

Naturally reductive homogeneous spaces – classification and special geometries

Ana Cristina Ferreira CMAT - Universidade do Minho anaferreira@math.uminho.pt

Symmetries in Geometry, Analysis and Spectral Theory Paderborn, 23-26 July 2018

Homogeneous manifolds

 \rightarrow Link algebraic theory of Lie groups and geometric notions such as isometry and curvature

• É. Cartan 1926

 \rightarrow classification of (Riemannian) symmetric spaces

However classification without further assumptions seems to be impossible

Substancial work in special cases:

 \rightarrow very small dimensions, positive curvature, isotropy irreducible...

Our class: naturally reductive homogeneous spaces

joint with I. Agricola, T. Friedrich and R. Storm 1

Homogeneous space

(M, g) plus G ⊆ Iso(M) s.t. G acts on M transitively and effectively.
 H stabilizer of a point p ∈ M, M = G/H.

 \rightarrow Assume M with good properties: connected, simply connected, complete.

Thm.

[Ambrose-Singer]

$$(M,g)$$
 is homogeneous iff $\exists T \in \Lambda^2 M \otimes TM$ s. t.
 $\rightarrow \nabla T = 0 = \nabla R$
(AS)

 ∇ metric connection with torsion T

 $[\nabla = \nabla^g + \frac{1}{2}T]$

Constructive proof! 2

Torsion tensors

• $\mathcal{T} = \Lambda^2 M \otimes TM$

\rightarrow Under the action of O(n)

[Cartan]

$$\mathcal{T} = \Lambda^3 M \oplus TM \oplus \mathcal{C}$$

 \rightarrow Eight classes of homogeneous spaces

• $T \in TM$

 $\rightarrow (M^n, g)$ is the hyperbolic space of dim n

Naturally reductive: $T \in \Lambda^3 M$

[Tricerri-Vanhecke]

[assume $T \neq 0$]

Naturally reductive spaces

Dfn. G/H is *naturally reductive* if \mathfrak{h} admits a *reductive* complement \mathfrak{m} in \mathfrak{g} :

 $\langle [X,Y]_{\mathfrak{m}},Z \rangle + \langle Y,[X,Z]_{\mathfrak{m}} \rangle = 0$

 \rightarrow The PFB $G \rightarrow G/K$ induces a metric connection ∇ with torsion

 $g(T(X,Y),Z) := T(X,Y,Z) = -\langle [X,Y]_{\mathfrak{m}}, Z \rangle,$

the so-called *canonical connection* of the nat. red. homog. space.

Conversely,

Nomizu construction

given (M, g, T) as in (AS) we can recover $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$:

 $\rightarrow \mathfrak{h}$ is the holonomy algebra, \mathfrak{m} is identified with T_pM , for some p

$$\rightarrow [A + X, B + Y] = ([A, B]_{\mathfrak{h}} - R(X, Y)) + (AY - BX - T(X, Y))$$
⁴

Examples

- any Lie group with a biinv. metric (b.t.w. flat) [Cartan-Schouten]
- construction/classification of left-invariant nat. red. metrics on compact Lie groups [D'Atri-Ziller]
- all isotropy irreducible homogeneous manifolds
- Spheres can carry several nat.red.structures, for example $S^{2n+1} = SO(2n+2)/SO(2n+1) = SU(n+1)/SU(n),$ $S^{6} = G_{2}/SU(3), S^{7} = Spin(7)/G_{2}, S^{15} = Spin(9)/Spin(7).$

But if (M, g) not loc. isometric to sphere or Lie group then admits at most ONE nat. red. structure. [Olmos-Reggiani]

Known classifications

• In dimension 3

[Tricerri-Vanhecke]

 \rightarrow space forms: \mathbb{R}^3 , \mathbb{S}^3 and \mathbb{H}^3 (in infinite number)

 \rightarrow one of the following (with suitable left inv. metric): $SU(2), \widetilde{SL}(2, \mathbb{R}), H^3$

• In dimension 4

 $\rightarrow M$ is loc. $\mathbb{R} \times N^3$ with N^3 nat. red.

• In dimension 5

[Kowalski-Vanhecke]

[Kowalski-Vanhecke]

 \rightarrow SU(3)/SU(2) or SU(2,1)/SU(2)

 $\rightarrow H^5$

 $\rightarrow (K_1 \times K_2)/SO(2)$, where K_1 and K_2 are SU(2), $\widetilde{SL}(2,\mathbb{R})$ or H^3

Our approach

- Look at the parallel torsion as the fundamental object.
- For 'non-degenerate' torsion, the connection in (AS) is the characteristic connection for some known geometry (almost contact, almost Hermitian...).

An important tool

•
$$\sigma_T := \frac{1}{2} \sum_{i=1}^n (e_i \, \lrcorner \, T) \land (e_i \, \lrcorner \, T) = \overset{X,Y,Z}{\mathfrak{S}} g(T(X,Y),T(Z,V)) \quad (=0 \text{ if } n \le 4)$$

$$* \overset{X,Y,Z}{\mathfrak{S}} \mathcal{R}(X,Y,Z,V) = \sigma_T(X,Y,Z,V) \quad * \quad dT = 2\sigma_T$$

Thm.

[Agricola-Friedrich-F.]

7

M irreducible, $n \ge 5$, $\nabla T = 0$, $\sigma_T = 0$, then M is a simple compact Lie group (with binv. metric) or its dual noncompact symmetric space.

 $\rightarrow *\sigma_T$ is a 2-form.

 \rightarrow Can be seen as a skew endomorphism.

Does it induce an almost complex struture?

Not always... Classify it by its rank (=0,2,4,6)

Case A: $\sigma_T = 0$

Thm.

[AFF]

8

A Riem. 6-mnfld with parallel skew torsion T s.t. $\sigma_T = 0$ splits into two 3dimensional manifolds with parallel skew torsion.

Cor. [AFF]

Any 6-dim. nat. red. homog. space with $\sigma_T = 0$ is loc. isometric to a product of two 3-dimensional nat. red. homog. spaces.

Case B: $rk(*\sigma_T) = 2$

Thm.

[AFF]

Let (M^6, g, T) be a 6-mnfd with parallel skew torsion s.t. $rk(*\sigma_T) = 2$. Then $\nabla \mathcal{R} = 0$, i. e. M is nat. red.

Furthermore, M is a product $K_1 \times K_2$ of two Lie groups equiped with a left inv. metric and K_1 and K_2 are $SU(2), \widetilde{SL}(2, \mathbb{R})$ or H^3

Case C: $rk(*\sigma_T) = 4$

Cannot occur.

Case D: $rk(*\sigma_T) = 6$

 $*\sigma_T$ induces an almost complex structure $J = \sqrt{}$

Characteristic connection.

[Friedrich-Ivanov]

 (M^{2n}, g, J, Ω) admits ∇ with skew torsion T such that $\nabla J = 0 = \nabla g$ iff N is skew-symmetric.

 $\rightarrow T = N + d^J \Omega$

$$N(X, Y) = [JX, JY] - J[JX, Y] - J[X, JY] - [X, Y]$$
$$d^{J}\Omega(X, Y, Z) = d\Omega(JX, JY, JZ)$$

Case D: $rk(*\sigma_T) = 6$

Thm.

[AFF]

Let (M^6, g, T) be a 6-mnfd with parallel skew torsion s.t. $rk(*\sigma_T) = 6$. Then:

Case D.1 (M^6, g) is nearly Kähler: $(\nabla^g_X J)X = 0$ (*)

Case D.2 (M^6, g) is nat. red. and:

 $\rightarrow a \text{ 2-step nilp. group with Lie alg. } \mathbb{R}^3 \times \mathbb{R}^3 \text{ s.t. } [(u_1, v_1), (u_2, v_2)] = (0, u_1 \times u_2)$ $\rightarrow S^3 \times \mathbb{R}^3, \qquad \rightarrow S^3 \ltimes \mathbb{R}^3 \qquad \rightarrow S^3 \times S^3, \qquad \rightarrow SL(2, \mathbb{C})$

(*) If homog. then nat. red. and: S^6 , $S^3 \times S^3$, $\mathbb{C}P^3$, $U(3)/U(1)^3$ [Butruille 2005]

Other dimensions

Semidirect products

H, N connected Lie groups, N abelian.

 $\varphi: H \longrightarrow \operatorname{Aut}(N)$ non-trivial homomorphism.

 $H \ltimes_{\varphi} N$: $H \times N$ with $(h_1, n_1)(h_2, n_2) = (h_1h_2, n_1 + \varphi(h_1)n_2)$

Induces $\varphi_* : \mathfrak{h} \longrightarrow \operatorname{End}(\mathfrak{n}) \quad [(A, u), (B, v)] = ([A, B], \varphi_*(A)(v) - \varphi_*(B)(u))$

Lemma.

[Agricola-F.]

 $H \ltimes_{\varphi} N$ admits no bi-invariant metrics.

Corollary.

H compact, N vector space: $H\ltimes_{\varphi}N$ and $H\times N$ are not isomorphic as Lie groups .

Other dimensions

Tangent Lie groups

- Choose: $H = G, N = \mathfrak{g}$ $\varphi = \operatorname{Ad} : G \longrightarrow \operatorname{Aut}(\mathfrak{g})$ the adjoint representation.
- $\rightarrow TG = G \ltimes_{\mathrm{Ad}} \mathfrak{g}$ tangent Lie group
- $\rightarrow TG$ is the tangent bundle of G
- Metrics of split signature have been constructed on generic TM^n [Kobayashi-Yano]
- Nad. red. metrics lift to nat. red. metrics (split signature) [Sekizawa]

Tangent Lie groups

Compact Lie group G equipped with a bi-invariant metric.

Thm. [AF]

There is a two-parameter family of almost Hermitian structures $(TG, g_{a,b}, J_{a,b})$:

 \rightarrow Characteristic connection ∇ is s.t. $\nabla T = 0 = \nabla R$

 ${\rightarrow}\mathfrak{hol}(\nabla)=[\mathfrak{g},\mathfrak{g}]$

 \rightarrow Each metric $g_{a,b}$ is isometric to a left-invariant metric on $G \times \mathfrak{g}$.

Further directions

New families were produced by R. Storm

(generalizes a construction of C. Gordon for 2-step nilpotent groups)

R. Storm advanced a classif. of nat. red. spaces in dim. 7 and 8.