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Dedication

I would like to dedicate this talk to Joachim Hilgert, whose 60th
birthday we celebrate at this conference and with whom I
researched and wrote a big blue book (along with Karl Hofmann)
concerning Lie Groups, Convex Cones, and Semigroups. Since
those earlier days my research concerning cones has veered in
different directions, and I would like to report on one of those
today.
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Loos Symmetric Spaces
The 1969 approach of Ottmar Loos to symmetric spaces
axiomatizes a binary operation (a, b) 7→ a • b for which
Sa : M → M defined by Sab = a • b may be viewed as a symmetry
or point reflection of M through a.
Let M be a Banach manifold, a smooth manifold modeled on some
Banach space E (where smooth, as usual, means C∞).

Definition

We say (M, •) is a Loos symmetric space if M is a Banach
manifold, and (x , y) 7→ x • y : M ×M → M is a smooth map with
the following properties for all a, b, c ∈ M:

(S1) a • a = a (Saa = a);
(S2) a • (a • b) = b (SaSa = idM);
(S3) a • (b • c) = (a • b) • (a • c) (SaSb = SSabSa);
(S4) Every a ∈ M has a neighborhood U such that a • x = x

implies a = x for x ∈ U.
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Symmetric Cones

Symmetric cones are typically defined as open convex self-dual
cones in Euclidean space which have a transitive group of
symmetries.

Our aim in this talk is to use a modified Loos approach to extend
the study of symmetric cones to open cones in Banach spaces.
The primary motivating examples are the cones of positive
elements in C∗-algebras and the cone of invertible squares of a
Jordan-Banach algebra (JB-algebra).

Three types of geometry come into play in our study: differential
geometry, reflection or symmetric geometry, and the metric
geometry of cones.
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Sprays

A spray is a useful variant for the notion of a connection on a
manifold in the Banach manifold setting.

Definition of a Spray
Let M be a Banach manifold and π : TM → M its tangent bundle.
A second-order vector field on M is a vector field F : TM → TTM
satisfying T (π) ◦ F = idTM . Let s ∈ R and sTM : TM → TM
denote the scalar multiplication by s in each tangent space. A
second order vector field F on TM is called a spray if

F (sv) = T (sTM)(sF (v)) for all s ∈ R, v ∈ TM.
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The Exponential Function and Parallel Transport

A spray F gives rise to integral curves in TM, geodesics in M
(π-projections of the integral curves), and an exponential function.
The domain Dexp ⊆ TM of the exponential function is the set of
all points v ∈ Tx M, x ∈ M, for which the maximal integral curve
γv : J → TM of F with γv (0) = v satisfies 1 ∈ J ; in this case
expx (v) := π(γv (1)).

Let α : [s, t]→ M be a piecewise smooth curve. We write

Pt
s (α) : Tα(s)M → Tα(t)M

for the corresponding linear map given by parallel transport along
α.
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Neeb’s Theorem (K.-H. Neeb, 2002)
Let (M, •) be a Loos symmetric space.

(i) Identifying T (M ×M) with T (M)× T (M), then

v • w := T (µ)(v ,w) where µ(x , y) := x • y

defines a Loos symmetric space on TM.
(ii) The function F : TM → TTM, F (v) := −T (Sv/2 ◦ Z )(v)

defines a spray on M, where Z : M → TM is the zero section
and Sv/2 is the point symmetry for v/2 from part (i).

(iii) Aut(M, •) = Aut(M,F ), and F is uniquely defined as the only
spray invariant under all symmetries Sx , x ∈ M.

(iv) (M,F ) is geodesically complete (all geodesics extend to R).
(v) Let α : R→ M be a geodesic and call the maps

τα,s := Sα(s/2) ◦ Sα(0), s ∈ R, translations along α. Then
these are automorphisms of (M, •) with

τα,s(α(t)) = α(t + s) and dτα,s(α(t)) = Pt+s
t (α)

for all s, t ∈ R.
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Geodesics

We consider the category with objects Loos symmetric spaces and
morphisms smooth maps that are homomorphisms with respect to
the operation •. Note that R equipped with the operation
s • t = 2s − t is an object in this category.

Proposition
Let (M, •) be a Loos symmetric space. Let α : R→ M be a map.
The following are equivalent.

1 α is a maximal geodesic.
2 There exists x ∈ M and v ∈ Tx M such that α(t) = expx (tv)

for all t ∈ R.
3 α is a morphism in the category of Loos symmetric spaces.
4 α is a continuous homomorphism from (R, •)→ (M, •).
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Midpoints of Symmetry

In the Loos axioms the first two axioms Saa = a and SaSa = idM
have obvious intuitive geometric content. The third axiom (S3)
may be rewritten as Sa(b • c) = (Sab) • (Sac), which shows that
Sa is a morphism in the Loos symmetric space category.
For our purposes we need a stronger version of (S4), namely:
(S4∗) the equation x • a = b has a unique solution x .
Applying (S2) we see that x • b = a and thus that Sx is the unique
point reflection carrying a to b and vice-versa. It is thus
appropriate to call the solution x a midpoint of symmetry for a and
b. We denote this unique solution of x • a = b by a#b and note
that a#b = b#a.

In addition we often want our symmetric structures to be pointed,
i.e., to have a designated element that we typically write as ε.
Note. The preceding systems are entirely algebraically defined.
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Dyadic Powers

Let (A, •, ε) be a pointed set with binary operation • satisfying
(S1), (S2), (S3), and (S4∗). We define for x ∈ A

x−1 := Sεx , x2 := Sxε, x1/2 := x#ε,

and inductively from these definitions all dyadic rational powers
may be defined. Furthermore, the dyadic rationals D equipped with
the operation p • q = 2p − q satisfies (S1)-(S4∗) and q 7→ xq is a
•-homomorphism from D to A.

Note. In systems satisfying (S4∗) a •-homomorphism is a
#-homomorphism and vice-versa.
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Some Examples

The following are some examples of Loos symmetric spaces
satisfying (S4∗).

(1) Any Banach space E with a • b = 2a − b, a#b = 1
2(a + b),

and ε = 0, a specific case being E = R.

(2) The manifold of n × n positive definite matrices Pn with
A • B = AB−1A, A#B = A1/2(A−1/2BA−1/2)1/2A1/2 (the matrix
geometric mean), and ε = I.

(3) More generally, the classical simply connected Riemannian
symmetric spaces of nonpositive curvature.
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The Displacement Group

Felix Klein’s Erlangen Program (1872) emphasized the role of
geometric automorphism groups in the study of geometry. In the
case of a Loos symmetric space (M, •) this group is the
displacement group G(M), the group generated by the
displacements Sx Sy for x , y ∈ M. By (S2) and (S3) these are all
automorphisms of (M, •). In the case M is pointed, the group is
also generated by all basic displacements Sx Sε for x ∈ M. In this
setting we denote Sx Sε by Q(x). (There are closely related to
displacements in Jordan algebras.)

Some Basic Identities:
(1) Q(Q(x)y) = Q(x)Q(y)Q(x);
(2) Q(x−1) = Q(x)−1.
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Metric spaces of Nonpositive Curvature

The tuple (M, d , •, ε) is a pointed symmetric metric space of
nonpositive Busemann curvature if (M, d) is a metric space, (M, •)
satisfies (S1)-(S4∗), (x , y)→ x • y is continuous and for all
x , y ∈ M
(1) d(gx , gy) = d(x , y) for all displacements g ∈ G(M);
(2) d(x−1, y−1) = d(x , y);
(3) d(x1/2, y1/2) ≤ 1

2d(x , y) (the Busemann condition).

Theorem
For (M, d , •, ε) as given, whenever x 6= y , there exists a unique
(injective) •-homomorphism α : R→ M such that α(0) = x and
α(1) = y . Furthermore, α is a metric geodesic in the sense that
d(α(s), α(t)) = |s − t|d(x , y) for all s, t ∈ R.

We call α(t) the t-weighted mean of x and y and write it x#ty .
Note x • y = x#−1y and x#y = x#1/2y .
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Normal Cones

We turn now to our main topic of interest, Loos symmetric
structures on cones.

Let E be a Banach space and let Ω be an open cone, a subset that
is topologically open and is closed under addition and
multiplication by positive scalars. We assume that the closed cone
Ω satisfies Ω ∩ Ω = {0}. We define a partial order on E by x ≤ y
iff y − x ∈ Ω.

We further assume that Ω is normal, that is, there exists an
equivalent norm on E satisfying 0 ≤ x ≤ y implies ‖x‖ ≤ ‖y‖, and
we henceforth assume that this is the one chosen. By a slight
abuse of language we also speak of Ω as a normal cone if Ω is.
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The Thompson Metric

Let Ω be an open normal cone in the Banach space E . For
x , y ∈ Ω we set

M(x/y) : = inf{t > 0 : x ≤ ty}
dT (x , y) : = max{log(M(x/y), log(My/x)}.

The Thompson or part metric dT is a complete metric on Ω and
the metric topology agrees with the relative topology from E .
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Loos Symmetric Cones: The Continuous Case

A surprising amount can be obtained without smoothness.

Hypotheses
Let Ω be an open normal cone in the Banach space E . Let
(Ω, •, ε) satisfy (S1)-(S4∗) and assume • is a continuous binary
operation. We further assume the conditions

x1/2(= x#ε) ≤ x+ε
2 for all x ∈ Ω;

each basic displacement Q(x) is additive and positively
homogeneous on Ω.

Note the the hypothesis x1/2 ≤ (1/2)(x + ε) relates the symmetric
structure and the partial order (and is equivalent to (x − ε)2 ≥ 0 in
C∗-algebras). The preservation of the linear structure of Ω by each
Q(x) relates the linear structure of Ω to the displacement group of
Ω.
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Conclusions (Y. Lim, L.)

Under the hypotheses of the preceding slide, we obtain the
following conclusions.
(1) Each displacement Q ∈ G(Ω) is an isometry for the Thompson
distance and extends to an invertible bounded linear operator on E
that is an order isomorphism.
(2) With respect to the Thompson metric a#b is the metric
midpoint of a and b.

(3) For each a 6= b, the map t 7→ a#tb is a •-homomorphism, a
maximal metric geodesic, and the unique one carrying 0 to a and 1
to b. Furthermore, the function
(t, x , y) 7→ x#ty : R×M ×M → M is continuous.
(4) dT (a#tb, a#tc) ≤ t dT (b, c) for a, b, c ∈ Ω. Hence Ω
equipped with the Thompson metric has nonpositive curvature in
the sense of Busemann.
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Loos Symmetric Cones Defined (finally)

We enhance our earlier definition by adding smoothness.

Definition
A triple (Ω, •, ε) with ε ∈ Ω is a pointed Loos symmetric cone if

1 Ω is an open normal cone in a Banach space E ;
2 (Ω, •) satisfies a • a = a, a • (a • b) = b; a • (b • c) =

(a • b) • (a • c) and x • a = b has unique solution x = a#b;
3 (a, b) 7→ a • b, (a, b) 7→ a#b are both smooth;
4 a1/2(= a#ε) ≤ a+ε

2 for all a ∈ Ω;
5 each basic displacement Q(a) is additive and positively

homogeneous on Ω.
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A Finsler Metric

For each a ∈ Ω we can define an order unit norm on E by

‖x‖a = inf{λ > 0 : −λa ≤ x ≤ λa},

which is equivalent to the given norm on E . Identifying the
tangent space T Ω with Ω× E , we define a Finsler structure on
T Ω by ‖(a, x)‖ = ‖x‖a. This Finsler structure is invariant under
the action of TQ : T Ω→ T Ω for each Q in the displacement
group.

The Finsler structure gives a method of computing arc length for
piecewise differentiable curves in Ω.
Proposition. Let α(t) = a#tb for a 6= b ∈ Ω. For any t0 < t1 the
restriction of α to [t0, t1] is a minimal length curve from α(t0) to
α(t1) of length dT (α(t0), α(t1). It follows that the length metric
for the Finsler metric is the Thompson metric.
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The Exponential Function Revisited

For a pointed Loos symmetric space (Ω, •, ε), we assume that the
norm of the Banach space E is the order unit norm ‖ · ‖ε, we
identify TεΩ with E and write the exponential function
expε : TεΩ→ Ω as exp : E → Ω.

Basic Results
(1) exp : E → Ω is a diffeomorphism with inverse “log.”
(2) For a ∈ Ω, α(t) := at = ε#ta = exp(t log a) is the (spray,
Finsler, and metric) geodesic with α(0) = ε and α(1) = a.
(3) dT (ε, b) = ‖ log b‖ and dT (a, b) = ‖ log(Q(a−1/2)b)‖ for all
a, b ∈ Ω.
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Example: The Positive Cone of a C ∗-algebra

Let Ω be the cone of positive elements of a C∗-algebra with
identity. Then Ω admits the structure of a pointed Loos symmetric
cone with

E = Ω− Ω, the closed subspace of self-adjoint (hermitian)
elements;
ε = 1;
a • b = ab−1a, a#b = a1/2(a−1/2ba−1/2)1/2a1/2;
Q(a)(b) = aba, a#tb = a1/2(a−1/2ba−1/2)ta1/2;
The exponential, log, and power function at are all the same
in the C∗-algebra and the Loos symmetric cone, as are the
norms ‖ · ‖.
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Inequalities

An interesting problem is what inequalities can be derived in the
setting of Loos symmetric cones. They have something of a
universal character since they are valid beyond C∗-algebras. The
algebraic-geometric nature of Loos symmetric cones also provides
new tools, primarily geometric ones, for the study of inequalities.
We list some sample inequalities that can be derived in the context
of Loos symmetric cones.

(The harmonic-geometric-arithmetic mean inequality)
2(a−1 + b−1)−1 ≤ a#b ≤ a+b

2 for a, b ∈ Ω.
(Loewner-Heinz) If a ≤ b, then at ≤ bt for 0 ≤ t ≤ 1..
‖ log(Q(a−t/2))bt)‖ ≤ t‖ log(Q(a−1/2))b‖ for 0 < t < 1.

In the context of C∗-algebras the last inequality is a variant of the
Cordes inequality ‖atbt‖ ≤ ‖ab‖t for 0 < t < 1.
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Short-term Future Work

The previous inequalities are presumably only a very small sample
of what can be derived and one hopes that a more systematic
study would find interesting new derivations of old results and even
some newer ones and provide new tools for their study.

THE END
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