is a torsor - a group with ternary product $(x y z):=x y^{-1} z$,

What do I mean by "geometry"?

- a "space" (manifold) with "structure" (typically, encoded by a "structure map", such as the group law of a Lie group, or the Loos product $(x, y) \mapsto s_{x}(y)$ of a symmetric space),
- are base points part of "structure"? Eg., for the structure "group", yes (unit), but for Loos' symmetric space law, no.
- Put differently: are base points "arbitrary"? Eg., aren't "affine spaces" more geometric than "vector spaces"? Recall: the "affine version" of a group is a torsor - a group with ternary product $(x y z):=x y^{-1} z$,
- Lie groupoids are "geometries": instead of one manifold, one has a pair $\left(G_{1}, G_{0}\right)$ of manifolds, but that's ok,

What do I mean by "geometry"?

- a "space" (manifold) with "structure" (typically, encoded by a "structure map", such as the group law of a Lie group, or the Loos product $(x, y) \mapsto s_{x}(y)$ of a symmetric space),
- are base points part of "structure"? Eg., for the structure "group", yes (unit), but for Loos' symmetric space law, no.
- Put differently: are base points "arbitrary"? Eg., aren't "affine spaces" more geometric than "vector spaces"? Recall: the "affine version" of a group is a torsor - a group with ternary product $(x y z):=x y^{-1} z$,
- Lie groupoids are "geometries": instead of one manifold, one has a pair $\left(G_{1}, G_{0}\right)$ of manifolds, but that's ok,
- "structure" may also be a relation: like "incidence" in projective geometry, or "transversality" on Grassmannians;

What do I mean by "geometry"?

- a "space" (manifold) with "structure" (typically, encoded by a "structure map", such as the group law of a Lie group, or the Loos product $(x, y) \mapsto s_{x}(y)$ of a symmetric space),
- are base points part of "structure"? Eg., for the structure "group", yes (unit), but for Loos' symmetric space law, no.
- Put differently: are base points "arbitrary"? Eg., aren't "affine spaces" more geometric than "vector spaces"? Recall: the "affine version" of a group is a torsor - a group with ternary product $(x y z):=x y^{-1} z$,
- Lie groupoids are "geometries": instead of one manifold, one has a pair $\left(G_{1}, G_{0}\right)$ of manifolds, but that's ok,
- "structure" may also be a relation: like "incidence" in projective geometry, or "transversality" on Grassmannians;
- anyhow, "space" and "structure" should be understood in some classical sense; in this respect, I do not follow the philosophy of Non-Commutative Geometry (NCG)!

Going down: differentiation

Example: "the Lie algebra of a Lie group is a kind of differentiation of the group law"

Many of you certainly have taught this "theorem" in lectures on Lie groups: there are several proofs; none of them is "obvious".

Going down: differentiation

Example: "the Lie algebra of a Lie group is a kind of differentiation of the group law"

Many of you certainly have taught this "theorem" in lectures on Lie groups: there are several proofs; none of them is "obvious".

- via bracket of (left) invariant vector fields: this is cheating because you have to define first the bracket of vector fields!

Going down: differentiation

Example: "the Lie algebra of a Lie group is a kind of differentiation of the group law"

Many of you certainly have taught this "theorem" in lectures on Lie groups: there are several proofs; none of them is "obvious".

- via bracket of (left) invariant vector fields: this is cheating because you have to define first the bracket of vector fields!
- via second term in BCH-series $\log (\exp X \cdot \exp Y)$ (problem: in general siutations you have no exponential map),

Going down: differentiation

Example: "the Lie algebra of a Lie group is a kind of differentiation of the group law"

Many of you certainly have taught this "theorem" in lectures on Lie groups: there are several proofs; none of them is "obvious".

- via bracket of (left) invariant vector fields: this is cheating because you have to define first the bracket of vector fields!
- via second term in BCH-series $\log (\exp X \cdot \exp Y)$ (problem: in general siutations you have no exponential map),
- deriving the adjoint representation: $a d=T_{1} \mathrm{Ad}$: this is fine; in essence: second derivative of adjoint action,

Going down: differentiation

Example: "the Lie algebra of a Lie group is a kind of differentiation of the group law"

Many of you certainly have taught this "theorem" in lectures on Lie groups: there are several proofs; none of them is "obvious".

- via bracket of (left) invariant vector fields: this is cheating because you have to define first the bracket of vector fields!
- via second term in BCH-series $\log (\exp X \cdot \exp Y)$ (problem: in general siutations you have no exponential map),
- deriving the adjoint representation: $a d=T_{1} \mathrm{Ad}$: this is fine; in essence: second derivative of adjoint action,
- as torsion tensor of the canonical curvature free connection: fine, too; but first you have to talk about connections...

What is the "best", or "most natural", method ? To give an answer, one has to speak first about differential calculus itself...

Differential calculus. I: functorial approach

"Functorial": we use that the tangent functor T is a functor: Example: (G, m, i) Lie group $\Rightarrow(T G, T m, T i)$ Lie group

Differential calculus. I: functorial approach

"Functorial": we use that the tangent functor T is a functor: Example: (G, m, i) Lie group $\Rightarrow(T G, T m, T i)$ Lie group In general: (M, \ldots) geometry $\Rightarrow(T M, T(\ldots))$ geometry
$\Rightarrow(T T M, T T(\ldots))$ geometry, and so on...
\ldots get higher order tangent geometry ($\left.T^{n} M, T^{n}(\ldots)\right)$
problem: understand $T^{n} M$! ... cf B., Mem AMS 900

Differential calculus. I: functorial approach

"Functorial": we use that the tangent functor T is a functor:
Example: (G, m, i) Lie group $\Rightarrow(T G, T m, T i)$ Lie group
In general: (M, \ldots) geometry $\Rightarrow(T M, T(\ldots))$ geometry
$\Rightarrow(T T M, T T(\ldots))$ geometry, and so on...
\ldots get higher order tangent geometry ($\left.T^{n} M, T^{n}(\ldots)\right)$
problem: understand $T^{n} M$! ... cf B., Mem AMS 900
Lie example: $T G$ is a group with splitting exact sequence

$$
0 \rightarrow(\mathfrak{g},+) \rightarrow T G \rightarrow G \rightarrow 1
$$

That is, semidirect product: $T G \cong G \times \mathfrak{g}$. Repeat this. Add index 1 everywhere in the first step, index 2 in the second step, etc. Get

$$
T T G \cong G \times \mathfrak{g}_{1} \times \mathfrak{g}_{2} \times \mathfrak{g}_{12} .
$$

For $X, Y \in \mathfrak{g}$, let X_{α} the corresponding image in \mathfrak{g}_{α} ("lift").
Theorem. For all $X, Y \in \mathfrak{g},[X, Y]_{12}=\left[X_{1}, Y_{2}\right]^{\text {group }}$, where $[g, h]^{\text {group }}=g h g^{-1} h^{-1}$ is the group commutator.

Lie functor: the Jacobi identity

Jacobi: need third order differential calculus! Look at TTTG:

$$
T^{3} G \cong\left(G \times \mathfrak{g}_{1} \times \mathfrak{g}_{2} \times \mathfrak{g}_{12}\right) \times\left(\mathfrak{g}_{3} \times \mathfrak{g}_{12} \times \mathfrak{g}_{23} \times \mathfrak{g}_{123}\right)
$$

ie., elements of $T^{3} G$ can be written uniquely as products in lexicographic ascending order.

Lie functor: the Jacobi identity

Jacobi: need third order differential calculus! Look at TTTG:

$$
T^{3} G \cong\left(G \times \mathfrak{g}_{1} \times \mathfrak{g}_{2} \times \mathfrak{g}_{12}\right) \times\left(\mathfrak{g}_{3} \times \mathfrak{g}_{12} \times \mathfrak{g}_{23} \times \mathfrak{g}_{123}\right)
$$

ie., elements of $T^{3} G$ can be written uniquely as products in lexicographic ascending order. Now rewrite both sides of

$$
\left(X_{3} \cdot Y_{2}\right) \cdot Z_{1}=X_{3} \cdot\left(Y_{2} \cdot Z_{1}\right)
$$

in ascending lexicographic order, and Jacobi drops out. (B. Mem AMS 900. But see already Serre, 1965, using P. Hall's identity.)

Lie functor: the Jacobi identity

Jacobi: need third order differential calculus! Look at TTTG:

$$
T^{3} G \cong\left(G \times \mathfrak{g}_{1} \times \mathfrak{g}_{2} \times \mathfrak{g}_{12}\right) \times\left(\mathfrak{g}_{3} \times \mathfrak{g}_{12} \times \mathfrak{g}_{23} \times \mathfrak{g}_{123}\right)
$$

ie., elements of $T^{3} G$ can be written uniquely as products in lexicographic ascending order. Now rewrite both sides of

$$
\left(X_{3} \cdot Y_{2}\right) \cdot Z_{1}=X_{3} \cdot\left(Y_{2} \cdot Z_{1}\right)
$$

in ascending lexicographic order, and Jacobi drops out. (B. Mem AMS 900. But see already Serre, 1965, using P. Hall's identity.)

Theorem. By writing elements of $T^{n} G$ uniquely as "products in ascending lexicographic order", the n-fold tangent group $T^{n} G$ is diffeomorphic to a product of G with $2^{n}-1$ copies \mathfrak{g}_{A} of \mathfrak{g}, labelled by subsets $A \subset\{1, \ldots, n\}$. There is an explicit "product formula", in terms of the Lie bracket, describing this group.

Rk: this a "left analog" of the Campbell-Hausdorff formula... However, inversion is not the map $X \mapsto-X!$

Differential calculus. II: Conceptual calculus

...book project and two arxiv papers; cf 50th SSL proceedings...
Motto: "there is life before taking the limit".

Differential calculus. II: Conceptual calculus

...book project and two arxiv papers; cf 50th SSL proceedings...
Motto: "there is life before taking the limit".
cf. the tangent groupoid (Alain Connes):
$t=0$ (in the limit): tangent bundle, $\mathrm{Tg}_{0}=T$ tangent functor,
$t=1$: pair groupoid functor $\operatorname{Tg}_{1} M=\mathrm{PG}(M)=M \times M$ groupoid: $\quad(x, y) *(y, z)=(x, z), \quad(x, y)^{-1}=(y, x)$,
$t \in[0,1]: \mathrm{Tg}_{t}$ "continuous interpolation" (Connes)

Differential calculus. II: Conceptual calculus

...book project and two arxiv papers; cf 50th SSL proceedings...
Motto: "there is life before taking the limit".
cf. the tangent groupoid (Alain Connes):
$t=0$ (in the limit): tangent bundle, $\mathrm{Tg}_{0}=T$ tangent functor,
$t=1$: pair groupoid functor $\operatorname{Tg}_{1} M=\mathrm{PG}(M)=M \times M$ groupoid: $\quad(x, y) *(y, z)=(x, z), \quad(x, y)^{-1}=(y, x)$, $t \in[0,1]: \mathrm{Tg}_{t}$ "continuous interpolation" (Connes)
Fundamental theorem of conceptual calculus. Let M be a smooth Hausdorff manifold (over some topological base ring \mathbb{K}). Then there is a Lie groupoid $\operatorname{Tg}(M)$ over the base $M \times \mathbb{K}$, such that for each $t \in \mathbb{K}$ the groupoid $\operatorname{Tg}_{t} M$ over the base M satisfies:

- $\mathrm{Tg}_{0} M$ is the tangent bundle (group bundle),
- $\operatorname{Tg}_{t} M \cong \mathrm{PG}(M)$ when t is invertible in \mathbb{K},
- for every $t \in \mathbb{K}, \operatorname{Tg}_{t} M$ is a smooth manifold over the ring

$$
\mathbb{K}_{t}:=\mathbb{K}[X] /\left(X^{2}-t X\right)=\mathbb{K} \oplus b \mathbb{K}, \quad b^{2}=t b
$$

Differential calculus: Higher order

"Iterate" $=$ "repeat over and over again" $\ldots: \operatorname{Tg}^{2} M=\operatorname{Tg}(\operatorname{Tg} M)$

Differential calculus: Higher order

"Iterate" $=$ "repeat over and over again"...$: \operatorname{Tg}^{2} M=\operatorname{Tg}(\operatorname{Tg} M)$
Theorem. In the situation of the preceding theorem, $\operatorname{Tg}^{2} M$ is a (strict) double groupoid, and so is, for each $\left(t_{1}, t_{2}\right) \in \mathbb{K}^{2}$,

$$
\operatorname{Tg}_{\left(t_{1}, t_{2}\right)}^{2} M:=\operatorname{Tg}_{t_{2}}\left(\operatorname{Tg}_{t_{1}} M\right)
$$

This is also the scalar extension of M by the ring $\mathbb{K}_{\left(t_{1}, t_{2}\right)}=\left(\mathbb{K}_{t_{1}}\right)_{t_{2}}$. And so on: we get an n-fold groupoid $\operatorname{Tg}^{\mathrm{n}} M$ which is "Lie" over a certain ring $\mathbb{K}_{\left(t_{1}, \ldots, t_{n}\right)}$.

Differential calculus: Higher order

"Iterate" $=$ "repeat over and over again"...$: \operatorname{Tg}^{2} M=\operatorname{Tg}(\operatorname{Tg} M)$
Theorem. In the situation of the preceding theorem, $\mathrm{Tg}^{2} \mathrm{M}$ is a (strict) double groupoid, and so is, for each $\left(t_{1}, t_{2}\right) \in \mathbb{K}^{2}$,

$$
\operatorname{Tg}_{\left(t_{1}, t_{2}\right)}^{2} M:=\operatorname{Tg}_{t_{2}}\left(\operatorname{Tg}_{t_{1}} M\right)
$$

This is also the scalar extension of M by the ring $\mathbb{K}_{\left(t_{1}, t_{2}\right)}=\left(\mathbb{K}_{t_{1}}\right)_{t_{2}}$. And so on: we get an n-fold groupoid $\operatorname{Tg}^{\mathrm{n}} M$ which is "Lie" over a certain ring $\mathbb{K}_{\left(t_{1}, \ldots, t_{n}\right)}$.
Summary. Lie groups and Lie groupoids (even: higher ones) enter naturally into the foundations of differential calculus and of differential geometry (cf. "Ehresman's program").
Therefore Lie theory plays a central role in the whole of the "algeometry problem"!

Going up: "integration"

Lie's third theorem. Every (finite-dimensional, real or complex) Lie algebra is associated to some Lie group.
Recall: the whole proof is long. It can be seperated in several parts: some of them are purely algebraic, but inevitably some of them are "transcendental": arguments of topology and "hard" analysis are used. None generalizes completely to infinite-dimensional situations...

Going up: "integration"

Lie's third theorem. Every (finite-dimensional, real or complex) Lie algebra is associated to some Lie group.
Recall: the whole proof is long. It can be seperated in several parts: some of them are purely algebraic, but inevitably some of them are "transcendental": arguments of topology and "hard" analysis are used. None generalizes completely to infinite-dimensional situations...

Surprise: the Lie case is the "most difficult" - in the Jordan and associative case, arguments are purely algebraic, no need for "transcendental help" ! - that's why Jordan (and associative) theory works so nicely in infinite dimensional situations, and over general base fields and rings: call it "algebraic integration".

Theorem. Every associative algebra is associated to some associative geometry. (B.-Kinyon.)
Every Jordan algebra is associated to some Jordan geometry.

Associative geometries in pictures

What is the geometry belonging to an associative algebra? Before giving general answers, let's look at the following four pictures:

This is an ordinary parallelogram in an ordinary plane. There is a geometric formula and an algebraic one describing $(X, Y, Z) \mapsto W$:

$$
\begin{gathered}
W=(\operatorname{para}(Y \vee Z, X)) \wedge(\operatorname{para}(Y \vee X, Z)) \\
W=X-Y+Z
\end{gathered}
$$

The second picture: it's the same as before,

where I have just added the drawing of the line at infinity h (horizon). We are in a projective plane.

$$
w=(((x \vee y) \wedge h) \vee z) \wedge(((z \vee y) \wedge h) \vee x)
$$

Now let's be schizophrenic and introduce two horizons a and b instead of h, and do the following construction:

The point w is now defined by the formula

$$
w:=(x y z)_{a b}:=(((x \vee y) \wedge a) \vee z) \wedge(((z \vee y) \wedge b) \vee x)
$$

To get another view of the preceding image, let's move back to infinity one of the two horizons, say a:

Theorem. For any fixed a, b, y, the law $(x, z) \mapsto w$ defines a group law on $U_{a b}=$ the projective plane with lines a, b, removed. The whole thing (map associating to five data: (a, b, x, y, z), the point $\left.w=(x y z)_{a b}\right)$ is what I call the non-commutative plane. It's the smallest dimensional non-trivial associative geometry.

Associative geometries: axiomatics

Underlying set: a general Grassmannian X and its dual X^{\prime}

Associative geometries: axiomatics

Underlying set: a general Grassmannian X and its dual X^{\prime}
(Weak) geometric structure: binary relation called transversality, $a \top x$ iff the sum $a+x$ is direct; $U_{a}=\{x \mid x \top a\}$ the set of complements of a; for every pair $(a, b) \in X^{\prime} \times X^{\prime}$, let $U_{a b}=U_{a} \cap U_{b}$ (set of common complements)

Associative geometries: axiomatics

Underlying set: a general Grassmannian X and its dual X^{\prime}
(Weak) geometric structure: binary relation called transversality, $a \top x$ iff the sum $a+x$ is direct; $U_{a}=\{x \mid x \top a\}$ the set of complements of a; for every pair $(a, b) \in X^{\prime} \times X^{\prime}$, let $U_{a b}=U_{a} \cap U_{b}$ (set of common complements)
Algebraic-geometric structure: Theorem. for any $y \in U_{a b}$, there is a group structure on $U_{a b}$ with neutral element y. The product $x z$ in this group depends on a, b, y, so let us denote it by $x \cdot z=(x y z)_{a b}=\Gamma(x, a, y, b, z)$. This defines the structure map
$\Gamma: X \times X^{\prime} \times X \times X^{\prime} \times X \rightarrow X, \quad(x, a, y, b, z) \mapsto x \cdot y z=(x y z)_{a b}$.

Associative geometries: axiomatics

Underlying set: a general Grassmannian X and its dual X^{\prime}
(Weak) geometric structure: binary relation called transversality, $a \top x$ iff the sum $a+x$ is direct; $U_{a}=\{x \mid x \top a\}$ the set of complements of a; for every pair $(a, b) \in X^{\prime} \times X^{\prime}$, let $U_{a b}=U_{a} \cap U_{b}$ (set of common complements)
Algebraic-geometric structure: Theorem. for any $y \in U_{a b}$, there is a group structure on $U_{a b}$ with neutral element y. The product $x z$ in this group depends on a, b, y, so let us denote it by
$x \cdot z=(x y z)_{a b}=\Gamma(x, a, y, b, z)$. This defines the structure map
$\Gamma: X \times X^{\prime} \times X \times X^{\prime} \times X \rightarrow X, \quad(x, a, y, b, z) \mapsto x \cdot y z=(x y z)_{a b}$.
Algebraic Identites: the structure map 「 satisfies certain algebraic identities, all of them "nice and natural".
Definition. Axiomatically, a structure of the type $\left(X, X^{\prime}, \top, \Gamma\right)$ is then called associative geometry.

Associative geometries. Self-duality.

Theorem. (B-Kinyon.) Associative geometries are the geometries belonging to associative pairs (have equivalence of categories...) Under this correspondence, unital associative algebras correspond to self-dual associative geometries (with base "point").

Associative geometries. Self-duality.

Theorem. (B-Kinyon.) Associative geometries are the geometries belonging to associative pairs (have equivalence of categories...) Under this correspondence, unital associative algebras correspond to self-dual associative geometries (with base "point").
Example: not self-dual. $\left(X, X^{\prime}\right)$ projective spaces corresponds to $(M(1, n ; \mathbb{K}), M(n, 1 ; \mathbb{K}))$, row and column vectors in duality, $n>1$. Special case $n=2$: pictures shown above!
Example: self-dual. $X=X^{\prime}=$ Grassmannian of n-spaces in $\mathbb{K}^{2 n}$, corresponds to (\mathbb{A}, \mathbb{A}) with \mathbb{A} full associative algebra of $n \times n$-matrices. It is the generalized projective line over \mathbb{A} :

Associative geometries. Self-duality.

Theorem. (B-Kinyon.) Associative geometries are the geometries belonging to associative pairs (have equivalence of categories...) Under this correspondence, unital associative algebras correspond to self-dual associative geometries (with base "point").

Example: not self-dual. $\left(X, X^{\prime}\right)$ projective spaces corresponds to $(M(1, n ; \mathbb{K}), M(n, 1 ; \mathbb{K}))$, row and column vectors in duality, $n>1$. Special case $n=2$: pictures shown above!
Example: self-dual. $X=X^{\prime}=$ Grassmannian of n-spaces in $\mathbb{K}^{2 n}$, corresponds to (\mathbb{A}, \mathbb{A}) with \mathbb{A} full associative algebra of $n \times n$-matrices. It is the generalized projective line over \mathbb{A} :
"Integration" revisited. Start with any unital associative algebra \mathbb{A}; then the space (manifold) is explicitly given by

$$
X=\operatorname{Gras}_{\mathbb{A}}^{\mathbb{A}}(\mathbb{A} \oplus \mathbb{A})=X^{\prime}
$$

with structure map 「 defined as above.

special Jordan geometries

Recall: an associative algebra gives rise to a special Jordan algebra $x \bullet y=\frac{1}{2}(x y+y x)$ (better: quadratic algebras; McCrimmon).

Question: What is the geometry belonging to this?

special Jordan geometries

Recall: an associative algebra gives rise to a special Jordan algebra $x \bullet y=\frac{1}{2}(x y+y x)$ (better: quadratic algebras; McCrimmon).

Question: What is the geometry belonging to this?
Definition. The Jordan structure map J of an associative geometry $\left(X, X^{\prime}, \Gamma\right)$ is the restriction of the pentary structure map $\Gamma(x, a, y, b, z)$ to the diagonal $x=z$:

$$
J_{x}^{a b}(y)=\Gamma(x, a, y, b, x)=(x y x)_{a b}
$$

Clue: when (a, b) is fixed, the map $J_{x}^{a b}$ is the inversion map of the group $U_{a b}$ with origin x. Hence $U_{a b}$ becomes a symmetric space with Loos' structure map $(y, x) \mapsto J_{y}^{a b}(x)$.
Second clue: when (x, y) is fixed, we also get an abelian group U_{x} with origin y and product $(a, b) \mapsto J_{y}^{a b}(x)$ (vector group, in fact)
Definition. A special Jordan geometry is a subspace of an associative geometry that is stable under the Jordan structure map.

Jordan geometries by inversions

Axiomatic definition. A Jordan geometry is given by a pair of spaces $\left(X, X^{\prime}\right)$, a transversality relation T and a Jordan structure $\operatorname{map}(x, a, y, b) \mapsto J_{y}^{a b}(x)$, such that certain algebraic identities hold. These say, among other things, that $J_{y}^{a b}$ is an inversion (has order 2), fixes y, and exchanges a and b, and

- for fixed $(a, b), U_{a b}$ is a symmetric space (the "homotopes"),
- for fixed $(x, y),\left(U_{x}, y\right)$ is an abelian group.

Theorem. (B.14.) Jordan geometries are the geometries belonging to general Jordan pairs. Self-dual Jordan geometries belong to general Jordan algebras.

Rk. Previous results:

- Be00 (LNM 1754), real finite dimensional case (using Loos 69)
- Be02: "generalized projective geometries", char $=2$ (midpoints!)
- Be-Neeb (2005): integration: model via filtered Lie algebras
- Be14: the results above hold for characteristic 2 included!

Jordan-Lie geometries

Motto: "some Jordan geometries are more special than others!" ... and by accident (?) these are exactly those corresponding to the setting of Quantum Mechanics :

Jordan-Lie geometries

Motto: "some Jordan geometries are more special than others!" ... and by accident (?) these are exactly those corresponding to the setting of Quantum Mechanics :
(Old) observation. Spaces of Hermitian matrices or operators are both a Jordan algebra, for •, and a Lie algebra, with Lie bracket

$$
[X, Y]:=\frac{i}{\hbar}(X Y-Y X)
$$

What is behind this?

Jordan-Lie geometries

Motto: "some Jordan geometries are more special than others!" ... and by accident (?) these are exactly those corresponding to the setting of Quantum Mechanics:
(Old) observation. Spaces of Hermitian matrices or operators are both a Jordan algebra, for •, and a Lie algebra, with Lie bracket

$$
[X, Y]:=\frac{i}{\hbar}(X Y-Y X)
$$

What is behind this? Recall the associator of an algebra β

$$
A_{\beta}(x, y, z):=(x y) z-x(y z)=\beta(\beta(x, y), z)-\beta(x, \beta(y, z)) .
$$

Lemma. Let \mathbb{A} be an associative algebra, i.e., $A_{\beta}=0$. Then the associatiors of the symmetric part $J(x, y)=x y+y x$ and of the skew-symmetric part $L(x, y)=x y-y x$ agree, up to a sign:

$$
A_{J}=-A_{L} .
$$

Proof. $L(L(x, y), z)-L(x, L(y, z))=x z y+y z x-y x z-z x y$, and for $J(J(x, y), z)-J(x, J(y, z))$ you get its negative!

Jordan-Lie geometries (II)

Definition. (Physics people...) Let $k \in \mathbb{K}$ be a constant. A Jordan-Lie algebra with Jordan-Lie constant k is an algebra \mathbb{A} with two products $[x, y]$ and $x \bullet y$, such that
(JL1) $(V,[\cdot, \cdot])$ is a Lie algebra,
$(\mathrm{JL} 2)(\mathrm{V}, \bullet)$ is a Jordan algebra,
(JL3) the Lie algebra acts by derivations of \bullet, that is,

$$
[x, u \bullet v]=[x, u] \bullet v+u \bullet[x, v]
$$

(JL4) the associator identity: associators of both products are proportional, by a factor k, that is, $A_{\bullet}=k A_{[-,-]}$. Written out,

$$
(x \bullet y) \bullet z-x \bullet(y \bullet z)=k([[x, y], z]-[x,[y, z]])
$$

Jordan-Lie geometries (II)

Definition. (Physics people...) Let $k \in \mathbb{K}$ be a constant. A Jordan-Lie algebra with Jordan-Lie constant k is an algebra \mathbb{A} with two products $[x, y]$ and $x \bullet y$, such that
(JL1) $(V,[\cdot, \cdot])$ is a Lie algebra,
$(\mathrm{JL} 2)(\mathrm{V}, \bullet)$ is a Jordan algebra,
(JL3) the Lie algebra acts by derivations of \bullet, that is,

$$
[x, u \bullet v]=[x, u] \bullet v+u \bullet[x, v]
$$

(JL4) the associator identity: associators of both products are proportional, by a factor k, that is, $A_{\bullet}=k A_{[-,-]}$. Written out,

$$
(x \bullet y) \bullet z-x \bullet(y \bullet z)=k([[x, y], z]-[x,[y, z]])
$$

Question. What geometries correspond to Jordan-Lie algebras?

- for $k=-1$ (or $k<0$) these are the associative geometries!

Jordan-Lie geometries (II)

Definition. (Physics people...) Let $k \in \mathbb{K}$ be a constant. A Jordan-Lie algebra with Jordan-Lie constant k is an algebra \mathbb{A} with two products $[x, y]$ and $x \bullet y$, such that
(JL1) $(V,[\cdot, \cdot])$ is a Lie algebra,
$(\mathrm{JL} 2)(\mathrm{V}, \bullet)$ is a Jordan algebra,
(JL3) the Lie algebra acts by derivations of \bullet, that is,

$$
[x, u \bullet v]=[x, u] \bullet v+u \bullet[x, v]
$$

(JL4) the associator identity: associators of both products are proportional, by a factor k, that is, $A_{\bullet}=k A_{[-,-]}$. Written out,

$$
(x \bullet y) \bullet z-x \bullet(y \bullet z)=k([[x, y], z]-[x,[y, z]])
$$

Question. What geometries correspond to Jordan-Lie algebras?

- for $k=-1$ (or $k<0)$ these are the associative geometries!
- for $k=1$ (or $k>0$) these are... "very special" Jordan geometries, belonging to Hermitian parts of $*$-algebras: "geometries of Quantum Mechanics" (cf. arxiv).

